JP3946150B2 - Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density - Google Patents

Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density Download PDF

Info

Publication number
JP3946150B2
JP3946150B2 JP2003029385A JP2003029385A JP3946150B2 JP 3946150 B2 JP3946150 B2 JP 3946150B2 JP 2003029385 A JP2003029385 A JP 2003029385A JP 2003029385 A JP2003029385 A JP 2003029385A JP 3946150 B2 JP3946150 B2 JP 3946150B2
Authority
JP
Japan
Prior art keywords
soft magnetic
iron
alloy powder
magnetic alloy
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003029385A
Other languages
Japanese (ja)
Other versions
JP2004238684A (en
Inventor
佳紀 曽根
亮治 中山
宗明 渡辺
和則 五十嵐
Original Assignee
三菱マテリアルPmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルPmg株式会社 filed Critical 三菱マテリアルPmg株式会社
Priority to JP2003029385A priority Critical patent/JP3946150B2/en
Publication of JP2004238684A publication Critical patent/JP2004238684A/en
Application granted granted Critical
Publication of JP3946150B2 publication Critical patent/JP3946150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
この発明は、モータ、アクチュエータ、磁気センサなどの製造に使用される高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法に関するものである。
【0002】
【従来の技術】
一般に、モータ、アクチュエータ、磁気センサなどの磁心にはFe−Co系鉄基軟磁性合金粉末を燒結して得られた軟磁性材料が用いられることは知られており、さらに、この軟磁性材料の一つとしてフェライトが知られている。このフェライトは(MeFe)34(ただし、MeはMnZn,Ni,Mg,Cu,Fe,Coのうちの1種または2種以上)の成分組成を有するスピネル型フェライトであることも知られている。前記Fe−Co系鉄基軟磁性合金粉末などを燒結して得られた軟磁性材料は、飽和磁束密度が高いが、高周波特性が悪く、一方、フェライトなど鉄酸化物粉末を焼結して得られた酸化物軟磁性材料は、抵抗が高いために高周波特性に優れ、初透磁率が比較的高いが、飽和磁束密度が低い欠点があり、これらを改善するために、Fe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を被覆してなるフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末が提案されており、このフェライト膜被覆鉄軟磁性粉末を焼結して得られた材料は高抵抗を有し、飽和磁束密度および高周波特性に共に優れると言われている。
【0003】
このフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末を製造するための方法として、Fe−Co系鉄基軟磁性合金粉末の表面に湿式フェライトメッキによりフェライト膜を形成する方法(特許文献1または2参照)、
Fe−Co系鉄基軟磁性合金粉末およびフェライト粉末を高速衝撃撹拌装置に入れて高速回転させることによりFe−Co系鉄基軟磁性合金粉末の表面にフェライト粉末を埋め込み、それによってFe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を形成する方法(特許文献3参照)などが知られており、これらフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、得られた仮圧粉成形体を水素雰囲気中でばい焼した後、得られたばい焼体を熱間鍛造することにより複合軟磁性材を製造する方法も知られている。
【0004】
【特許文献1】
特開昭56−38402号公報
【特許文献2】
特開平11−1702号公報
【特許文献3】
特開平4−226003号公報
【0005】
【発明が解決しようとする課題】
しかし、前記Fe−Co系鉄基軟磁性合金粉末の表面にフェライト膜を被覆してなる従来のフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末は、成形性および鍛造性が悪いために、室温鍛造しても十分な密度が得られない。そこで、熱間鍛造して複合軟磁性材を製造すると、複合軟磁性材の密度はある程度向上するが、従来のフェライト膜被覆Fe−Co系鉄基軟磁性合金粉末は鍛造温度までの加熱時に、芯部のFe−Co系鉄基軟磁性合金粉末とフェライト間でフェライトの還元反応が起こり、フェライト(Fe34)層はウスタイト(FeO)層に変化するなどして酸素不足のフェライト膜がFe−Co系鉄基軟磁性合金粉末表面に形成され、この酸素不足のフェライト膜は固有抵抗値が低く、したがって得られた複合軟磁性材の抵抗値が十分なものではない。
【0006】
【課題を解決するための手段】
そこで、本発明者らは、かかる課題を解決すべく研究を行った結果、
(イ)Fe−Co系鉄基軟磁性合金粉末にZn粉末を0.1〜15質量%添加した混合粉末を加熱しながら撹拌すると、Znは気化してZn蒸気となり、Fe−Co系鉄基軟磁性合金粉末の表面にZn層、Zn−Fe合金層、またはZn層およびZn−Fe合金層からなる複合層(以下、Zn成分層という)が形成され、このZn成分層が形成されたFe−Co系鉄基軟磁性合金粉末を酸化雰囲気中で加熱すると、Fe−Co系鉄基軟磁性合金粉末の表面に第1層として酸化亜鉛層が形成され、この酸化亜鉛層が形成されたFe−Co系鉄基軟磁性合金粉末の表面に第2層としてフェライト層を被覆して積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を原料粉末として仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造して得られた複合軟磁性材は、密度、抵抗および磁束密度が向上する、
(ロ)温度:800〜1200℃で熱間鍛造して得られた熱間鍛造体をさらに温度:800〜1000℃で焼鈍すると密度、抵抗および磁束密度は一層向上する、という研究結果が得られたのである。
【0007】
この発明は、かかる研究結果に基づいてなされたものであって、
(1)Fe−Co系鉄基軟磁性合金粉末の表面に、酸化亜鉛層を形成し、酸化亜鉛層の上にフェライト層を形成してなる積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造する高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法、
(2)Fe−Co系鉄基軟磁性合金粉末の表面に、酸化亜鉛層を形成し、酸化亜鉛層の上にフェライト層を形成してなる積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造し、その後さらに温度:800〜1000℃で焼鈍する高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法、に特徴を有するものである。
【0008】
この発明の高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法をさらに一層具体的に説明する。
この発明の高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法において使用するFe−Co系鉄基軟磁性合金粉末は、従来から一般に知られているCo:25〜60質量%を含有し、残部がFeおよび不可避不純物からなる組成、またはCo:25〜60質量%、V:0.5〜5質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するFe−Co系軟磁性合金粉末を使用することが好ましい。しかし、この発明の高密度および高透磁性を有する複合軟磁性材の製造方法において使用する前記Fe−Co系軟磁性合金粉末は、前記成分組成を有するFe−Co系軟磁性合金粉末に限定されるものではなく、その他のFe−Co系軟磁性合金粉末を使用することができる。
この発明でフェライトとは、スピネル構造を有するフェライトであり、(MeFe)34(ただし、MeはMn,Zn,Ni,Mg,Cu,FeもしくはCoまたはこれらの混合物)の組成式で表されるスピネルフェライトである。
そして、これらFe−Co系鉄基軟磁性合金粉末は平均粒径:30〜200μmの範囲内にあるFe−Co系鉄基軟磁性合金粉末を使用することが好ましい。その理由は、30μmよりも平均粒径が小さすぎると、粉末の圧縮性が低下し、Fe−Co系鉄基軟磁性合金の体積割合が低くなるために飽和磁束密度の値が低下するので好ましくなく、一方、平均粒径が200μmより大きすぎると、Fe−Co系鉄基軟磁性合金粉末内部の渦電流が増大して高周波における透磁率が低下するので好ましくないことによるものである。
【0009】
これらFe−Co系鉄基軟磁性合金粉末に亜鉛粉末を、亜鉛粉末:0.1〜10質量%(好ましくは0.3〜5質量%)を添加して混合粉末を作製し、この混合粉末を真空または非酸化性ガスの減圧雰囲気中で温度:350〜400℃に保持しながら撹拌すると、金属Znは気化して蒸発し、気化したZnは軟磁性金属粉末の表面に付着して金属Zn層または/および合金Γ相(Fe4Zn9,Fe3Zn10またはFeの1部をAl,Ni,Cr,Siで置換した同相)を主体とする合金層であるZn成分層が形成され、Zn成分層被覆Fe−Co系鉄基軟磁性金属粉末が得られる。このとき使用される亜鉛粉末は粒径が300μm以下であることが好ましい。
なお、亜鉛よりも蒸発し難い金属M(Si,P,S,K,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Sr,Y,Zr,Nb,Mo、Pd,Ta,W,Au)を不純物として10質量%以下含まれるような低純度の亜鉛粉末または亜鉛合金粉末を使用することができる。これは、加熱・攪拌中にZnが先に気化してFe−Co系鉄基軟磁性金属粉末の表面にZn蒸着膜を形成し、低純度の亜鉛粉末または亜鉛合金粉末に含まれるM金属の蒸発は微量であるところからFe−Co系鉄基軟磁性金属粉末の表面のZn蒸着膜に含まれるM金属量は極めて微量であり、無視できる程度であるからである。
また、比較的低融点の金属Me(Li,Mg,Al,Ga,Ge,Ag,In,Sn,Sb,Ba,Bi)粉末をZn粉末と共にFe−Co系鉄基軟磁性金属粉末と混合あるいはZn−Me合金粉末とFe−Co系鉄基軟磁性金属粉末と混合して加熱・撹拌すると、軟磁性金属粉末の表面にZnとMeの合金あるいはZn合金蒸着膜が形成される。
このZn膜被覆Fe−Co系鉄基軟磁性合金粉末を炭酸ガスなどの酸化雰囲気中、温度:300〜1000℃で加熱することによりZn膜が酸化されてFe−Co系鉄基軟磁性合金粉末の表面に酸化亜鉛膜が形成される。この酸化亜鉛膜被覆Fe−Co系鉄基軟磁性合金粉末の酸化亜鉛膜上にフェライト層を形成して積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製する。フェライト膜は化学メッキ法、高速衝撃撹拌被覆法またはバインダー被覆法により形成することができる。
【0010】
このようにして得られた積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造し、その後さらに必要に応じて温度:800〜1000℃で焼鈍すると高密度、高抵抗および高磁束密度を有する複合軟磁性材が得られる。
かかる熱間鍛造温度まで加熱し、必要に応じて焼鈍しても、酸化亜鉛層の介在によりフェライトが還元されることがなく、酸化亜鉛とフェライト間ではフェライト相中に酸化亜鉛がわずかに拡散するため、焼結後は非磁性相である酸化亜鉛はフェライト層に拡散し、スピネルフェライトとなって、磁気特性を低下させずに高密度、高抵抗および高磁束密度を有する複合軟磁性材が得られる。
この場合、熱間鍛造温度を800〜1200℃に定めたのは、熱間鍛造温度が800℃未満では十分高密度の複合軟磁性材が得られないと共に酸化亜鉛がフェライトに十分拡散されずに酸化亜鉛層として残存するところから磁気特性が低下するので好ましくなく、一方、1200℃を越える温度で焼結すると、比抵抗の低下が大きいので好ましくない。
また、この発明において仮圧粉成形体を水素雰囲気中でばい焼する温度は仮圧粉成形体に含まれるバインダーを除去するに十分な温度であればいかなる温度でもよいが、200〜400℃の範囲内の温度であれば十分である。
【0011】
【発明の実施の形態】
原料粉末として、いずれも平均粒径:70μmを有するCo:30質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するアトマイズFe−Co鉄基軟磁性合金粉末、並びにCo:49質量%、V:2質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するアトマイズFe−Co−V鉄基軟磁性合金粉末を用意した。
【0012】
実施例1〜5および比較例1〜2
このFe−Co磁性合金粉末に対して純亜鉛粉末を1質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:380℃に1時間加熱することにより亜鉛を気化させ、この亜鉛蒸気中にFe−Co系鉄基軟磁性合金粉末を曝すことでその表面にZn被覆Fe−Co系鉄基軟磁性合金粉末を作製した。
このZn被覆Fe−Co系鉄基軟磁性合金粉末を炭酸ガス中、650℃で加熱することによりZn蒸着膜を酸化して酸化亜鉛層を形成し、その後、酸化亜鉛層を形成したFe−Co系鉄基軟磁性合金粉末の表面に平均粒径:0.7μmのフェライト粉末を1〜5質量%分散被覆することにより酸化亜鉛層の上にフェライト層を形成し、積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製した。
得られた積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を金型に入れ、プレス成形して外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング状仮圧粉成形体を成形し、得られたリング状仮圧粉成形体を水素ガス雰囲気中、表1に示される温度でばい焼することによりバインダーを除去し、リング状ばい焼体を表1に示される温度で熱間鍛造し、必要に応じて焼鈍することにより複合軟磁性材を作製した。このようにして得られた複合軟磁性材の密度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性材に巻き線を施し、BHトレーサで直流磁気特性を評価し、同じく、その結果を表1に示した。
【0013】
従来例1
高速衝撃撹拌法により作製した市販のフェライト膜被覆純Fe−Co鉄基軟磁性合金粉末を用意し、この粉末を用いて実施例1と同様にして複合軟磁性材を得た。このようにして得られた複合軟磁性材の密度および比抵抗を測定してその結果を表1に示した。さらに複合軟磁性材に巻き線を施し、BHトレーサで直流磁気特性を評価し、同じく、その結果を表1に示した。
【0014】
【表1】

Figure 0003946150
【0015】
表1に示される結果から、実施例1〜5で作製した複合軟磁性材は、従来例1により製造した複合軟磁性材と比べて密度、比抵抗および磁束密度に優れた特性を示すことが分かる。しかし、比較例1〜2で作製した複合軟磁性材は密度、比抵抗および磁束密度のいずれかが劣るので好ましくないことが分かる。
【0016】
実施例6〜10および比較例3〜4
先に用意したアトマイズFe−Co−V系鉄基軟磁性合金粉末に対して純亜鉛粉末を2質量%添加し混合して混合粉末を作製し、この混合粉末を電気炉内の円筒状ボードに装入し、円筒状ボードを回転しながら1×10-5torrの真空雰囲気中、温度:400℃に2時間加熱することにより亜鉛金属を気化させ、この亜鉛蒸気中にFe−Co−V系鉄基軟磁性合金粉末を曝すことでその表面にZn層を形成したZn被覆Fe−Co−V系鉄基軟磁性合金粉末を作製した。
このZn被覆Fe−Co−V系鉄基軟磁性合金粉末を炭酸ガス中、750℃で加熱することにより亜鉛蒸着膜を酸化して酸化亜鉛層を形成し、その後、酸化亜鉛層を形成したFe−Co−V系鉄基軟磁性合金粉末の表面に平均粒径:0.7μmのフェライト粉末を1〜5質量%分散被覆することにより酸化亜鉛層の上にフェライト層を形成して積層酸化物膜被覆Fe−Co−V系鉄基軟磁性合金粉末を作製した。
得られた積層酸化物膜被覆Fe−Co−V系鉄基軟磁性合金粉末を金型に入れ、プレス成形して外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング状仮圧粉成形体を成形し、得られたリング状仮圧粉成形体を水素ガス雰囲気中、表2に示される温度でばい焼することによりバインダーを除去し、リング状ばい焼体を表2に示される温度で熱間鍛造し、必要に応じて焼鈍することにより複合軟磁性材を作製した。このようにして得られた複合軟磁性材の密度および比抵抗を測定してその結果を表2に示した。さらに複合軟磁性材に巻き線を施し、BHトレーサで直流磁気特性を評価し、同じく、その結果を表2に示した。
【0017】
従来例2
高速衝撃撹拌法により作製した市販のフェライト膜被覆純Fe−Co−V鉄基軟磁性合金粉末を用意し、この粉末を用いて実施例1と同様にして複合軟磁性材を得た。このようにして得られた複合軟磁性材の密度および比抵抗を測定してその結果を表3に示した。さらに複合軟磁性材に巻き線を施し、BHトレーサで直流磁気特性を評価し、同じく、その結果を表2に示した。
【0018】
【表2】
Figure 0003946150
【0019】
表2に示される結果から、実施例6〜10で作製した複合軟磁性材は、従来の複合軟磁性材と比べて密度及び比抵抗に優れた特性を示すことが分かる。しかし、比較例3〜4で作製した複合軟磁性材は密度、比抵抗および比透磁率の少なくともいずれか一つが劣るので好ましくないことが分かる。
【0020】
【発明の効果】
この発明によると、簡単な乾式法により高密度、高抵抗および高磁束密度を有しさらに高周波の比透磁率の高い複合軟磁性材を提供することができ、電気および電子産業において優れた効果をもたらすものである。[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a composite soft magnetic material having a high density, a high resistance and a high magnetic flux density, which are used for manufacturing motors, actuators, magnetic sensors and the like.
[0002]
[Prior art]
In general, it is known that a soft magnetic material obtained by sintering Fe-Co-based iron-based soft magnetic alloy powder is used for a magnetic core of a motor, an actuator, a magnetic sensor, etc. One is known as ferrite. This ferrite is also known to be a spinel type ferrite having a component composition of (MeFe) 3 O 4 (wherein Me is one or more of MnZn, Ni, Mg, Cu, Fe, Co). Yes. The soft magnetic material obtained by sintering the Fe—Co-based iron-based soft magnetic alloy powder has a high saturation magnetic flux density, but has poor high frequency characteristics, while it is obtained by sintering iron oxide powder such as ferrite. The resulting oxide soft magnetic material has a high resistance due to its high resistance and a relatively high initial magnetic permeability, but has a drawback of a low saturation magnetic flux density. A ferrite film-coated Fe-Co iron-based soft magnetic alloy powder obtained by coating a ferrite film on the surface of a soft magnetic alloy powder has been proposed, and a material obtained by sintering this ferrite film-coated iron soft magnetic powder Has high resistance and is said to be excellent in both saturation magnetic flux density and high frequency characteristics.
[0003]
As a method for producing the ferrite film-coated Fe—Co iron-based soft magnetic alloy powder, a method of forming a ferrite film on the surface of the Fe—Co iron-based soft magnetic alloy powder by wet ferrite plating (Patent Document 1 or 2),
Fe-Co based iron-based soft magnetic alloy powder and ferrite powder are placed in a high-speed impact stirrer and rotated at high speed to embed ferrite powder on the surface of the Fe-Co based iron-based soft magnetic alloy powder, thereby Fe-Co based A method of forming a ferrite film on the surface of an iron-based soft magnetic alloy powder (see Patent Document 3) is known. These ferrite film-coated Fe-Co iron-based soft magnetic alloy powders are temporarily compacted by temporary compaction. A method is also known in which a compacted green body is prepared, and the obtained temporary green compact is roasted in a hydrogen atmosphere, and then the resulting roasted body is hot forged to produce a composite soft magnetic material. ing.
[0004]
[Patent Document 1]
JP 56-38402 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-1702 [Patent Document 3]
JP-A-4-226003
[Problems to be solved by the invention]
However, the conventional ferrite film-coated Fe-Co iron-based soft magnetic alloy powder obtained by coating the surface of the Fe-Co iron-based soft magnetic alloy powder with a ferrite film has poor formability and forgeability, Even if it is forged at room temperature, sufficient density cannot be obtained. Therefore, when the composite soft magnetic material is manufactured by hot forging, the density of the composite soft magnetic material is improved to some extent, but the conventional ferrite film-coated Fe-Co iron-based soft magnetic alloy powder is heated to the forging temperature, A ferrite reduction reaction takes place between the Fe—Co iron-based soft magnetic alloy powder and ferrite in the core, and the ferrite (Fe 3 O 4 ) layer changes to a wustite (FeO) layer. The ferrite film formed on the surface of the Fe—Co-based iron-based soft magnetic alloy powder and having an oxygen deficiency has a low specific resistance value, and thus the obtained composite soft magnetic material has an insufficient resistance value.
[0006]
[Means for Solving the Problems]
Then, as a result of conducting research to solve such a problem, the present inventors,
(A) When a mixed powder obtained by adding 0.1 to 15% by mass of Zn powder to Fe—Co based iron-based soft magnetic alloy powder is stirred while heating, Zn is vaporized to become Zn vapor, and Fe—Co based iron based On the surface of the soft magnetic alloy powder, a Zn layer, a Zn—Fe alloy layer, or a composite layer composed of a Zn layer and a Zn—Fe alloy layer (hereinafter referred to as a Zn component layer) is formed, and the Fe on which the Zn component layer is formed. When the Co-based iron-based soft magnetic alloy powder is heated in an oxidizing atmosphere, a zinc oxide layer is formed as a first layer on the surface of the Fe-Co-based iron-based soft magnetic alloy powder, and the Fe-cobalt in which this zinc oxide layer is formed The surface of the Co-based iron-based soft magnetic alloy powder is coated with a ferrite layer as a second layer to produce a laminated oxide film-coated Fe-Co-based iron-based soft magnetic alloy powder, and this laminated oxide film-coated Fe-Co Iron-based soft magnetic alloy powder as raw material powder Powder compacting is performed to prepare a temporary compacted body, and this temporary compacted compact is roasted in a hydrogen atmosphere to prepare a roasted body, and the obtained roasted body is heated at a temperature of 800 to 1200 ° C. The composite soft magnetic material obtained by hot forging improves the density, resistance and magnetic flux density.
(B) A study result is obtained that the density, resistance and magnetic flux density are further improved when the hot forged body obtained by hot forging at 800 to 1200 ° C is further annealed at 800 to 1000 ° C. It was.
[0007]
The present invention has been made based on the results of such research,
(1) Fe-Co-based iron-based soft magnetism coated with a laminated oxide film in which a zinc oxide layer is formed on the surface of an Fe-Co-based iron-based soft magnetic alloy powder and a ferrite layer is formed on the zinc oxide layer An alloy powder is prepared, and this laminated oxide film-coated Fe-Co-based iron-based soft magnetic alloy powder is temporarily compacted to produce a temporary compacted body, and this temporary compacted body is placed in a hydrogen atmosphere. A method for producing a composite soft magnetic material having a high density, a high resistance and a high magnetic flux density, wherein a roasted body is produced by baking, and the obtained roasted body is hot forged at a temperature of 800 to 1200 ° C.
(2) Fe-Co iron-based soft magnetic alloy coated with a laminated oxide film in which a zinc oxide layer is formed on the surface of Fe-Co iron-based soft magnetic alloy powder and a ferrite layer is formed on the zinc oxide layer An alloy powder is prepared, and this laminated oxide film-coated Fe-Co-based iron-based soft magnetic alloy powder is temporarily compacted to produce a temporary compacted body, and this temporary compacted body is placed in a hydrogen atmosphere. A roasted body is produced by baking, and the obtained roasted body is hot forged at a temperature of 800 to 1200 ° C., and then annealed at a temperature of 800 to 1000 ° C., with high density, high resistance and high magnetic flux density. It has the characteristics in the manufacturing method of the composite soft magnetic material which has.
[0008]
The method for producing a composite soft magnetic material having high density, high resistance and high magnetic flux density according to the present invention will be described more specifically.
The Fe—Co-based iron-based soft magnetic alloy powder used in the method for producing a composite soft magnetic material having high density, high resistance and high magnetic flux density according to the present invention is conventionally known as Co: 25-60 mass%. In which the balance is composed of Fe and inevitable impurities, or Co: 25-60 mass%, V: 0.5-5 mass%, and the balance is composed of Fe and inevitable impurities. It is preferable to use a soft magnetic alloy powder. However, the Fe—Co based soft magnetic alloy powder used in the method for producing a composite soft magnetic material having high density and high permeability according to the present invention is limited to the Fe—Co based soft magnetic alloy powder having the above component composition. Other Fe—Co based soft magnetic alloy powders can be used.
The ferrite in the present invention is a ferrite having a spinel structure, and is represented by a composition formula of (MeFe) 3 O 4 (where Me is Mn, Zn, Ni, Mg, Cu, Fe or Co or a mixture thereof). Spinel ferrite.
The Fe—Co iron-based soft magnetic alloy powder is preferably an Fe—Co iron-based soft magnetic alloy powder having an average particle size of 30 to 200 μm. The reason is that if the average particle diameter is too small than 30 μm, the compressibility of the powder is lowered, and the volume fraction of the Fe—Co-based iron-based soft magnetic alloy is lowered, so the value of the saturation magnetic flux density is lowered. On the other hand, if the average particle diameter is larger than 200 μm, the eddy current inside the Fe—Co-based iron-based soft magnetic alloy powder increases and the magnetic permeability at high frequency decreases, which is not preferable.
[0009]
Zinc powder and zinc powder: 0.1 to 10% by mass (preferably 0.3 to 5% by mass) are added to these Fe—Co-based iron-based soft magnetic alloy powders to produce mixed powders. Is stirred in a vacuum or in a reduced-pressure atmosphere of a non-oxidizing gas at a temperature of 350 to 400 ° C., the metal Zn evaporates and evaporates, and the vaporized Zn adheres to the surface of the soft magnetic metal powder and becomes metal Zn. A Zn component layer, which is an alloy layer mainly composed of a layer or / and an alloy Γ phase (Fe 4 Zn 9 , Fe 3 Zn 10 or the same phase in which part of Fe is replaced with Al, Ni, Cr, Si), is formed, A Zn component layer-coated Fe—Co-based iron-based soft magnetic metal powder is obtained. The zinc powder used at this time preferably has a particle size of 300 μm or less.
In addition, metal M (Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Mo, Pd, Ta, which is harder to evaporate than zinc. , W, Au), low-purity zinc powder or zinc alloy powder containing 10% by mass or less as impurities can be used. This is because Zn vaporizes first during heating and stirring to form a Zn deposited film on the surface of the Fe-Co-based iron-based soft magnetic metal powder, and the M metal contained in the low-purity zinc powder or zinc alloy powder. This is because the amount of M metal contained in the Zn deposited film on the surface of the Fe—Co-based iron-based soft magnetic metal powder is extremely small and negligible because evaporation is very small.
Further, a metal Me (Li, Mg, Al, Ga, Ge, Ag, In, Sn, Sb, Ba, Bi) powder having a relatively low melting point is mixed with an Fe—Co-based iron-based soft magnetic metal powder together with a Zn powder. When the Zn-Me alloy powder and the Fe-Co iron-based soft magnetic metal powder are mixed and heated and stirred, an alloy of Zn and Me or a deposited Zn alloy film is formed on the surface of the soft magnetic metal powder.
The Zn film is heated by heating the Zn film-coated Fe—Co based iron-based soft magnetic alloy powder at a temperature of 300 to 1000 ° C. in an oxidizing atmosphere such as carbon dioxide gas, whereby the Fe—Co based iron based soft magnetic alloy powder. A zinc oxide film is formed on the surface. A ferrite layer is formed on the zinc oxide film of the zinc oxide film-coated Fe-Co iron-based soft magnetic alloy powder to produce a laminated oxide film-coated Fe-Co iron-based soft magnetic alloy powder. The ferrite film can be formed by a chemical plating method, a high-speed impact stirring coating method, or a binder coating method.
[0010]
The laminated oxide film-coated Fe—Co iron-based soft magnetic alloy powder thus obtained is temporarily compacted to produce a temporary compacted body, and this temporary compacted body is placed in a hydrogen atmosphere. A roasted body is produced by baking, and the obtained roasted body is hot-forged at a temperature of 800 to 1200 ° C., and then further annealed at a temperature of 800 to 1000 ° C. as necessary. A composite soft magnetic material having a high magnetic flux density is obtained.
Even if heated to such a hot forging temperature and annealed as necessary, the ferrite is not reduced by the inclusion of the zinc oxide layer, and the zinc oxide slightly diffuses between the zinc oxide and the ferrite in the ferrite phase. Therefore, after sintering, zinc oxide, which is a non-magnetic phase, diffuses into the ferrite layer and becomes spinel ferrite, and a composite soft magnetic material having high density, high resistance, and high magnetic flux density is obtained without deteriorating magnetic properties. It is done.
In this case, the hot forging temperature was set to 800 to 1200 ° C. because if the hot forging temperature was less than 800 ° C., a sufficiently high density composite soft magnetic material could not be obtained and the zinc oxide was not sufficiently diffused into the ferrite. Since the magnetic properties are lowered from the point where it remains as the zinc oxide layer, sintering at a temperature exceeding 1200 ° C. is not preferred because the specific resistance is greatly lowered.
In this invention, the temperature at which the green compact is roasted in a hydrogen atmosphere may be any temperature as long as it is sufficient to remove the binder contained in the green compact, but is 200 to 400 ° C. A temperature within the range is sufficient.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As raw material powders, all contain Co: 30% by mass having an average particle diameter of 70 μm, and the balance Fe-Co iron-based soft magnetic alloy powder having a composition consisting of Fe and inevitable impurities, and Co: 49% by mass V: 2% by mass Atomized Fe—Co—V iron-based soft magnetic alloy powder having a composition consisting of Fe and inevitable impurities was prepared.
[0012]
Examples 1-5 and Comparative Examples 1-2
1% by mass of pure zinc powder is added to and mixed with the Fe-Co magnetic alloy powder to produce a mixed powder. The mixed powder is charged into a cylindrical board in an electric furnace, and the cylindrical board is rotated. However, in a vacuum atmosphere of 1 × 10 −5 torr, the zinc was vaporized by heating to 380 ° C. for 1 hour, and the surface of the zinc vapor was exposed to the Fe—Co-based iron-based soft magnetic alloy powder. A Zn-coated Fe—Co-based iron-based soft magnetic alloy powder was prepared.
The Zn-coated Fe—Co iron-based soft magnetic alloy powder is heated in carbon dioxide gas at 650 ° C. to oxidize the Zn vapor-deposited film to form a zinc oxide layer, and then to form the zinc oxide layer Fe—Co The ferrite layer is formed on the zinc oxide layer by dispersing and coating 1 to 5% by mass of ferrite powder having an average particle diameter of 0.7 μm on the surface of the iron-based soft magnetic alloy powder, and the laminated oxide film-coated Fe- Co-based iron-based soft magnetic alloy powder was prepared.
The obtained laminated oxide film-coated Fe—Co-based iron-based soft magnetic alloy powder is placed in a mold and press-molded to form a ring-shaped temporary compact having outer diameter: 35 mm, inner diameter: 25 mm, and height: 5 mm. The molded body is molded, and the obtained ring-shaped temporary compacted body is roasted at a temperature shown in Table 1 in a hydrogen gas atmosphere to remove the binder, and the ring-shaped roasted body is shown in Table 1. A composite soft magnetic material was produced by hot forging at a temperature and annealing as necessary. The density and specific resistance of the composite soft magnetic material thus obtained were measured and the results are shown in Table 1. Further, the composite soft magnetic material was wound, and the DC magnetic characteristics were evaluated with a BH tracer. The results are also shown in Table 1.
[0013]
Conventional Example 1
A commercially available ferrite film-coated pure Fe—Co iron-based soft magnetic alloy powder prepared by a high-speed impact stirring method was prepared, and a composite soft magnetic material was obtained using this powder in the same manner as in Example 1. The density and specific resistance of the composite soft magnetic material thus obtained were measured and the results are shown in Table 1. Further, the composite soft magnetic material was wound, and the DC magnetic characteristics were evaluated with a BH tracer. The results are also shown in Table 1.
[0014]
[Table 1]
Figure 0003946150
[0015]
From the results shown in Table 1, it can be seen that the composite soft magnetic materials produced in Examples 1 to 5 have excellent properties in density, specific resistance, and magnetic flux density as compared with the composite soft magnetic material produced in Conventional Example 1. I understand. However, it can be seen that the composite soft magnetic materials prepared in Comparative Examples 1 and 2 are not preferable because any one of density, specific resistance, and magnetic flux density is inferior.
[0016]
Examples 6-10 and Comparative Examples 3-4
2% by mass of pure zinc powder is added to the previously prepared atomized Fe-Co-V iron-based soft magnetic alloy powder and mixed to prepare a mixed powder. This mixed powder is applied to a cylindrical board in an electric furnace. The zinc metal was vaporized by heating and heating to 400 ° C. for 2 hours in a vacuum atmosphere of 1 × 10 −5 torr while rotating the cylindrical board, and Fe—Co—V system in this zinc vapor A Zn-coated Fe-Co-V iron-based soft magnetic alloy powder in which a Zn layer was formed on the surface of the iron-based soft magnetic alloy powder was produced.
The Zn-coated Fe—Co—V-based iron-based soft magnetic alloy powder is heated in carbon dioxide gas at 750 ° C. to oxidize the zinc vapor-deposited film to form a zinc oxide layer. -A ferrite layer is formed on a zinc oxide layer by dispersing and coating 1 to 5% by mass of a ferrite powder having an average particle size of 0.7 μm on the surface of a Co—V iron-based soft magnetic alloy powder, thereby forming a laminated oxide Film-coated Fe—Co—V-based iron-based soft magnetic alloy powder was prepared.
The obtained laminated oxide film-coated Fe—Co—V iron-based soft magnetic alloy powder is put into a mold and press-molded to have a ring-shaped temporary shape having an outer diameter: 35 mm, an inner diameter: 25 mm, and a height: 5 mm. The green compact is molded, and the resulting ring-shaped temporary green compact is roasted at a temperature shown in Table 2 in a hydrogen gas atmosphere to remove the binder. A composite soft magnetic material was produced by hot forging at the indicated temperature and annealing as necessary. The density and specific resistance of the composite soft magnetic material thus obtained were measured and the results are shown in Table 2. Further, the composite soft magnetic material was wound and the DC magnetic characteristics were evaluated with a BH tracer. The results are also shown in Table 2.
[0017]
Conventional example 2
A commercially available ferrite film-coated pure Fe—Co—V iron-based soft magnetic alloy powder prepared by a high-speed impact stirring method was prepared, and a composite soft magnetic material was obtained using this powder in the same manner as in Example 1. The density and specific resistance of the composite soft magnetic material thus obtained were measured and the results are shown in Table 3. Further, the composite soft magnetic material was wound and the DC magnetic characteristics were evaluated with a BH tracer. The results are also shown in Table 2.
[0018]
[Table 2]
Figure 0003946150
[0019]
From the results shown in Table 2, it can be seen that the composite soft magnetic materials produced in Examples 6 to 10 have characteristics excellent in density and specific resistance as compared with conventional composite soft magnetic materials. However, it can be seen that the composite soft magnetic materials produced in Comparative Examples 3 to 4 are not preferable because at least one of density, specific resistance, and relative permeability is inferior.
[0020]
【The invention's effect】
According to the present invention, it is possible to provide a composite soft magnetic material having a high density, a high resistance and a high magnetic flux density and a high relative permeability at a high frequency by a simple dry method, and has an excellent effect in the electrical and electronic industries. Is what it brings.

Claims (4)

Fe−Co系鉄基軟磁性合金粉末の表面に、酸化亜鉛層を形成し、酸化亜鉛層の上にフェライト層を形成してなる積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造することを特徴とする高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法。A laminated oxide film-coated Fe-Co iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of the Fe-Co iron-based soft magnetic alloy powder and a ferrite layer is formed on the zinc oxide layer is obtained. The laminated oxide film-coated Fe-Co iron-based soft magnetic alloy powder is temporarily compacted to produce a temporary compacted body, and the temporary compacted body is roasted in a hydrogen atmosphere. A method for producing a composite soft magnetic material having a high density, a high resistance, and a high magnetic flux density, comprising producing a roasted body and hot forging the obtained roasted body at a temperature of 800 to 1200 ° C. Fe−Co系鉄基軟磁性合金粉末の表面に、酸化亜鉛層を形成し、酸化亜鉛層の上にフェライト層を形成してなる積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を作製し、この積層酸化物膜被覆Fe−Co系鉄基軟磁性合金粉末を仮圧粉成形して仮圧粉成形体を作製し、この仮圧粉成形体を水素雰囲気中でばい焼してばい焼体を作製し、得られたばい焼体を温度:800〜1200℃で熱間鍛造し、その後さらに温度:800〜1000℃で焼鈍することを特徴とする高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法。A laminated oxide film-coated Fe-Co iron-based soft magnetic alloy powder in which a zinc oxide layer is formed on the surface of the Fe-Co iron-based soft magnetic alloy powder and a ferrite layer is formed on the zinc oxide layer is obtained. The laminated oxide film-coated Fe-Co iron-based soft magnetic alloy powder is temporarily compacted to produce a temporary compacted body, and the temporary compacted body is roasted in a hydrogen atmosphere. A high density, high resistance and high magnetic flux characterized by producing a roasted body and hot forging the obtained roasted body at a temperature of 800 to 1200 ° C. and then annealing at a temperature of 800 to 1000 ° C. A method for producing a composite soft magnetic material having a density. 前記Fe−Co系鉄基軟磁性合金粉末は、Co:25〜60質量%を含有し、残部がFeおよび不可避不純物からなる組成、またはCo:25〜60質量%、V:0.5〜5質量%を含有し、残部がFeおよび不可避不純物からなる組成を有するFe−Co系軟磁性合金粉末であることを特徴とする請求項1または2記載の高密度、高抵抗および高磁束密度を有する複合軟磁性材の製造方法。The Fe—Co-based iron-based soft magnetic alloy powder contains Co: 25 to 60% by mass, and the balance is composed of Fe and inevitable impurities, or Co: 25 to 60% by mass, V: 0.5 to 5 The high density, high resistance and high magnetic flux density according to claim 1 or 2, wherein the Fe-Co based soft magnetic alloy powder has a composition comprising mass% and the balance being composed of Fe and inevitable impurities. A method for producing a composite soft magnetic material. 請求項1、2または3記載の方法で製造した高密度、高抵抗および高磁束密度を有する複合軟磁性材。A composite soft magnetic material having a high density, a high resistance and a high magnetic flux density produced by the method according to claim 1, 2 or 3.
JP2003029385A 2003-02-06 2003-02-06 Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density Expired - Fee Related JP3946150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029385A JP3946150B2 (en) 2003-02-06 2003-02-06 Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029385A JP3946150B2 (en) 2003-02-06 2003-02-06 Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2004238684A JP2004238684A (en) 2004-08-26
JP3946150B2 true JP3946150B2 (en) 2007-07-18

Family

ID=32956579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029385A Expired - Fee Related JP3946150B2 (en) 2003-02-06 2003-02-06 Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3946150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054700A1 (en) * 2011-10-14 2013-04-18 株式会社村田製作所 Metal powder and electronic component

Also Published As

Publication number Publication date
JP2004238684A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2008244347A (en) Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP2004297036A (en) Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP2009130286A (en) Method of manufacturing high-strength, high-specific-resistance composite soft magnetic material, and electromagnetic circuit component
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2019178402A (en) Soft magnetic powder
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP3946150B2 (en) Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density
JP4479998B2 (en) Method for producing composite soft magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JP2006332524A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JP2004221549A (en) Manufacturing method of composite soft magnetic sintered material with high density, high flux density, and high-resistance
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees