JP3943881B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP3943881B2
JP3943881B2 JP2001291768A JP2001291768A JP3943881B2 JP 3943881 B2 JP3943881 B2 JP 3943881B2 JP 2001291768 A JP2001291768 A JP 2001291768A JP 2001291768 A JP2001291768 A JP 2001291768A JP 3943881 B2 JP3943881 B2 JP 3943881B2
Authority
JP
Japan
Prior art keywords
film
insulating film
region
high dielectric
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001291768A
Other languages
English (en)
Other versions
JP2003100896A (ja
Inventor
郁夫 藤原
彰 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001291768A priority Critical patent/JP3943881B2/ja
Publication of JP2003100896A publication Critical patent/JP2003100896A/ja
Application granted granted Critical
Publication of JP3943881B2 publication Critical patent/JP3943881B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高誘電体からなるゲート絶縁膜を持つMIS型電界効果トランジスタ(以下、単にトランジスタという)を有する半導体装置に関する。
【0002】
【従来の技術】
近年、半導体集積回路では、より速い動作速度を得る為に、トランジスタの微細化スケーリングが押し進められている。特にゲート絶縁膜厚5nmを切るトランジスタの開発がなされている。しかし、ゲート絶縁膜厚が3nmを切ると、従来見られなかったゲート絶縁膜のダイレクトトンネリング電流が流れ、消費電力が増加するという問題が生じる。
【0003】
ゲート絶縁膜のダイレクトトンネリング電流を抑制する手法として、シリコン酸化膜よりも誘電率の高いTa25、TiO2などの高誘電体膜をゲート絶縁膜として使用する試みがなされている。高誘電体膜をゲート絶縁膜として用いると、電気的な膜厚(シリコン酸化膜換算膜厚)を一定として、物理膜厚を増加させることができる。
【0004】
ゲート絶縁膜としてTa25を用いたトランジスタの従来の製造方法について、図面を参照して説明する。先ず、図1に示すように、シリコン単結晶基板11にPウエル領域12を形成し、LOCOS法等を用いて素子分離領域にフィールド酸化膜13を形成する。これにより、トランジスタを形成する活性領域14が区画される。
【0005】
次に、図2に示すように、15nmの熱酸化膜21を犠牲酸化膜として形成した後、活性領域14以外をレジストマスク22で覆い、しきい値電圧を調整するためのボロンをイオン注入して、チャネルイオン注入層23を形成する。そして、レジスト22を除去した後、チャネルイオン注入層23内のボロンを活性化させるための熱処理を、1000℃、10秒のRTA (Rapid Thermal Anneal)にて行なう。
【0006】
次に、熱酸化膜21をフッ酸により除去し、基板表面の汚染を除去する為の洗浄処理を行う。その後、図3に示すように、ゲート絶縁膜31として物理膜厚5nmのTa25膜を成膜し、オゾン雰囲気にて熱処理温度800℃、熱処理時間30分の熱処理により後酸化を行う。Ta25の誘電率は約25であるので、5nmのTa25膜はシリコン酸化膜換算膜厚0.8nmとなる。この後、200nmのポリシリコン膜をCVD法により成膜し、パターンニングを行って、ゲート電極32を形成する。
【0007】
この後の側壁工程、ソース/ドレイン形成工程、配線工程等は、従来と同様であるので、説明を省略する。
【0008】
一般に、金属酸化物系の高誘電体膜をシリコン基板上に形成した場合、高誘電体膜とシリコン基板との界面には、高誘電体膜とシリコン基板の反応により薄いシリコン酸化膜が界面層として形成される。これは、高誘電体膜成膜時の酸素プラズマ雰囲気、その後の熱処理時の酸素の拡散により、シリコン基板が酸化される為である。上記従来例においても、ゲート電極32形成後およそ2.1nmの界面層33が形成されることが確認されている。この様な界面層の存在により、ゲート絶縁膜の実質的なシリコン酸化膜換算膜厚は2.9nmに増大する。このように、界面層33はシリコン酸化膜であり、金属酸化物中のメタルが微量に混入されるとはいえ、低誘電率であることから、ゲート絶縁膜全体の誘電率を低下させ、シリコン酸化膜換算膜厚の増大を招く。
【0009】
これに対して、界面層を成長させない方法も提案されている。その一つは、チャネルイオン注入時に窒素イオン注入を行ない、基板中に窒素を導入して酸素バリアとすることにより、界面層の成長を抑制する方法である(特開2000−106432号公報参照)。具体的には、図2に示したチャネルイオン注入層23の形成後、図4に示すように、チャネルイオン注入用レジストマスク22をそのまま用いて、窒素を注入加速電圧5keV、注入ドーズ量5×1014/cm2の条件でイオン注入し、基板表面に窒素導入領域41を形成する。
【0010】
この様なチャネル領域への窒素イオン注入による基板表面への窒素導入の結果、酸素の拡散が抑制される。これにより、Ta25膜/シリコン基板界面の界面層厚は0.7nmに抑えられ、窒素イオン注入を行なわない場合に比べて、酸化膜換算膜厚で1.4nmの薄膜化が達成できる。
【0011】
【発明が解決しようとする課題】
現在、多くの集積回路チップでは、異なる目的を持った複数種のトランジスタが混載されている。例えば0.25μmDRAM混載CMOSロジックLSIチップの場合には、DRAMセルアレイ用トランジスタ、ロジック回路用トランジスタ、I/O回路用トランジスタが、信頼性、駆動力、耐圧といった異なる仕様で搭載されている。これらの異なる仕様を満たす為に、それぞれのトランジスタに対して異なる膜厚のゲート絶縁膜を形成しており、これがプロセスの複雑さ、製造コストの上昇を招いている。上述の0.25μmmDRAM混載CMOSロジックLSIチップの場合では、DRAMセル用トランジスタのゲート絶縁膜厚は8nm、ロジック回路用トランジスタは同5nm、I/O回路用トランジスタは同7nmである。
【0012】
この発明は、上記事情を考慮してなされたもので、複雑なプロセスを用いることなく、異なるゲート絶縁膜構造を作り分けた複数のトランジスタを搭載した半導体装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明に係る半導体装置は、半導体基板と、前記半導体基板に区画された第1の領域に形成された、第1の絶縁膜と第2の絶縁膜が前記半導体基板からこの順に積層された構造の第1のゲート絶縁膜を有する第1のトランジスタと、前記半導体基板に区画された第2の領域に形成された、第3の絶縁膜と第4の絶縁膜が前記半導体基板からこの順に積層された構造であって且つ、前記第1のゲート絶縁膜に比べてシリコン酸化膜換算膜厚が厚い第2のゲート絶縁膜を有する第2のトランジスタとを有し、前記第2及び第4の絶縁膜は、記第1の領域及び前記第2の領域に同時に形成された高誘電体膜であり、前記第1及び第3の絶縁膜は、前記高誘電体膜中の酸素の吸収の違いに基づいて互いに組成及び膜厚が異なる界面層であり、前記第1の絶縁膜は、ゲート電極直下以外の領域では除去され、前記第3の絶縁膜は、ゲート電極直下以外の領域に少なくとも一部残されることを特徴とする。
【0014】
この発明はまた、異なるゲート絶縁膜構造を有するトランジスタを含む半導体装置の製造方法であって、半導体基板に高誘電体絶縁膜を形成する工程と、前記高誘電体絶縁膜上に選択的に耐酸化性の低い材料膜を形成する工程と、前記高誘電体絶縁膜の結晶化熱処理を行って、前記材料膜で覆われた第1の領域では前記高誘電体絶縁膜と前記半導体基板の間に成長が抑制された界面層を含み、前記材料膜で覆われていない第2の領域では前記高誘電体絶縁膜と前記半導体基板の反応により成長した界面層を含むゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極をパターン形成する工程と、を有することを特徴とする。
【0015】
この発明においては、ゲート絶縁膜としての高誘電体膜(金属酸化物或いはそのシリケート)の成膜時、或いは、その後の結晶化アニールの際に、基板もしくは、基板上に形成された薄膜との間に形成される界面層について、基板表面への窒素導入、薄膜窒化膜の挿入などの方法で、界面層の電気的膜厚、膜質をコントロールする事により、異なる特性、構造を有するゲート絶縁膜を同一基板上に形成する。言い換えれば、これまで高誘電体膜と一体であった界面層を独立に機能を持たせた積層構造と捉え、ダイレクトトンネリングを抑止するに十分な厚さの高誘電体膜を成膜することにより、ゲートリーク電流を抑制するとともに、基板界面の状態をトランジスタ領域に応じて異ならせることにより、異なる仕様を要求されるトランジスタ毎にゲート絶縁膜を使い分けることができる。
【0016】
【発明の実施の形態】
以下、図面を参照して、この発明の実施の形態を説明する。
[実施の形態1]
本実施の形態1では、高誘電体膜をゲート絶縁膜に用い、かつ高誘電体膜と基板との間の反応により形成される界面層の膜厚を選択的に、窒素イオン注入を用いた基板表面への窒素導入にてコントロールして、異なった用途のトランジスタを同一基板上に形成せしめる。
【0017】
図5〜図12は、この実施の形態の製造工程を示している。
まず、図5に示すように、シリコン単結晶基板51上に、シリコン酸化膜換算膜厚の薄いゲート絶縁膜を必要とするトランジスタ領域Aと、この領域Aに比べてシリコン酸化膜換算膜厚の厚いゲート絶縁膜を必要とするトランジスタ領域Bを区画する。具体的に、それぞれの領域A,Bに必要なPウエル52,53を形成し、STI(Shallow Trench Isolation)法により、素子分離絶縁膜54を埋め込むことにより、領域A,Bが区画される。
【0018】
次に、図6に示すように、25nmの犠牲酸化膜61を熱処理温度900℃、O2雰囲気による熱処理で形成する。その後、領域B上に厚さ1μmのレジストマスク62を形成し、領域Aにしきい値電圧を調整するためのボロンを注入加速電圧10keV〜30kev、注入ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。引き続き、同じレジストマスク62を用いて、窒素を注入加速電圧5keV、注入ドーズ量5×1014/cm2の条件でイオン注入する。これにより領域Aに薄いチャネルイオン注入層63及び、酸素バリア層となる窒素導入領域64が形成される。
【0019】
この後、レジストマスク62を剥離した後、図7に示すように、領域Aを覆うレジストマスク71を形成し、領域Bにしきい値電圧を調整するためのボロンを注入加速電圧10keV〜30kev、注入ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。これにより領域Bに薄いチャネルイオン注入層72が形成される。
【0020】
この後、レジスト71を除去し、基板表面の汚染を除去する前処理を施した後、チャネルイオン注入層63、窒素導入領域64、チャネルイオン注入層72の不純物を活性化させるアニールを、処理温度1000℃、処理時間10秒のRTAにより行う。
【0021】
次に、希フッ酸処理により犠牲酸化膜61を除去し、シリコン基板51表面の水素終端処理を行なった後、図8に示すように、高誘電体膜であるTiO2膜81を形成する。具体的には、TiO2焼結ターゲットを用いたDCスパッタ法により、電力300W、圧力1Pa、Ar/O2流量22/1.2sccmのスパッタ条件で、厚さ5nmのTiO2膜81を形成する。この時、TiO2膜スパッタ時の酸素プラズマ雰囲気により、領域A,Bのシリコン基板表面は酸化され、界面層82、83が形成される。領域Aの界面層82は、窒素導入領域64が酸素の基板中への拡散を抑制する結果、薄いシリコン酸化膜となり、領域Bの界面層83はこれより厚いシリコン酸化膜となる。
【0022】
次に、図9に示すように、TiO2膜81上に、CVD法により多結晶シリコン膜を厚さ175nm成膜して、パターニングすることによってゲート電極91を形成する。ゲート電極91と共に、その下のゲート絶縁膜となるTiO2膜81及び界面層82,83もパターニングする。この後、TiO2膜81の結晶化の為に、熱処理温度900℃、熱処理時間30秒のRTAを行なう。この時、RTAによるTiO2膜81からシリコン基板51への酸素の拡散により、領域Bのシリコン基板表面は酸化され、界面層83は成長して、最終的に2nm程度の界面層83aとなる。領域Aでは、窒素導入領域64により酸素の基板中への拡散が抑制され、界面層82の成長は抑制されて、最終的におよそ0.7nmの界面層82aとなる。
【0023】
TiO2膜81は、RTA処理により微結晶状態になり、その誘電率はおよそ20程度、従ってこの部分の酸化膜換算膜厚は約1nmである。また、TiO2膜81のスパッタによる基板へのTiの物理的混入と、後工程にて行なわれる活性化アニールによって、界面層82a,83aは微量のTiが混入したシリコン酸化膜となり、その誘電率は5程度になる。
【0024】
従って、領域Aのゲート絶縁膜は、界面層82aとTiO2膜81の積層構造となり、領域Bのゲート絶縁膜は、界面層83aとTiO2膜81の積層構造となる。これらのゲート絶縁膜は、物理膜厚としては5nm以上の膜厚を有し、ダイレクトトンネリング電流を十分に抑制できる。一方、界面層82a,83bの膜厚の違いにより、領域Aでは、酸化膜換算膜厚1.6nmのゲート絶縁膜が、領域Bでは酸化膜換算膜厚2.6nmのゲート絶縁膜が形成されたことになる。
【0025】
次に、図10に示すように、シリコン単結晶基板51に対してほぼ垂直にN型不純物をイオン注入し、浅いソース/ドレインのn型拡散層101を形成する。具体的に例えば、砒素を加速電圧5keV〜10keV、ドーズ量5×1014/cm2〜1×1015/cm2にて注入する。
【0026】
次に、CVD法によって、10nm〜50nmの膜厚のSi34膜を堆積し、異方性エッチングを用いてエッチバックすることにより、図11に示すように、ゲート電極91の側面にゲート側壁111を形成する。続いて、シリコン単結晶基板51に対してほぼ垂直にN型不純物を、例えば、砒素を加速電圧50keV〜70keV、ドーズ量5×1015/cm2でイオン注入し、深いソース/ドレイン領域となるn+型拡散層112を形成する。次に、ソース/ドレイン不純物活性化のため、温度1035℃、時間10秒のRTAによる熱処理工程を行う。以上により、領域A,Bに、シリコン酸化膜換算膜厚の異なるゲート絶縁膜を持つトランジスタQ1,Q2が形成される。
【0027】
次に、フッ酸によりシリコン単結晶基板51及びゲート電極91上部の酸化膜を除去した後、Coをスパッタによりウエハ全体に成膜して、RTAによる熱処理によって、図12に示すように、ソース/ドレイン領域及びゲート電極91上部にコバルトシリサイド膜121を形成する。余分なCo膜は剥離する。更に、CVD法によりシリコン酸化膜からなる層間絶縁膜122を成膜し、異方性エッチングによりコンタクトホール123を形成した後、アルミニウムをスパッタ法により成膜し、パターニングして配線124を形成する。
【0028】
以上のようにして、この実施の形態によれば、領域A,Bに形成されるトランジスタQ1,Q2は、共にダイレクトトンネリング電流を抑止するに十分な厚さの物理膜厚を有しながら、シリコン酸化膜換算膜厚の異なるゲート絶縁膜をもって形成される。ゲート絶縁膜構造の相違から、領域AのトランジスタQ1は、領域BのトランジスタQ2と比べて相対的に、ゲート耐圧や信頼性に劣るが、電流駆動能力が高いという特性の相違を持つ。
【0029】
ゲート絶縁膜は、高誘電体膜と、これと基板との間の反応層として形成される界面層の積層構造となっているが、これは予め領域A,Bの基板表面状態を変化させることで、両者の界面層が異なる状態を実現している。しかも、基板表面状態を変化させるための処理は、領域A,Bのチャネルイオン注入のためのマスクをそのまま用いて行うことができる。従って、トランジスタQ1,Q2が異種のゲート絶縁膜構造を持つとはいえ、製造プロセスは、イオン注入工程が1工程増えるだけであり、簡単である。
【0030】
この実施の形態での窒素イオン注入は、シリコン基板への窒素導入による酸化抑止効果を狙ったものであり、その必要とされる抑止効果の程度により注入加速電圧・ドーズ量は変更が可能である。図13は、窒素ドーズ量と界面層厚の関係を示している。高誘電体絶縁膜の場合、絶縁膜の耐圧、信頼性は界面層の膜厚が厚いほど改善され、反面トランジスタの電流駆動力は、界面層の誘電率が低い事から、界面層厚が厚いほど低下するというトレードオフの関係にある。すなわち、窒素ドーズ量は、各トランジスタの必要とされる仕様を勘案して、任意に決定する事ができる。
【0031】
また、窒素の導入方法は、イオン注入に限られず、例えば窒素ラジカルによる基板窒化などでも構わない。
【0032】
また、実施の形態では、高誘電体膜81としてTiO2膜を用いたが、これに限らず、Al23、Ta23、ZrO2、HfO2、Y23、La23、CeO2、PrO2、Gd23、Sc23、LaAlO3、ZrTiO4、(Zr,Sn)TiO4、SrZrO4、LaAl34、SrTiO3、BaSrTiO3等の金属酸化膜或いは、これらのシリケート、もしくは、上述の金属酸化物とシリコン酸化膜、シリコン窒化膜及びAl23のなかから選ばれた少なくとも一種との混晶の形態でもよい。
【0033】
本実施の形態では、高誘電体膜形成にDCスパッタ法を用いているが、成膜法はこれに限るわけではなく、界面層を伴う高誘電体膜の成膜法であればよい。例えば、TiCl4とO2を用いたプラズマCVD法などでもよい。
更に本実施の形態では、ゲート電極91としてノンドープの多結晶シリコンを用いているが、これに限るわけではなく、不純物ドープの多結晶リシリコン、アモルファスシリコン、SiGe或いは金属等、他の導電性材料膜を用いうる。
更に、N型不純物をP型不純物に、P型不純物をN型不純物に置き換えることにより、PチャネルMOSトランジスタも同様に作成できる。
【0034】
[実施の形態2]
この実施の形態では、高誘電体と基板との間に形成される界面層の膜質を、窒素ラジカルを用いた基板表面窒化にてコントロールし、異なった用途のトランジスタが所望とするゲート絶縁膜をより簡易に、同一基板上にて形成することに主眼を置いている。先の実施の形態1の図6に示した犠牲酸化膜61の形成までは、実施の形態1と同じである。
【0035】
この後、図14に示すように、領域B上に厚さ1μmのレジストマスク141を形成し、領域Aにしきい値電圧を調整するためのボロンを加速電圧10keV〜30kev、ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。次に、希フッ酸処理にて領域Aの犠牲酸化膜61を除去し、ラジカル窒素処理をN2流量200sccm、圧力0.25Torr、RF電力100Wにて行う。これにより領域Aに、薄いチャネルイオン注入層142及び物理膜厚1nmのシリコン窒化膜143が形成される。
【0036】
次に、レジスト141を除去し、図15に示すように、領域Aを覆うレジストマスク151を形成して、領域Bにしきい値電圧を調整するためのボロンを加速電圧10keV〜30kev、ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。これにより領域Bに薄いチャネルイオン注入層152が形成される。
【0037】
この後、レジスト151を除去し、基板表面の汚染を除去する前処理を施した後、チャネルイオン注入層142、152の不純物を活性化させるアニールを、温度1000℃、時間10秒のRTAにより行う。そして、希フッ酸処理により犠牲酸化膜61を除去し、シリコン基板51表面の水素終端処理を行なった後、図16に示すように、高誘電体膜として厚さ5nmのTiO2膜161を成膜する。以後のプロセスは、実施の形態1と同じであるので、説明は省略する。
【0038】
この実施の形態においても、TiO2膜スパッタ時の酸素プラズマ雰囲気、及び、RTAによるTiO2からシリコン基板51への酸素の拡散により、領域Bではシリコン基板表面が酸化され、2nm程度のシリコン酸化膜からなる界面層163が形成される。しかし、領域Aではシリコン基板表面は、窒素ラジカル処理により形成された膜厚1nmのシリコン窒化膜143がバリアとなり、新たな界面層成長は抑制され、シリコン窒化膜(又は酸窒化膜)143がそのまま界面層となる。また、シリコン窒化膜143及び界面層163は、TiO2膜スパッタによる基板へのTiの物理的混入と、この後に行なわれる活性化アニールによって、それぞれ微量のTiが混入したシリコン窒化膜及びシリコン酸化膜となり、その誘電率はそれぞれ10及び5程度になる。
【0039】
これにより、領域A,Bのゲート絶縁膜は、物理膜厚としては5nm以上の膜厚を有しダイレクトトンネリング電流を十分に抑制できる。また、領域A上にはシリコン窒化膜143を界面層に持つ酸化膜換算膜厚1.4nmのゲート絶縁膜が、領域B上にはシリコン酸化膜を界面層にもつ酸化膜換算膜厚2.6nmのゲート絶縁膜が、それぞれ形成される。
【0040】
この様に、領域Aについて界面層としてシリコン窒化膜を用いると、酸化膜換算膜厚をさらに薄くできるため、トランジスタの駆動電流を増大させる事ができる反面、シリコン窒化膜のバンドギャップはシリコン酸化膜に比べ狭い為に、領域Bのそれに比べるとゲート絶縁膜の信頼性、耐圧は劣ることになる。
【0041】
この実施の形態における窒素ラジカル処理は、上述の条件に限られるわけではなく、ゲート絶縁膜が必要とする誘電率、耐圧の仕様により任意に決定する事ができる。またこの実施の形態でも、実施の形態1と同様に、高誘電体ゲート絶縁膜種類とその成膜法、ゲート電極の種類等に関して、他の形態を選択しても同様の効果が得られ。更に、N型不純物をP型不純物に、P型不純物をN型不純物に置き換えることにより、PMOSトランジスタも同様に作成できる。
【0042】
[実施の形態3]
この実施の形態では、高誘電体ゲート絶縁膜を有するトランジスタを形成するにあたり、ゲート電極加工時の界面層のエッチング量の制御により、より高速動作が可能なトランジスタと、より信頼性の高いトランジスタを同一基板上に形成する。
【0043】
この実施の形態の工程は、図5〜図8までの工程が実施の形態1と同じである。図17は、図8の工程の後、TiO2膜81上に、スパッタ法によりTiN膜を100nm成膜し、これをパターニングしてゲート電極171を形成した状態を示している。TiN膜の成膜の工程で、領域A,Bには、それぞれ膜厚0.7nm、2nm程度の界面層172、173が形成される。この時、TiO2膜スパッタによる基板へのTiの物理的混入と、後工程にて行なわれる活性化アニールによって、界面層172,173は微量のTiが混入したシリコン酸化膜となり、その誘電率は5程度になる。
【0044】
ゲート電極171は、電力100W、圧力20mTorrの条件で、BCL3,Cl2及びN2の混合ガスでTiN膜171及びTiO2膜81をRIE(Ractive Ion Etching)によりエッチングすることでパターン形成する。この時、TiN膜100nmに対して40%のオーバーエッチングを行うと、図17に示したように、領域Aではゲート電極171の領域以外の界面層172が完全に除去され、領域Bでは、界面層173が一部残された状態を得ることができる。これは、シリコン酸化膜系の界面層172,173とTiN膜のエッチング選択比が50以上と大きいことと、界面層172の物理膜厚が界面層173の物理膜厚の1/3であることを利用して、制御可能である。
【0045】
この後のプロセスは、活性化アニール条件が800℃、30秒のRTAである事以外は、実施の形態1と同様である。
この実施の形態により、領域Aのトランジスタは、ゲート電極脇のソース/ドレイン領域上に誘電率の高い界面層172が残らない構造となり、ソース/ドレインとゲート電極との間の寄生容量が低減されて、高速動作が可能となる。領域Bのトランジスタは、ゲート脇の領域に界面層173を残した構造とする事で、ゲート電極RIE時のダメージが基板に入ることがなく、より信頼性が高いものとなる。
【0046】
この実施の形態でも、実施の形態1と同様に、高誘電体ゲート絶縁膜種類とその成膜法、ゲート電極の種類等に関して、他の態様を選択しても同様の効果が得られる。また、N型不純物をP型不純物に、P型不純物をN型不純物に置き換えることにより、PMOSトランジスタも同様に作成できる。
【0047】
[実施の形態4]
この実施の形態では、実施の形態2と実施の形態3を組み合わせる。図16のTiO2膜161を高誘電体ゲート絶縁膜として領域A,B上に形成するまでは実施の形態2と同じである。
【0048】
図18は、その後ゲート電極を形成した状態を示している。即ちTiO2膜161上にスパッタ法によりゲート電極181となるTiN膜を100nm成膜し、電力100W、圧力20mTorrの条件で、BCL3及びCl2及びN2の混合ガスでTiN膜181及びTiO2膜161をRIE(Ractive Ion Etching)し、ゲート電極パターニングを行う。この時、シリコン酸・窒化膜系の界面層とTiN膜のエッチング選択比が50以上と大きい事と、界面層182の膜厚が界面層183の膜厚の1/2である事を利用し、TiN膜100nmに対して50%のオーバーエッチングを施し、領域Aでは界面層182は完全に除去し、領域Bでは界面層183が部分的に除去された状態を得る。
この後のプロセスは、活性化アニール条件が800℃、30秒のRTAである事以外は、実施の形態2と同様である。
【0049】
この実施の形態により、領域Aのトランジスタは、ゲート脇の領域に誘電率の高い界面層182のない構造とする事でソース・ドレインとゲート電極の寄生容量を低減し、より高速動作が可能となる。また、領域Bのトランジスタは、ゲート脇の領域に界面層183を残した構造とする事で、ゲート電極RIE時のダメージが基板に到達しないようにでき、より信頼性を高める事が可能となる。
【0050】
この実施の形態でも、実施の形態1と同様に、高誘電体ゲート絶縁膜種類とその成膜法、ゲート電極の種類等に関して、他の形態を選択しても同様の効果が得られる。また、N型不純物をP型不純物に、P型不純物をN型不純物に置き換えることにより、PMOSトランジスタも同様に作成できる。
【0051】
[実施の形態5]
次にこの発明をDRAMに適用した実施の形態を説明する。
図19は、DRAMチップ190の概略ブロック構成を示している。DRAMチップ190は、DRAMセルアレイ191と、センスアンプ、デコーダ及びそれらの制御回路を含む周辺回路192と、外部とのデータ入出力を行う入出力回路とその制御回路及びチップ全体の制御回路を含むI/O回路部193と、電源電圧を供給する電源回路部194とから構成される。
【0052】
DRAMセルアレイ191は、メモリ保持特性の向上及び高集積化の点から、リークが少なく信頼性の高いゲート酸化膜及び低いサブスレッショルド係数が要求される。サブスレッショルド係数の低減にはしきい値電圧を高くとる事が必要であり、十分な駆動電流を確保する為には高い電源電圧が必要となる。すなわち、DRAMセルアレイ191のゲート絶縁膜としては、先の特性に加え高耐圧であることも要求される。
【0053】
電源回路部194は、外部から高電圧が入力される為、そのゲート絶縁膜には高耐圧性が要求される。DRAM周辺回路192及びI/O回路部193では、増幅特性の向上、高速動作の必要から、高駆動力である事が要求される。
【0054】
以上を考慮してこの実施の形態では、DRAMセルアレイ191は、実施の形態1における領域BのトランジスタQ2をセルトランジスタとして構成し、周辺回路192は、実施の形態1における領域AのトランジスタQ1を構成素子として構成する。更に好ましくは、I/O回路部193は、周辺回路192と同じ領域Aのトランジスタ構成を用い、電源回路部194はセルアレイ191と同じ領域Bのトランジスタ構成を用いる。
【0055】
この結果、DARMセルアレイ191及び電源回路部194のゲート絶縁膜の信頼性、リーク特性、及び耐圧を犠牲にすることなく、DRAM周辺回路192及びI/O回路部193の増幅特性、高速動作性の向上が可能となる。また、DRAM周辺回路192及びI/O回路部193に、実施の形態3における領域Aのトランジスタ構成を適用し、DRAMセルアレイ191及び電源回路部194に、領域Bのトランジスタ構成を適用することも可能である。これによると、領域Bのトランジスタにおいては、ゲートエッジのRIEダメージが入らない事により、ドレイン耐圧が向上し、信頼性の高いDRAMセルアレイを得ることができる。
【0056】
更に、実施の形態2,4の領域Aのトランジスタ構成を、周辺回路192、I/O回路193に適用し、領域Bのトランジスタ構成を、セルアレイ191及び電源回路部194に適用しても同様に、各回路部の好ましい性能が得られる。
【0057】
[実施の形態6]
次にこの発明を論理LSIに適用した実施の形態を説明する。
図20は、CMOS論理LSIのブロック構成を示している。LSIチップ200は、CMOSロジック回路部201と、これと外部との入出力回路、その制御回路及びチップ全体の制御回路を含むI/O回路部202と、電源電圧を供給する電源回路部203とから構成される。
【0058】
ロジック回路部201を構成するトランジスタは、動作周波数向上の観点から、最も高駆動力を必要とされる為、ここで用いられるゲート絶縁膜は酸化膜換算膜厚の薄膜化を最も強く要求される。そこで、実施の形態2を適用して、その領域Aのトランジスタ構成を用いてロジック回路部201を形成し、領域Bのトランジスタ構成を用いて、I/O回路部202及び電源回路部203を形成する。
【0059】
この結果、電源回路部203及びI/O回路部202のゲート絶縁膜の信頼性、リーク特性、及び耐圧を犠牲にすることなく、ロジック回路部201の高速動作性の向上が得られる。更に、実施の形態4の領域Aのトランジスタ構成を用いてロジック回路部201を、領域Bのトランジスタ構成を用いてI/O回路部202及び電源回路部203を形成するのも好ましい。この場合、領域Aのトランジスタは、ゲートとソース・ドレイン間の寄生容量が低減されるから、ロジック回路部202は、更に高駆動力のトランジスタにより高性能を得ることができる。
【0060】
更に、実施の形態1,3の領域Aのトランジスタ構成を、ロジック回路部201に適用し、領域Bのトランジスタ構成を、I/O回路部202及び電源回路部203に適用しても同様に、各回路部の好ましい性能が得られる。
【0061】
[実施の形態7]
次に、DRAM混載ロジックLSIにこの発明を適用した実施の形態を説明する。この実施の形態の場合には、高誘電体ゲート絶縁膜を3つの回路領域で作り分ける。より具体的には、ロジック回路部のゲート絶縁膜の界面層としては、駆動力の向上を目的に薄膜シリコン窒化膜を、I/O回路部の界面層としては、駆動力と信頼性を兼ね備えた特性を得る目的で薄いシリコン酸化膜を、DRAMセルアレイ及び電源回路部の界面層としては、信頼性と耐圧の向上を目的に厚いシリコン酸化膜を用いる。また好ましくは、DRAMセルアレイ及び電源回路部では、ゲートエッジ部に界面層が残る構造を用いる。
【0062】
図21は、この実施の形態のDRAM混載ロジックLSIのブロック構成を示している。LSIチップ210に、ロジック回路216、DRAMセルアレイ217、I/O回路215及び電源回路部219が形成される。これらの回路部が、ゲート絶縁膜の構成によって、図示のように領域A1,A2,Bの3つに分けられる。
【0063】
具体的に、各領域のトランジスタ形成工程を図22〜図27を参照して説明する。図22に示すように、シリコン単結晶基板211上に、ロジック回路部216を構成するトランジスタ領域A1、I/O回路部215を構成するトランジスタ領域A2、及びDRAMセルアレイ217と電源回路部219のトランジスタ領域Bに、それぞれPウエル222,221,223を形成する。そして、STI(Shallow Trench Isolation)法により、素子分離領域224を形成し、領域A1,A2,Bを区画する。
【0064】
次に、図23に示すように、25nmの犠牲酸化膜231を熱処理温度900℃、O2雰囲気による熱処理で形成し、その後、領域A1,B上に厚さ1μmのレジストマスク232を形成して、領域A1にしきい値電圧を調整するためのボロンを注入加速電圧10keV〜30kev、注入ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入し、しかる後に、同一マスクにて連続して窒素を注入加速電圧5keV、注入ドーズ量5×1014/cm2の条件でイオン注入する。これにより領域A1に、薄いチャネルイオン注入層234及び窒素導入領域233が形成される。
【0065】
この後レジスト232を剥離した後、図24に示すように、領域A1,Bにレジストマスク241を形成し、領域A2にしきい値電圧を調整するためのボロンを注入加速電圧10keV〜30kev、注入ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。これにより領域A2に薄いチャネルイオン注入層242が形成される。次に、希フッ酸処理にて領域A2の犠牲酸化膜231を除去し、この領域A2にラジカル窒素処理をN2流量200sccm、圧力0.25Torr、RF電力100Wにて行なう。これにより領域A2に物理膜厚1nmのシリコン窒化膜243が形成される。
【0066】
この後、レジスト241を除去した後、図25に示すように、領域A1,A2を覆うレジストマスク251を形成し、領域Bにしきい値電圧を調整するためのボロンを注入加速電圧10keV〜30kev、注入ドーズ量5×1012/cm2〜1×1013/cm2の条件でイオン注入する。これにより領域Bに薄いチャネルイオン注入層252が形成される。
【0067】
この後、レジスト251を除去し、基板表面の汚染を除去する前処理を施した後、チャネルイオン注入層234,242,252、窒素導入領域233の不純物を活性化させるアニールを、熱処理温度1000℃、熱処理時間10秒のRTAにより行なう。そして、希フッ酸処理により犠牲酸化膜231の除去、及び、シリコン基板221表面の水素終端処理を行なった後、TiO2焼結ターゲットを用いたDCスパッタ法により厚さ5nmのTiO2膜261を高誘電体ゲート絶縁膜として形成する。この時のスパッタ条件は、電力=300W、圧力=1Pa、Ar/O2流量=22/1.2sccmである。
【0068】
この時、領域A1,Bには、それぞれ膜厚0.7nm、2nm程度の界面層262、263が形成される。領域A2のシリコン基板表面は、窒素ラジカル処理により形成された膜厚1nmのシリコン窒化膜243により界面層の成長は殆ど抑制される。また、窒化膜243及び界面層262、263は、TiO2膜スパッタによる基板へのTiの物理的混入と、この後に行なわれる活性化アニールによって、それぞれ微量のTiが混入したシリコン窒化膜及びシリコン酸化膜となり、その誘電率はそれぞれ10及び5程度に増加する。
【0069】
次に、図27に示すように、TiO2膜261上にスパッタ法によりゲート電極271としてTiN膜を100nm成膜する。そして、電力100W、圧力20mTorrの条件で、BCL3,Cl2及びN2の混合ガスでTiN膜271及びTiO2膜261をRIE(Ractive Ion Etching)によりエッチングして、ゲート電極をパターニングする。この時、シリコン酸・窒化膜系の界面層とTiN膜のエッチング選択比が50以上と大きい事と、窒化膜243、界面層262、263の膜厚が異なる事を利用し、TiN膜100nmに対して50%のオーバーエッチングを施して、領域A2及びA1の窒化膜243及び界面層262はゲート電極271の外側では完全に除去され、領域Bの界面層263は部分的に残る状態を得る。
この後のプロセスは、活性化アニール条件が800℃、30秒のRTAである事以外は、実施の形態2と同様とする。
【0070】
この結果、DARMセルアレイ217及び電源回路部219のトランジスタは、シリコン酸化膜換算膜厚が最も厚いゲート絶縁膜となり、高い信頼性、良好なリーク特性、及び、高い耐圧が実現できる。I/O回路部215のトランジスタは、セルアレイよりシリコン酸化膜換算膜厚が薄いが、ロジック回路部216よりは厚く、信頼性、リーク特性を犠牲にすることなく高駆動力性が得られる。ロジック回路部216では、シリコン酸化膜換算膜厚の最も薄いゲート絶縁膜となり、高速動作性を得る事が可能になる。
【0071】
なお、高周波アナログ回路等のように、高耐圧と共に高速動作性も要求されるトランジスタに関しては、この実施の形態7の領域Bのゲート絶縁膜構造を基本として、その界面層263が、ゲート電極以外の部分で完全に除去されたものとして、ゲートとドレイン・ソース電極間の寄生容量を低減することが望ましい。
【0072】
[実施の形態8]
次に、pチャネルMOSトランジスタ(以下、PMOSトランジスタ)とnチャネルMOSトランジスタ(以下、NMOSトランジスタ)により構成されるCMOS回路でのPMOSトランジスタとNMOSトランジスタのゲート幅アンバランスを解消する実施の形態を説明する。従来のように、同一ゲート絶縁膜を用いてPMOSトランジスタとNMOSトランジスタを含むCMOS回路を形成した場合、PMOSトランジスタは電流駆動力がNMOSトランジスタのそれの半分であるため、両者の駆動電流を揃えるためには、PMOSトランジスタのゲート幅をNMOSトランジスタのそれの2倍程度にすること必要である。これはCMOS回路の設計を不自由にしていた。
【0073】
これに対してこの実施の形態では、高誘電体膜をゲート絶縁膜に用い、且つ高誘電体膜と基板との間に形成される界面層の膜厚を、NMOSトランジスタ側で厚く、PMOSトランジスタ側で薄くなるようにして、両者の電流駆動力を揃える。図28〜図31を参照してその製造工程を説明する。
【0074】
図28に示すように、シリコン基板280のPMOSトランジスタを形成する領域Aにn型ウェル281を形成し、NMOSトランジスタを形成する領域にp型ウェル282を形成する。そして、STIにより素子分離絶縁膜283を形成して、領域A,Bを区画する。
【0075】
次に、25nmの犠牲酸化膜284を、処理温度900℃、O2雰囲気での熱処理により形成する。そして、領域Bをレジストマスク(図示せず)で覆い、領域Aにしきい値調整のためのイオン注入を行う。例えば、リンを加速電圧10keV〜30keV、ドーズ量5×1012〜1×1013/cm2の条件でイオン注入する。続いて同じレジストマスクを用いて、窒素を、加速電圧5keV、ドーズ量5×1014cm2の条件でイオン注入する。これにより、領域Aには、薄いチャネルイオン注入層285と窒素導入領域286が形成される。
【0076】
この後、レジストを剥離して改めて、領域Aを覆うレジストマスクを形成し、領域Bにイオン注入を行う。具体的に、ボロンを加速電圧10keV〜30keV、ドーズ量5×1012〜1×1013/cm2の条件でイオン注入する。これにより、領域Bに、薄いチャネルイオン注入層287が形成される。
【0077】
この後、レジストを除去し、基板表面の汚染を除去する前処理を施した後、チャネルイオン注入層285,287及び窒素導入領域286の不純物を活性化するアニールを、温度1000℃、処理時間10秒のRTAにより行う。以下、実施の形態1と同様の工程でゲート絶縁膜、ゲート電極形成を行う。
【0078】
これにより、図29に示すように、領域Aでは、TiO2膜288と界面層289の積層構造のゲート絶縁膜上にゲート電極291が形成され、領域Bでは、TiO2膜288と界面層290の積層構造のゲート絶縁膜上にゲート電極291が形成される。領域Bの界面層290は成長して、最終的に2nm程度となり、領域Aでは、窒素導入領域286により酸素の基板中への拡散が抑制される結果、界面層289の成長は抑制されて、最終的におよそ0.7nmとなる。
【0079】
以上により、PMOSトランジスタ領域Aでは、酸化膜換算膜厚1.6nmのゲート絶縁膜が、NMOSトランジスタ領域Bでは、酸化膜換算膜厚2.6nmのゲート絶縁膜が得られる。この結果、PMOSトランジスタとNMOSトランジスタのゲート幅の比Wp/Wnを、1/0.8として、電流駆動力を揃えることができる。
【0080】
この実施の形態において、窒素イオン注入に代えて、実施の形態2におけるように窒素ラジカル処理を行うこともできる。これにより、PMOSトランジスタの領域Aには、シリコン窒化膜を界面層として持つ酸化膜換算膜厚1.4nmのゲート絶縁膜が得られ、NMOSトランジスタの領域Bには、シリコン酸化膜を界面層として持つ酸化膜換算膜厚2.6nmのゲート絶縁膜が得られる。この場合、PMOSトランジスタとNMOSトランジスタのゲート幅の比Wp/Wnを、1/0.9として、電流駆動力を揃えることができる。
【0081】
[実施の形態9]
次に、界面層形成のための窒素イオン注入を、ゲート電極膜形成後にゲート電極膜を通して行う実施の形態を説明する。ゲート絶縁膜形成前に基板の窒化処理を行った場合、高誘電体絶縁膜堆積後の高温結晶化アニール時に、雰囲気中の巻き込み酸素や高誘電体絶縁膜に含まれる余剰酸素が基板に拡散して基板を酸化し、界面層の成長を促進する。また、ゲート電極に多結晶シリコンのような酸化されやすい膜を用いると、ゲート電極とゲート絶縁膜の界面にも界面層が形成され、酸化膜換算膜厚の増加を招く。
【0082】
そこでこの実施の形態では、基板/高誘電体絶縁膜界面に形成される界面層を、窒素イオン注入による基板表面の窒化によりコントロールする場合に、ゲート電極膜が形成された後に窒素イオン注入を行い、ゲート電極及び高誘電体絶縁膜にも窒素を導入する。これにより、酸素に対するバリア性を高めて、界面層の成長を効果的に抑制する。
【0083】
具体的に、図30〜図33を参照して製造工程を説明する。図30に示すように、シリコン基板300のトランジスタ形成領域A,Bにそれぞれp型ウェル301,302を形成する。そして、STIにより素子分離絶縁膜303を埋め込んで、領域A,Bを区画する。
【0084】
次に、図31に示すように、25nmの犠牲酸化膜304を、処理温度900℃、O2雰囲気での熱処理により形成する。そして、領域A,Bに、しきい値調整のためのイオン注入を行う。例えば、ボロンを加速電圧10keV〜30keV、ドーズ量5×1012〜1×1013/cm2の条件でイオン注入してチャネルイオン注入層305,306を形成する。
【0085】
この後、犠牲酸化膜304を除去して、図32に示すように、高誘電体絶縁膜であるTiO2膜322を形成し、その上に多結晶シリコン膜321を堆積する。そして、領域Bをレジストマスク320で覆って、窒素イオン注入を行い、領域Aに窒素イオン注入領域323を形成する。このときTiO2膜322にも窒素が導入されて、これがTiOxNy膜となる。
【0086】
その後、レジストマスクを除去し、図33に示すように、多結晶シリコン膜321とTiOxNy膜322をエッチングしてゲート電極を形成する。そして、TiOxNy膜322の結晶化のために、温度900℃、時間30秒のRTA処理を行う。これにより、領域Bでは、TiOxNy膜322からの酸素の拡散によりシリコン酸化膜からなる界面層325が形成される。領域Aでは、窒素イオン注入による基板の耐酸化性向上と、高誘電体絶縁膜の窒化による、基板への拡散バリア性の向上により、領域Bに比べて薄い界面層324が形成される。
【0087】
この実施の形態によると、高誘電体絶縁膜への窒素導入により、領域Aでの界面層324の成長をより抑制することができる。また、高誘電体膜は窒素の導入により誘電率が上がり、領域Aではゲート絶縁膜の酸化膜換算膜厚をより薄くすることができる。
【0088】
[実施の形態10]
次に、高誘電体絶縁膜の決結晶化アニールの際に、アニール雰囲気に含まれる巻き込み酸素等の微量酸素や高誘電体絶縁膜に含まれる余剰酸素を、選択的に耐酸化性の低い材料膜に吸収させることによって、基板/高誘電体絶縁膜界面の界面層成長をコントロールする実施の形態を説明する。この実施の形態では基板の窒化は行わない。
【0089】
図34に示すように、シリコン基板340のトランジスタ形成領域A,Bにそれぞれp型ウェル341,342を形成する。そして、STIにより素子分離絶縁膜343を埋め込んで、領域A,Bを区画する。次に、25nmの犠牲酸化膜344を、処理温度900℃、O2雰囲気での熱処理により形成する。そして、領域A,Bに、しきい値調整のためのイオン注入を行う。例えば、ボロンを加速電圧10keV〜30keV、ドーズ量5×1012〜1×1013/cm2の条件でイオン注入してチャネルイオン注入層345,346を形成する。
【0090】
この後、図35に示すように、高誘電体絶縁膜であるTiO2膜351を形成し、その上に多結晶シリコン膜352を堆積する。そして、多結晶シリコン膜352を領域Aには残し、領域Bではエッチングして除去する。この状態で、高誘電体絶縁膜の結晶化熱処理を、900℃,30秒のRTAにより行う。このとき、領域Bでは、TiO2膜351からの酸素拡散により、基板表面は酸化されて界面層354が形成される。領域Aでは、TiO2膜中の余剰酸素はその上の多結晶シリコン膜352に吸収されて消費される結果、基板界面の酸化は抑制され、領域Bに比べて薄い界面層353が形成される。
【0091】
この後、多結晶シリコン膜350は燐酸処理により除去し、更にフッ酸処理により酸化物を除去した後、改めて多結晶シリコン膜を堆積してゲート電極を形成する。
【0092】
この実施の形態によっても、ダイレクトトンネリング電流を十分に抑制できる物理膜厚を有し、且つ同一基板上で酸化膜換算膜厚の異なるゲート絶縁膜を持つトランジスタを形成することができる。
【0093】
【発明の効果】
以上述べたようにこの発明によれば、高誘電体膜によりゲート絶縁膜を形成する際に、その界面状態を制御することにより、ゲート絶縁膜構造の異なる複数のトランジスタをそれぞれ最適特性を持って作り分けることができる。
【図面の簡単な説明】
【図1】第1の従来例の高誘電体ゲート絶縁膜を持つトランジスタの製造工程における素子分離工程を示す断面図である。
【図2】同トランジスタの製造工程におけるチャネルイオン注入工程を示す断面図である。
【図3】同トランジスタのゲート電極形成工程を示す断面図である。
【図4】第2の従来例の高誘電体ゲート絶縁膜を持つトランジスタの製造工程における図2対応の工程を示す断面図である。
【図5】この発明の実施の形態1に係るトランジスタの製造方法における素子分離工程を示す断面図である。
【図6】同実施の形態1の領域Aに対するチャネルイオン注入及び窒素イオン注入の工程における断面図である。
【図7】同実施の形態1の領域Bに対するチャネルイオン注入工程における断面図である。
【図8】同実施の形態1の高誘電体ゲート絶縁膜形成工程の断面図である。
【図9】同実施の形態1のゲート電極形成工程の断面図である。
【図10】同実施の形態1のソース、ドレイン領域へのイオン注入工程の断面図である。
【図11】同実施の形態1のゲート側壁形成及びソース、ドレイン領域へのイオン注入工程の断面図である。
【図12】同実施の形態1の層間絶縁膜形成及び配線形成工程を示す断面図である。
【図13】同実施の形態1における窒素イオン注入による基板の酸化抑止効果を示す図である。
【図14】この発明の実施の形態2による領域Aに対するチャネルイオン注入及びラジカル窒化工程を示す断面図である。
【図15】同実施の形態2の領域Bに対するチャネルイオン注入工程を示す断面図である。
【図16】同実施の形態2の高誘電体ゲート絶縁膜形成工程を示す断面図である。
【図17】この発明の実施の形態3によるゲート電極パターニング工程を示す断面図である。
【図18】この発明の実施の形態4によるゲート電極パターニング工程を示す断面図である。
【図19】この発明を適用したDRAMチップのブロック構成を示す図である。
【図20】この発明を適用したCMOSロジックLSIのブロック構成を示す図である。
【図21】この発明を適用したDRAM混載ロジックLSIのブロック構成を示す図である。
【図22】この発明の実施の形態7の素子分離工程を示す断面図である。
【図23】同実施の形態7の領域A1に対するチャネルイオン注入及び窒素イオン注入の工程を示す断面図である。
【図24】同実施の形態7の領域A2に対するチャネルイオン注入及びラジカル窒化の工程を示す断面図である。
【図25】同実施の形態7の領域Bに対するチャネルイオン注入工程を示す断面図である。
【図26】同実施の形態7の高誘電体ゲート絶縁膜形成工程を示す断面図である。
【図27】同実施の形態7のゲート電極パターニング工程を示す断面図である。
【図28】他の実施の形態8のチャネルイオン注入及び窒素イオン注入の工程を示す図である。
【図29】同実施の形態8のゲート電極形成工程を示す図である。
【図30】他の実施の形態9のウェル形成と素子分離工程を示す図である。
【図31】同実施の形態9のチャネルイオン注入工程を示す図である。
【図32】同実施の形態9のゲート電極膜形成後の窒素イオン注入工程を示す図である。
【図33】同実施の形態9のゲート電極形成工程を示す図である。
【図34】他の実施の形態10のチャネルイオン注入工程を示す図である。
【図35】同実施の形態10の高誘電体ゲート絶縁膜形成工程を示す図である。
【符号の説明】
51…シリコン単結晶基板、52,53…Pウェル、54…素子分離領域、61…熱酸化膜、62…レジストマスク、63…チャネルイオン注入領域、64…窒素イオン注入領域、71…レジストマスク、72…チャネルイオン注入領域、81…高誘電体膜、82,82a,83,83a…界面層、91…ゲート電極、101…浅いソース、ドレイン拡散層、112…深いソース、ドレイン拡散層、121…シリサイド膜、122…層間絶縁膜、123…配線、141…レジストマスク、142…チャネルイオン注入層、143…窒化膜(界面層)、151…レジストマスク、152…チャネルイオン注入層、161…高誘電体膜、163…界面層、171…ゲート電極、172,173…界面層、181…ゲート電極、182,183…界面層、190…DRAMチップ、191…DRAMセルアレイ、192…周辺回路、193…I/O回路、194…電源回路、200…ロジックLSIチップ、201…ロジック回路、202…I/O回路、203…電源回路、210…DRAM混載ロジックLSIチップ、215…I/O回路、216…ロジック回路、217…DRAMセルアレイ、219…電源回路、211…シリコン単結晶基板、221,222,223…Pウェル、224…素子分離領域、231…熱酸化膜、232…レジスタマスク、233…窒素導入領域、234…チャネルイオン注入領域、241…レジスタマスク、242…チャネルイオン注入領域、243…窒化膜、252…チャネルイオン注入領域、261…高誘電体膜、262,263…界面層、271…ゲート電極、280…シリコン単結晶基板、281…n型ウェル、282…p型ウェル、283…素子分離絶縁膜、284…犠牲酸化膜、286…窒素導入領域、287…チャネルイオン注入層、288…TiO2膜、289…界面層、290…界面層、300…シリコン単結晶基板、301…p型ウェル、302…n型ウェル、303…素子分離絶縁膜、304…犠牲酸化膜、305…チャネルイオン注入層、306…チャネルイオン注入層、320…レジストマスク、321…多結晶シリコン膜、322…TiO2膜、323…窒素イオン注入領域、324…界面層、325…界面層、340…シリコン単結晶基板、341…p型ウェル、342…p型ウェル、343…素子分離絶縁膜、344…犠牲酸化膜、345…チャネルイオン注入層、346…チャネルイオン注入層、351…TiO2膜、352…多結晶シリコン膜、353…界面層、354…界面層。

Claims (2)

  1. 半導体基板と、
    前記半導体基板に区画された第1の領域に形成された、第1の絶縁膜と第2の絶縁膜が前記半導体基板からこの順に積層された構造の第1のゲート絶縁膜を有する第1のトランジスタと、
    前記半導体基板に区画された第2の領域に形成された、第3の絶縁膜と第4の絶縁膜が前記半導体基板からこの順に積層された構造であって且つ、前記第1のゲート絶縁膜に比べてシリコン酸化膜換算膜厚が厚い第2のゲート絶縁膜を有する第2のトランジスタとを有し、
    前記第2及び第4の絶縁膜は、前記第1の領域及び前記第2の領域に同時に形成された高誘電体膜であり、
    前記第1及び第3の絶縁膜は、前記高誘電体膜中の酸素の吸収の違いに基づいて互いに組成及び膜厚が異なる界面層であり、
    前記第1の絶縁膜は、ゲート電極直下以外の領域では除去され、前記第3の絶縁膜は、ゲート電極直下以外の領域に少なくとも一部残される
    ことを特徴とする半導体装置。
  2. 異なるゲート絶縁膜構造を有するトランジスタを含む半導体装置の製造方法であって、
    半導体基板に高誘電体絶縁膜を形成する工程と、
    前記高誘電体絶縁膜上に選択的に耐酸化性の低い材料膜を形成する工程と、
    前記高誘電体絶縁膜の結晶化熱処理を行って、前記材料膜で覆われた第1の領域では前記高誘電体絶縁膜と前記半導体基板の間に成長が抑制された界面層を含み、前記材料膜で覆われていない第2の領域では前記高誘電体絶縁膜と前記半導体基板の反応により成長した界面層を含むゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上にゲート電極をパターン形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
JP2001291768A 2001-09-25 2001-09-25 半導体装置及びその製造方法 Expired - Fee Related JP3943881B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291768A JP3943881B2 (ja) 2001-09-25 2001-09-25 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291768A JP3943881B2 (ja) 2001-09-25 2001-09-25 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2003100896A JP2003100896A (ja) 2003-04-04
JP3943881B2 true JP3943881B2 (ja) 2007-07-11

Family

ID=19113860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291768A Expired - Fee Related JP3943881B2 (ja) 2001-09-25 2001-09-25 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP3943881B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258811B (en) * 2003-11-12 2006-07-21 Samsung Electronics Co Ltd Semiconductor devices having different gate dielectrics and methods for manufacturing the same
JP2006179635A (ja) * 2004-12-22 2006-07-06 Nec Electronics Corp Cmos半導体装置
KR100653721B1 (ko) 2005-06-30 2006-12-05 삼성전자주식회사 질소주입활성영역을 갖는 반도체소자 및 그 제조방법
JP4589219B2 (ja) * 2005-11-16 2010-12-01 シャープ株式会社 半導体装置の製造方法
JP5444176B2 (ja) * 2010-09-14 2014-03-19 パナソニック株式会社 半導体装置
KR102406947B1 (ko) * 2015-10-08 2022-06-10 삼성전자주식회사 반도체 소자
JP7038559B2 (ja) 2018-02-05 2022-03-18 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2003100896A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
US7229893B2 (en) Method and apparatus for a semiconductor device with a high-k gate dielectric
US6600212B2 (en) Semiconductor device and method of fabricating the same
JP5196954B2 (ja) 半導体装置の製造方法
US6727130B2 (en) Method of forming a CMOS type semiconductor device having dual gates
US7947591B2 (en) Semiconductor devices with dual-metal gate structures and fabrication methods thereof
US7351632B2 (en) Semiconductor CMOS devices and methods with NMOS high-k dielectric formed prior to core PMOS silicon oxynitride dielectric formation using direct nitridation of silicon
JP4271920B2 (ja) 半導体素子のcmos及びその製造方法
US8420486B2 (en) Method for manufacturing semiconductor device
US7176076B2 (en) Semiconductor CMOS devices and methods with NMOS high-k dielectric present in core region that mitigate damage to dielectric materials
US7226830B2 (en) Semiconductor CMOS devices and methods with NMOS high-k dielectric formed prior to core PMOS dielectric formation
US8802519B2 (en) Work function adjustment with the implant of lanthanides
US7332407B2 (en) Method and apparatus for a semiconductor device with a high-k gate dielectric
US20070178634A1 (en) Cmos semiconductor devices having dual work function metal gate stacks
US20050156208A1 (en) Device having multiple silicide types and a method for its fabrication
US20050014352A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20040126944A1 (en) Methods for forming interfacial layer for deposition of high-k dielectrics
JP2006278488A (ja) 半導体装置及びその製造方法
JP2010161308A (ja) 半導体装置およびその製造方法
JP2008016538A (ja) Mos構造を有する半導体装置及びその製造方法
US7956413B2 (en) Semiconductor device having a field effect transistor using a high dielectric constant gate insulating film and manufacturing method of the same
US20060237788A1 (en) Semiconductor device and its fabrication method
KR20030076266A (ko) Mis형 반도체 장치 및 그 제조방법
WO2011077536A1 (ja) 半導体装置およびその製造方法
JP2009267180A (ja) 半導体装置
JP3943881B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees