JP3941697B2 - Induction heating cooker - Google Patents
Induction heating cooker Download PDFInfo
- Publication number
- JP3941697B2 JP3941697B2 JP2003007995A JP2003007995A JP3941697B2 JP 3941697 B2 JP3941697 B2 JP 3941697B2 JP 2003007995 A JP2003007995 A JP 2003007995A JP 2003007995 A JP2003007995 A JP 2003007995A JP 3941697 B2 JP3941697 B2 JP 3941697B2
- Authority
- JP
- Japan
- Prior art keywords
- induction heating
- cooling fan
- heating
- output
- delay time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Induction Heating Cooking Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、調理時の騒音を低くした誘導加熱調理器に関するものである。
【0002】
【従来の技術】
従来、この種の誘導加熱調理器としては、例えば、特許文献1に記載されているようなものがあった。図8は前記公報に記載された従来の誘導加熱調理器である。図8において、1は被加熱物である鍋、2はトッププレート、3はトッププレート2の下部に設けた加熱コイル、4は加熱コイルに高周波電流を供給するためのインバータ、5はインバータの構成部品であるパワースイッチング素子でアルミニウム製の放熱器6が取り付けられている。
【0003】
又、7は発熱部品を冷却する冷却ファン、8は電源コードである。そして、9は冷却ファン7に供給する電圧を制御して冷却ファンの速度を制御する冷却ファン速度制御手段である。冷却ファン速度制御手段9は放熱器6に取り付けられた温度検知手段10であるサーミスタの検知温度によって作動するようになっている。
【0004】
前記構成において、電源が投入され加熱コイル4が通電されると、誘導加熱により鍋1が加熱され調理が開始される。このとき、パワースイッチング素子5は発熱する。この発熱は出力が大きいほど、すなわち、加熱コイル3に流れる電流が大きいほど多くなる。パワースイッチング素子5がその発熱により温度上昇し、熱的に破損しないようにするために放熱器6を取り付け、さらに冷却ファン7で冷却している。冷却ファン7を作動すると騒音が発生するため、冷却ファン7の速度をできるだけ抑え騒音を低くする必要がある。そのため放熱器6に温度検知手段10を設け、その検知した温度に応じて冷却ファンの速度を可変するというものであった。すなわち、検知温度が低い場合は、冷却ファン7の速度を低下させ、冷却能力を低下させ、同時に冷却ファン7から発生する騒音の大きさを低く抑えるというものであった。
【0005】
また、図9に示す誘導加熱調理器が同一出願人で既に提案されている。
【0006】
図9において11加熱調理器の外郭を構成する本体であり、本体11の上部には、トッププレート12と吸気部13を備えている。また、トッププレート12の上面には鍋を誘導加熱する加熱コイル14、インバータ15からなる誘導加熱手段16と、ラジェントヒーターを加熱する加熱手段17とが設けられている。また、吸気部13の下方には冷却ファン18を備え、冷却ファン18の送風方向にはインバータ15が配されている。
【0007】
さらに、インバータ15などの回路ユニットの左側で、加熱コイル14の下には加熱庫内にあるロースタヒーターを加熱する加熱手段19が設けられている。また加熱庫の隣り、すなわち、本体11の前面には入力手段20が設けられている。
【0008】
前記構成において、図10に示すように加熱出力に応じてファン速度が定められており、入力手段20により設定された加熱出力に応じて前記冷却ファンの回転数が変化する構成とすることにより、機器の冷却を十分維持しながら、冷却ファンの回転数を必要最小限に抑えることで騒音を低減していた。
【0009】
【特許文献1】
特開平6−45058号公報(第3−5頁 第1図)
【0010】
【発明が解決しようとする課題】
しかしながら、現在の設定火力に至るまでに出力を増加させた場合と減少させた場合のどちらも冷却ファンの回転数と加熱出力の変動をほぼ同時に行っているため、例えば最大設定火力で部品温度が耐熱温度付近で安定している状態で設定火力を減少させると、出力が減少すると共に冷却ファンの回転数も低減するので、出力低下による部品の温度低下速度よりも冷却ファンの回転数低減による部品の温度上昇速度の方が速い場合には過渡的に部品の温度が耐熱温度を超えて破壊し、信頼性を損なうという課題があった。
【0011】
本発明は、前記従来の不具合を解決するもので、出力を減少させて現在の設定火力に至る場合は、冷却ファンの回転数を即座に低減しないことで、発熱部品の冷却不足による熱破壊を防いだ誘導加熱調理器を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の誘導加熱調理器は、加熱出力の変動と冷却ファンの回転数の変動を同時に行わず、設定火力の増に応じて加熱出力及び冷却ファンの回転数を変動させるタイミングを変化させる構成としたものである。
【0013】
これによって、騒音を低下するために冷却ファンの回転数を必要最低限に抑えながらも、発熱部品の冷却を十分維持することができる。
【0014】
【発明の実施の形態】
請求項1に記載の発明は、誘導加熱手段と、前記誘導加熱手段の出力を設定する入力手段と、前記誘導加熱手段を冷却する冷却ファンと、前記入力手段からの入力に応じて前記冷却ファンの回転数を変化させる冷却ファン回転数制御手段と、前記誘導加熱手段を動作させる制御手段とを備え、前記制御手段は前記入力手段からの信号に応じて前記冷却ファンの回転数を増加させる回転数増加タイミングと、前記誘導加熱手段の出力を増加させる出力増加タイミングに遅延時間を設けることにより、出力増加により増加する部品の発熱を事前に抑えておくことで、発熱部品の冷却不足による熱破壊の発生を防ぐことができる。
【0015】
請求項2に記載の発明は、特に請求項1に記載の冷却ファン回転数制御手段が行う回転数の変動が緩やかに行われることにより、発熱部品が高温であるのも関わらず冷却ファンの回転数が低減することによる冷却不足を防ぐとともに、ファンの回転数の変動による音の変化が使用者に違和感を与えることを防ぐことができる。
【0016】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0017】
(実施例1)
図1は、本発明の第1の実施例における誘導加熱調理器の動作特性図を示すものである。
【0018】
図1において、21は加熱コイルやインバータからなる誘導加熱手段、22は誘導加熱手段21の出力を設定する入力手段、23は入力手段22からの入力に応じて誘導加熱手段を動作させるマイコンなどの制御手段、24は誘導加熱手段21を冷却する冷却ファン、25は入力手段22からの入力に応じて冷却ファン24の回転数を変化させる冷却ファン回転数制御手段である。
【0019】
以上のように構成された誘導加熱調理器において、以下その動作、作用を誘導加熱手段の出力と冷却ファンの回転速度の変動を示す図2に従って説明する。
【0020】
使用者は鍋に調理物を入れ、図示されていない誘導加熱手段21上に位置するトッププレート上に置く。使用者が入力手段22にて火力『中』(本実施例では1400W〜2000W)を設定すると、制御手段23は入力手段22からの信号を受け誘導加熱手段21を動作させることで、設定された火力にて鍋を誘導加熱する。誘導加熱手段21を動作させると、誘導加熱手段を構成している加熱コイルやスイッチング素子からなるインバータの部品が発熱し、耐熱温度を超えて熱破壊に至る場合があるので、冷却ファン24を駆動し、発熱部品を冷却する。但し、加熱出力が小さいと発熱部品の損失が小さいので、ファン回転数制御手段25は入力手段22から火力『中』の信号を受けた場合は冷却ファン24に中速(本実施例では2300rpm)で駆動させる信号を送信し、冷却ファン24を中速で駆動する。
【0021】
次に入力手段22にて火力『弱』(本実施例では300W〜1000W)に設定を下げる。入力手段22から設定を下げる信号を受けると設定火力を上げた時とは反対に、まず制御手段23が誘導加熱手段21の出力を減少させ、数秒後(本実施例では20秒後)にファン回転数制御手段25は火力『弱』での発熱部品の損失に対応した冷却を行う為に低速(本実施例では2000rpm)で冷却ファン24を駆動させる。つまり、設定火力の減少時は冷却ファンの回転数を減少させるタイミングを数秒間遅らせる。
【0022】
また入力手段22にて火力『強』(本実施例では3000W)に設定を上げる。入力手段22から設定を上げる信号を受けると、制御手段23が誘導加熱手段21の出力を増加させる前に、ファン回転数制御手段25は火力『強』での発熱部品の発熱に対応した冷却を行う為に高速(本実施例では2800rpm)で冷却ファン24を駆動させる。数秒後(本実施例では20秒後)に誘導加熱手段の出力を増加させる。つまり、設定火力の増加時は誘導加熱手段の出力増加のタイミングを数秒間遅らせる。
【0023】
なお、本実施例においては設定火力に応じて冷却ファンの回転数を3段階に制御しているが冷却ファンの回転数の段階は限定しない。
【0024】
以上のように、本実施例においては誘導加熱手段の出力と冷却ファンの回転数を変動させる順序又は時間を、設定火力の増減に応じて変化させる事で、冷却不足による部品の熱破壊を防ぐことができる。
【0025】
また、本実施例において冷却ファンの回転数を減少させるタイミングを誘導加熱手段の出力を下げるタイミングに対して遅らせたが、変動のタイミングは特に遅らせずに冷却ファンの回転数を目標とする回転数まで一気に減少させるのではなく、例えば毎秒20rpmずつ徐々に減少させることで、ファンの回転数の変動する際に発生する騒音の変化による違和感を使用者に与えないようにすることができる。
【0026】
(参考例1)
図3は、本発明の第1の実施例における誘導加熱調理器の動作特性図を示すものである。図3において26は遅延時間算出手段であり、誘導加熱手段の出力に応じて遅延時間を変更する構成となっており、実施例1と異なる点は遅延時間算出手段を設けた点である。
【0027】
以上のように構成された誘導加熱調理器において、以下その動作、作用を説明する。
【0028】
実施例1と同様に使用者は鍋に調理物を入れ、図示されていない誘導加熱手段21上に位置するトッププレート上に置く。使用者が入力手段22にて火力『強』(本参考例では3000W)を設定すると、制御手段23は入力手段22からの信号を受けて誘導加熱手段21を動作させることで、設定された火力にて鍋を誘導加熱する。ファン回転数制御手段25は入力手段22から火力『強』の信号を受けると、冷却ファン24に高速(本参考例では2800rpm)で駆動させる信号を送信し、冷却ファン24を高速で駆動する。
【0029】
次に入力手段22にて火力『中』(本参考例では1400W〜2000W)に設定を下げる。入力手段22から設定を火力『中』へ下げる信号を受けると、制御手段23は誘導加熱手段21の出力を減らし、遅延時間算出手段26は『中』という誘導加熱手段の出力に応じて定められた遅延時間(本参考例では30秒)を算出する。遅延時間算出手段により求められた時間が経過するとファン回転数制御手段25は中速(本参考例では2400rpm)で冷却ファン24を駆動させる。30秒間は継続して冷却ファンを高速で駆動することにより発熱部品は充分冷却される。
【0030】
さらに入力手段22にて火力『弱』(本参考例では300W〜1000W)に設定を下げる。入力手段22から設定を火力『弱』へ下げる信号を受けると、制御手段23は誘導加熱手段21の出力を減らし、遅延時間算出手段26は『弱』という火力に応じて定められた遅延時間(本参考例では15秒)を算出する。遅延時間算出手段により求められた時間が経過するとファン回転数制御手段25は低速(本参考例では2000rpm)で冷却ファン24を駆動させる。誘導加熱手段の出力が小さくなると発熱部品からの損失が小さくなるので、遅延時間が短くとも充分冷却することができる。
【0031】
以上のように、本参考例において誘導加熱手段の出力に応じて遅延時間を変更することにより、誘導加熱手段の出力が小さい時には冷却ファン24から発生する騒音を実施例1よりも更に低減させた状態で、冷却不足による部品の熱破壊を防ぐ事ができる。
【0032】
(参考例2)
図4は、本発明の第2の参考例における誘導加熱調理器の動作特性図を示すものである。図4において26は遅延時間算出手段、27は連続加熱時間を計時する計時手段であり、計時手段からの入力に応じて遅延時間を変更する構成となっており、参考例1と異なる点は計時手段を設け、計時手段からの入力により遅延時間が変更される点である。
【0033】
以上のように構成された誘導加熱調理器において、以下その動作、作用を連続加熱時間と遅延時間の関係を示す図5に従って説明する。
【0034】
実施例1と同様に使用者は鍋に調理物を入れ、図示されていない誘導加熱手段21上に位置するトッププレート上に置く。使用者が入力手段22にて火力『強』(本参考例では3000W)を設定すると、制御手段23は入力手段22からの信号を受け誘導加熱手段21を動作させることで、設定された火力にて鍋を誘導加熱する。ファン回転数制御手段25は入力手段22から火力『強』の信号を受けると、冷却ファン24を高速(本参考例では2800rpm)で駆動する。
【0035】
3分後に入力手段22にて火力『中』(本参考例では1400W〜2000W)に設定を下げる。入力手段22から設定を火力『中』へ下げる信号を受けると、制御手段23は誘導加熱手段21の出力を減らす。計時手段27が連続加熱時間を3分と計時し、遅延時間算出手段26が計時手段から入力される連続加熱時間に応じて定められた遅延時間(本参考例では30秒)を算出する。遅延時間算出手段により求められた時間が経過するとファン回転数制御手段25は中速(本参考例では2400rpm)で冷却ファン24を駆動させる。また、1分後に設定を下げた場合には遅延時間算出手段は1分という連続加熱時間に応じて別の遅延時間(本参考例では10秒)を算出する。なお、本参考例において遅延時間は連続加熱時間に比例しているが、連続加熱時間にしきい値を設けて遅延時間を変えるなど遅延時間算出方法は限定しない。
【0036】
以上のように、本参考例において連続加熱時間に応じて遅延時間を変更することにより、連続加熱時間が短く、部品があまり発熱していない状態における冷却ファン24から発生する騒音を実施例1よりも更に低減させた状態で、冷却不足による部品の熱破壊を防ぐ事ができる。
【0037】
(参考例3)
図6は、本発明の第3の参考例における誘導加熱調理器の動作特性図を示すものである。図6において26は遅延時間算出手段、28は誘導加熱手段の温度を検出する温度検知手段であり、温度検知手段からの入力に応じて遅延時間を変更する構成となっており、参考例2と異なる点は温度検知手段を設け、温度検知手段からの入力により遅延時間が変更される点である。
【0038】
以上のように構成された誘導加熱調理器において、以下その動作、作用を誘導加熱手段の温度と遅延時間の関係を示す図7に従って説明する。
【0039】
参考例2と同様に使用者が入力手段22にて火力『強』(本参考例では3000W)を設定すると、制御手段23は入力手段22からの信号を受け誘導加熱手段21を動作させることで、設定された火力にて鍋を誘導加熱する。ファン回転数制御手段25は入力手段22から火力『強』の信号を受けると、冷却ファン24を高速(本参考例では2800rpm)で駆動する。
【0040】
次に入力手段22にて火力『中』(本参考例では1400W〜2000W)に設定を下げる。入力手段22から設定を火力『中』へ下げる信号を受けると、制御手段23は誘導加熱手段21の出力を減らす。加熱コイルやスイッチング素子などの発熱するインバータの素子近傍に備えられた温度検知手段28が誘導加熱手段の温度を検知すると、遅延時間算出手段26が温度検知手段から入力される誘導加熱手段の温度により遅延時間を算出する。本参考例では、遅延時間は検出温度が40℃であれば遅延時間は20秒、50℃であれば遅延時間30秒といったようには温度検知手段からの入力に対して比例した値を算出している。
【0041】
なお、本参考例において遅延時間は連続加熱時間に比例しているが、連続加熱時間にしきい値を設けて遅延時間を変えるなど遅延時間算出方法は限定しない。
【0042】
以上のように、本参考例において誘導加熱手段の温度に応じて遅延時間を変更することにより、部品の発熱度合いに応じて効率良くい冷却を行うことができるので、冷却ファン24から発生する騒音を実施例1よりも更に低減することができる。
【0043】
【発明の効果】
以上のように、請求項1、2の発明により、加熱出力を変動させるタイミングと冷却ファンの回転数を変動させるタイミングを分離し、加熱出力の増に応じて冷却ファンの回転数を変動させるタイミングを変化させる構成とすることにより、冷却ファンの回転数を必要最低限に抑えながらも、発熱部品を充分に冷却することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における誘導加熱調理器の動作特性図
【図2】 本発明の実施例1における誘導加熱調理器の入力手段、誘導加熱手段の出力及び冷却ファンの回転速度の時間変化を示した図
【図3】 本発明の参考例1における誘導加熱調理器の動作特性図
【図4】 本発明の参考例2における誘導加熱調理器の動作特性図
【図5】 本発明の参考例2における誘導加熱調理器における連続加熱時間と遅延時間との関係を示す図
【図6】 本発明の参考例3における誘導加熱調理器の動作特性図
【図7】 本発明の参考例3における誘導加熱調理器における誘導加熱手段の温度と遅延時間との関係を示す図
【図8】 従来の誘導加熱調理器の分解斜視図
【図9】 既に提案されている誘導加熱調理器の分解斜視図
【図10】 既に提案されている誘導加熱調理器の加熱出力と冷却ファンの速度との関係を示す図
【符号の説明】
21 誘導加熱手段
22 入力手段
23 制御手段
24 冷却ファン
25 ファン回転数制御手段
26 遅延時間算出手段
27 計時手段
28 温度検知手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating cooker that reduces noise during cooking.
[0002]
[Prior art]
Conventionally, as this type of induction heating cooker, for example, there has been one described in
[0003]
[0004]
Prior Symbol configuration, when the power supply is a
[0005]
Moreover, the induction heating cooker shown in FIG. 9 has already been proposed by the same applicant.
[0006]
In FIG. 9,
[0007]
Further, on the left side of the circuit unit such as the
[0008]
In the above configuration, the fan speed is determined according to the heating output as shown in FIG. 10, and the rotation speed of the cooling fan changes according to the heating output set by the input means 20. While maintaining sufficient cooling of the equipment, the noise was reduced by minimizing the number of rotations of the cooling fan.
[0009]
[Patent Document 1]
JP 6-4 5 058 (page 3-5, FIG. 1)
[0010]
[Problems to be solved by the invention]
However, both when the output is increased to the current set thermal power and when the output is decreased, the rotation speed of the cooling fan and the heating output are varied almost simultaneously. If the set thermal power is reduced in a stable state near the heat-resistant temperature, the output decreases and the cooling fan speed also decreases. When the temperature rise rate is higher, the temperature of the component transiently exceeds the heat-resistant temperature, causing a problem that the reliability is impaired.
[0011]
The present invention solves the above-described conventional problems. When the output is reduced to reach the currently set thermal power, the number of cooling fan rotations is not immediately reduced, thereby preventing thermal destruction due to insufficient cooling of the heat generating components. It aims at providing the induction heating cooker which prevented.
[0012]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the induction heating cooker of the present invention does not simultaneously change the heating output and the rotation speed of the cooling fan, and the heating output and the rotation of the cooling fan according to an increase in the set thermal power. In this configuration, the timing for changing the number is changed.
[0013]
As a result, it is possible to sufficiently maintain the cooling of the heat generating components while suppressing the number of rotations of the cooling fan to the minimum necessary to reduce noise.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to
[0015]
According to the second aspect of the present invention, in particular, the rotation speed of the cooling fan is controlled by the cooling fan rotational speed control means according to the first aspect of the invention, so that the cooling fan can be rotated even though the heat-generating component is hot. It is possible to prevent insufficient cooling due to the reduction in the number and to prevent the user from feeling uncomfortable due to a change in sound due to a change in the rotation speed of the fan.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
Example 1
FIG. 1 shows an operation characteristic diagram of the induction heating cooker in the first embodiment of the present invention.
[0018]
In FIG. 1, 21 is an induction heating means comprising a heating coil or an inverter, 22 is an input means for setting the output of the induction heating means 21, 23 is a microcomputer that operates the induction heating means in response to an input from the input means 22, etc. The control means 24 is a cooling fan for cooling the induction heating means 21, and 25 is a cooling fan rotation speed control means for changing the rotation speed of the cooling
[0019]
In the induction heating cooker configured as described above, its operation and action will be described below with reference to FIG. 2 showing fluctuations in the output of the induction heating means and the rotation speed of the cooling fan.
[0020]
The user puts the food in the pan and places it on the top plate located on the induction heating means 21 (not shown). When the user sets the heating power “middle” (1400 W to 2000 W in this embodiment) by the input means 22, the control means 23 is set by operating the induction heating means 21 in response to a signal from the input means 22. Induction heating the pot with heat. When the induction heating means 21 is operated, the components of the inverter consisting of the heating coil and switching elements that constitute the induction heating means generate heat, and may exceed the heat-resistant temperature, resulting in thermal destruction. Therefore, the cooling
[0021]
Next, the setting is lowered to the heating power “weak” (300 W to 1000 W in this embodiment) by the input means 22. When receiving a signal for lowering the setting from the input means 22, the control means 23 first decreases the output of the induction heating means 21, contrary to when the set heating power is increased, and after a few seconds (20 seconds in this embodiment) the fan The rotational speed control means 25 drives the cooling
[0022]
Further, the setting is increased to the heating power “strong” (3000 W in this embodiment) by the input means 22. Upon receiving a signal for raising the setting from the input means 22, before the control means 23 increases the output of the induction heating means 21, the fan rotation speed control means 25 performs cooling corresponding to the heat generation of the heat-generating component with the heating power “strong”. For this purpose, the cooling
[0023]
In this embodiment, the number of rotations of the cooling fan is controlled in three stages according to the set thermal power, but the number of rotations of the cooling fan is not limited.
[0024]
As described above, in this embodiment, the order or time for changing the output of the induction heating means and the number of rotations of the cooling fan is changed according to the increase or decrease of the set thermal power, thereby preventing thermal destruction of parts due to insufficient cooling. be able to.
[0025]
Further, in this embodiment, the timing for reducing the rotation speed of the cooling fan is delayed with respect to the timing for lowering the output of the induction heating unit, but the fluctuation timing is not particularly delayed, and the rotation speed of the cooling fan is set as the target rotation speed. For example, by gradually reducing the rotation speed by 20 rpm per second, it is possible to prevent the user from feeling uncomfortable due to a change in noise that occurs when the rotational speed of the fan fluctuates.
[0026]
( Reference Example 1 )
FIG. 3 shows an operational characteristic diagram of the induction heating cooker in the first embodiment of the present invention. In FIG. 3,
[0027]
The operation and action of the induction heating cooker configured as described above will be described below.
[0028]
As in the first embodiment, the user puts the food in the pan and places it on the top plate located on the induction heating means 21 (not shown). When the user sets the heating power “strong” (3000 W in this reference example) with the input means 22, the control means 23 receives the signal from the input means 22 and operates the induction heating means 21 to set the heating power set. Induction heating the pan at When the fan rotational speed control means 25 receives the signal of the heating power “strong” from the input means 22, it sends a signal to drive the cooling
[0029]
Next, the setting is lowered to the heating power “medium” (1400 W to 2000 W in this reference example) by the input means 22. When receiving a signal to lower the setting to the heating power “medium” from the input means 22, the control means 23 reduces the output of the induction heating means 21, and the delay time calculation means 26 is determined according to the output of the induction heating means “medium”. The delay time (30 seconds in this reference example) is calculated. When the time determined by the delay time calculation means elapses, the fan rotation speed control means 25 drives the cooling
[0030]
Further, the setting is lowered to the heating power “weak” (300 W to 1000 W in this reference example) by the input means 22. When receiving a signal for reducing the setting to the heating power “weak” from the input means 22, the control means 23 reduces the output of the induction heating means 21, and the delay
[0031]
As described above, by changing the delay time according to the output of the induction heating unit in this reference example, the noise generated from the cooling
[0032]
( Reference Example 2 )
FIG. 4 shows an operation characteristic diagram of the induction heating cooker in the second reference example of the present invention. 26 the delay
[0033]
In the induction cooking device configured as described above, the operation and action will be described below with reference to FIG. 5 showing the relationship between the continuous heating time and the delay time.
[0034]
As in the first embodiment, the user puts the food in the pan and places it on the top plate located on the induction heating means 21 (not shown). When the user sets the heating power “strong” (3000 W in this reference example) with the input means 22, the control means 23 receives the signal from the input means 22 and operates the induction heating means 21 to set the heating power to the set power. Induction heating the pan. When the fan rotational speed control means 25 receives the signal of the heating power “strong” from the input means 22, it drives the cooling
[0035]
After 3 minutes, the input means 22 lowers the setting to “medium” (1400 W to 2000 W in this reference example). When receiving a signal for lowering the setting to “medium” from the input means 22, the control means 23 reduces the output of the induction heating means 21. The time measuring means 27 measures the continuous heating time as 3 minutes, and the delay
[0036]
As described above, by changing the delay time according to the continuous heating time in this reference example, the noise generated from the cooling
[0037]
( Reference Example 3 )
FIG. 6 shows an operation characteristic diagram of the induction heating cooker in the third reference example of the present invention. 26 the delay
[0038]
In the induction cooking device configured as described above, its operation and action will be described below with reference to FIG. 7 showing the relationship between the temperature of the induction heating means and the delay time.
[0039]
When the user sets the heating power “strong” (3000 W in this reference example) with the input means 22 as in Reference Example 2 , the control means 23 receives the signal from the input means 22 and operates the induction heating means 21. , Induction heating the pot with the set heat. When the fan rotational speed control means 25 receives the signal of the heating power “strong” from the input means 22, it drives the cooling
[0040]
Next, the setting is lowered to the heating power “medium” (1400 W to 2000 W in this reference example) by the input means 22. When receiving a signal for lowering the setting to “medium” from the input means 22, the control means 23 reduces the output of the induction heating means 21. When the temperature detection means 28 provided in the vicinity of the element of the inverter that generates heat, such as a heating coil or a switching element, detects the temperature of the induction heating means, the delay time calculation means 26 depends on the temperature of the induction heating means input from the temperature detection means. Calculate the delay time. In this reference example, the delay time is calculated as a value proportional to the input from the temperature detecting means, such as a delay time of 20 seconds if the detected temperature is 40 ° C., a delay time of 30 seconds if the detected temperature is 50 ° C. ing.
[0041]
In this reference example, the delay time is proportional to the continuous heating time, but the delay time calculation method is not limited, such as changing the delay time by providing a threshold for the continuous heating time.
[0042]
As described above, in this reference example, by changing the delay time according to the temperature of the induction heating means, it is possible to perform efficient cooling according to the degree of heat generation of the components, so that the noise generated from the cooling
[0043]
【The invention's effect】
As described above, according to the first and second aspects of the invention, the timing for changing the heating output and the timing for changing the rotation speed of the cooling fan are separated, and the timing for changing the rotation speed of the cooling fan according to the increase of the heating output. By changing the configuration of the heat generating component, it is possible to sufficiently cool the heat generating component while suppressing the number of rotations of the cooling fan to the minimum necessary.
[Brief description of the drawings]
FIG. 1 is an operation characteristic diagram of an induction heating cooker in
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003007995A JP3941697B2 (en) | 2003-01-16 | 2003-01-16 | Induction heating cooker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003007995A JP3941697B2 (en) | 2003-01-16 | 2003-01-16 | Induction heating cooker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004220959A JP2004220959A (en) | 2004-08-05 |
JP3941697B2 true JP3941697B2 (en) | 2007-07-04 |
Family
ID=32897928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003007995A Expired - Lifetime JP3941697B2 (en) | 2003-01-16 | 2003-01-16 | Induction heating cooker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941697B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5200874B2 (en) * | 2008-11-14 | 2013-06-05 | パナソニック株式会社 | Induction heating cooker |
KR101585528B1 (en) * | 2014-05-15 | 2016-01-15 | 쿠쿠전자 주식회사 | Cooling motor controlling apparatus for electric cooker |
-
2003
- 2003-01-16 JP JP2003007995A patent/JP3941697B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004220959A (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3941697B2 (en) | Induction heating cooker | |
JP3815318B2 (en) | Induction heating cooker | |
JP3861760B2 (en) | Cooker | |
JP2004111090A (en) | Induction heating cooker | |
CN111820708A (en) | Cooking device and cooking method thereof | |
JP3912120B2 (en) | Induction heating cooker | |
JP3058149B2 (en) | Electric rice cooker | |
JP4346511B2 (en) | Induction heating cooker | |
JP2691498B2 (en) | Steam heater | |
JP5892862B2 (en) | Cooker | |
JP3940344B2 (en) | Hot water heating control device | |
JP2002231432A (en) | Induction heating cooking appliance | |
JP3941663B2 (en) | Induction heating cooker | |
JP3868720B2 (en) | Cooker | |
JPH07289421A (en) | Induction heating type rice cooker | |
JP3835466B2 (en) | Induction heating cooker | |
JPH07289419A (en) | Induction heating type rice cooker | |
JP2976798B2 (en) | Control device for induction heating cooker | |
JPH11329696A (en) | Induction heater cooker | |
JP2006344452A (en) | Induction heating cooker | |
JP4114448B2 (en) | Induction heating cooker | |
JP2707202B2 (en) | Induction heating rice cooker | |
JPH10154579A (en) | Induction heating cooking appliance | |
JP2003317921A (en) | Induction heating cooker | |
JP3912151B2 (en) | Induction heating cooker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040422 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3941697 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |