JP3940344B2 - Hot water heating control device - Google Patents

Hot water heating control device Download PDF

Info

Publication number
JP3940344B2
JP3940344B2 JP2002283249A JP2002283249A JP3940344B2 JP 3940344 B2 JP3940344 B2 JP 3940344B2 JP 2002283249 A JP2002283249 A JP 2002283249A JP 2002283249 A JP2002283249 A JP 2002283249A JP 3940344 B2 JP3940344 B2 JP 3940344B2
Authority
JP
Japan
Prior art keywords
heater
temperature
output
phase
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283249A
Other languages
Japanese (ja)
Other versions
JP2004116206A5 (en
JP2004116206A (en
Inventor
隆志 小野
浩信 前田
達也 扇原
Original Assignee
東陶機器株式会社
Totoウォシュレットテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社, Totoウォシュレットテクノ株式会社 filed Critical 東陶機器株式会社
Priority to JP2002283249A priority Critical patent/JP3940344B2/en
Publication of JP2004116206A publication Critical patent/JP2004116206A/en
Publication of JP2004116206A5 publication Critical patent/JP2004116206A5/ja
Application granted granted Critical
Publication of JP3940344B2 publication Critical patent/JP3940344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主に温水を加熱制御する技術に関する。
【0002】
【従来の技術】
近年、人体局部の洗浄を行う衛生洗浄装置においては、局部洗浄水の温度制御を行う温水制御機能、便座温度の制御を行う便座温度制御機能、局部乾燥用の乾燥温度制御機能、室内暖房用の室温制御機能といったヒータ機能を持ったものが一般的となっている。また、それらヒータが交流駆動ヒータの場合、トライアック等のスイッチング手段にオン信号を出力することで、交流電圧をヒータへ印加するといった手段が一般的であり、更に温水制御機能のような迅速かつ精度を要求される温度制御に対しては、ヒータへの導通時間を制御する位相制御が有効な手段であることが知られている。位相制御の具体的な方法は、温水の温度と、温水の目標温度とからヒータに通電する熱量及びその熱量に応じた通電時間を算出し、ヒータに印可される通電時間が算出された値になるよう、交流電源のゼロクロス点から所定時間経過後にスイッチング手段にオン指令を出力し、次のゼロクロス点までヒータを通電するようにしている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平10−60981 号公報(第4−8頁、図6b)
【0004】
【発明が解決しようとする課題】
しかし、交流駆動ヒータの位相制御で温度制御を行う場合、前述したようにゼロクロス点を基準としてスイッチング手段のオン/オフのタイミングを制御する為、例えば導通角90°付近でスイッチング手段をオンして導通した場合、機器の誤動作を引き起こすノイズが誘発されてしまう為、ノイズ対策を特別に行うか、或いは予め限定された位相パターンに従い、必要熱量に最も近い熱量となる位相パターンを選択する位相パターン制御を行っていた。しかし、この方法だと、吐水量や設定温度の急激な変化に制御が追従できず、吐水量を使用者が設定した水量より絞り込んで吐水温度を確保したり、設定温度に対する吐水温度の偏差が非常に大きい為、使用者が設定した設定温度まで吐水温度を上昇させることができなかったり、或いは設定温度を遥かに超えた温度で吐水する、所謂オーバーシュートを引き起こし、使用者に不快感を与える原因となっていた。
【0005】
本発明は上述の問題に鑑み、特別にノイズ対策を必要とせず、更に必要熱量に近似の位相パターンを選択するのではなく、必要熱量に応じノイズやフリッカを防止する最適な位相パターンを選択し、且つ連続的に精度良く通電時間を制御する位相制御技術の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明では次の構成を採用した。商用電源で駆動されるヒータと、前記ヒータの通電を制御するトライアックのスイッチング手段と、前記商用電源のゼロクロス点を検出するゼロクロス検出手段と、前記ヒータの近傍に設けられた給水温度を検出する温度検知部と、使用者が設定した吐水温度に設定する温度設定部と、吐水流量を検知する流量検知部と、前記温度検知部及び前記温度設定部及び前記流量検知部より前記ヒータの加熱量を算出し温水温度制御を行なう衛生洗浄装置において、あらかじめ、ゼロクロス点を基準とする、位相角≦60°、又は位相角≧120°での前記スイッチング手段のONディレイ時間を有し、ヒータ通電の連続オン時間と連続オフ時間がそれぞれ商用電源周波数の3半波未満になるような、ノイズやフリッカを防止する位相パターンを、前記ヒータの最大出力熱量に対する出力熱量の比である出力比率に応じて、複数設定しておき、前記温度検知部と前記温度設定部より検出された温度の差分に前記流量検知部より検出された流量を積算してヒータの加熱量を算出し、その加熱量に応じた出力比率に対応する位相パターンを前記位相パターンから選択して前記ヒータを位相制御する位相制御手段を設けたことを要旨とする。
【0007】
請求項1では、予め設定された吐水温度まで水を加熱する場合、必要熱量に応じ機器の誤動作を引き起こす原因の1つであるノイズの誘発と、照明がちらつくフリッカの発生を防止することを優先したONディレイ時間を算出する。これにより、ノイズの誘発やフリッカの発生を防止しつつ、使用者が設定した温度と水量を容易に確保することが可能となる。
【0008】
た、あらかじめ、ゼロクロス点を基準とする、位相角≦60°、又は位相角≧120°でのスイッチング手段のONディレイ時間を有し、ヒータ通電の連続オン時間と連続オフ時間がそれぞれ商用電源周波数の3半波未満になるような、ノイズやフリッカを防止する位相パターンを、ヒータの最大出力熱量に対する出力熱量の比である出力比率に応じて、複数設定しておき、温度検知部と温度設定部より検出された温度の差分に流量検知部より検出された流量を積算してヒータの加熱量を算出し、その加熱量に応じた出力比率に対応する位相パターンを前記位相パターンから選択してヒータを位相制御することにした。これにより、ノイズの誘発やフリッカの発生を防止した上、使用者が設定した吐水量や設定温度の急激な変化にも制御を追従させることができ、使用者が設定した水量と水温を安定的に確保することも可能となる。
【0009】
また請求項では、請求項記載の衛生洗浄装置のヒータ制御装置であって、必要熱量とヒータ容量の割合が、0[%]から100[%]までの割合に応じ18分割された位相パターンから1つの位相パターンを選択することにした。これにより、ノイズの誘発やフリッカの発生を防止した上、使用者が設定した吐水量や設定温度、更に給水温度の急激な変化にも精度よく制御を追従させることができ、使用者が設定した水量と水温を高精度、且つ安定的に確保することも可能となる。
【0010】
【発明の実施の形態】
本発明の内容をより理解するため、以下に実施例を用いて詳説する。
【0011】
【実施例】
図1に本発明に係わる衛生洗浄装置の要部ブロック構成図を示す。この衛生洗浄装置1は、温度設定部2と、温度検知部3と、流量検知部9と、周波数検出部10と、ゼロクロス検出手段6と、温水ヒータ7と、トライアックのスイッチング手段8と制御部5から構成される。制御部5は例えばマイクロコンピュータであり、制御部5における位相制御手段4は熱量算出演算、出力比率算出演算、通電時間算出演算を備える。温度設定部2と温度検知部3より検出された温度の差分に流量検知部9より検出された流量を積算し熱量を算出する。次に、ヒータ出力に占める左記熱量の割合である出力比率を算出し、周波数検出部10より検出された周波数に応じ左記出力比率より通電時間を算出する。次に、ゼロクロス検出手段6により検出されたゼロクロス点より左記通電時間経過したところでトライアックのスイッチング手段8をオンさせ、次のゼロクロス点で左記スイッチング手段8をオフさせることで、温水ヒータ7への印加を制御することができる。
【0012】
次に、図1を詳細に説明する。先ず、熱量算出演算は、温度設定部2の吐水温度設定装置により設定された設定温度と温度検知部3の給水温度検出手段より検出された給水温度の温度差を算出する。次に、流量検知部9の吐水流量検出手段により検出された吐水流量と前記温度差の積より出力熱量を算出する。設定温度をTs、給水温度をTg、設定温度Tsと給水温度Tgの差をTq、吐水流量をRt、出力熱量をQとすると数1式のとおりとなる。
【0013】
【数1】

Figure 0003940344
【0014】
具体的に、設定温度Ts=40[℃]、給水温度Tg=10[℃]、吐水流量Rt=5[cc/s]とすると数2式のとおりとなる。
【0015】
【数2】
Figure 0003940344
【0016】
次に出力比率算出演算は、前記出力熱量[cal]が最大出力熱量[cal]に対する出力比率[%]を算出する。例えば、ヒータ容量Qh=1200[W]と仮定すると、出力熱量[cal]、最大出力熱量[cal]に対する出力比率[%]はそれぞれ図17のようになる。次に、図17の出力熱量[cal]と出力比率[%]の関係は図13、数3式のとおりとなる。
【0017】
【数3】
Figure 0003940344
【0018】
例えば、数2式の(2)より出力熱量Q=150[cal]とすると、数1式のとおりとなる。
【0019】
【数4】
Figure 0003940344
【0020】
従って、出力熱量Q=150[cal]の場合、出力比率Pa=52.215[%]となる。
【0021】
次に通電時間算出演算は、前記出力比率Pa[%]と図16より、増加対象半波1半波あたりの出力比率Pz[%]を算出する。図16より増加対象半波1半波あたりの出力比率Pz[%]は、前記出力比率Pa=52.215[%]とすると数5式のとおりとなる。
【0022】
【数5】
Figure 0003940344
【0023】
次に、増加対象半波1半波あたりの出力比率Pz[%]に対するヒータ出力Pe[W]を算出する。ヒータ出力Pe[W]は、ヒータ容量Qh=1200[W]、増加対象半波1半波あたりの出力比率Pz=4.43[%]とすると数6式のとおりとなる。
【0024】
【数6】
Figure 0003940344
【0025】
次に、周波数検出部10の周波数検出手段より、電源周波数が50[Hz]、又は60[Hz]か判定する。
ところで、ヒータ出力Pe[W]と、ヒータ出力Pe[W]となるようなトライアック制御のゼロクロス点からのONディレイ時間t[ms]の関係を表すと数7式のとおりとなる。
【0026】
【数7】
Figure 0003940344
【0027】
数7式の(1)より、ヒータ出力Pe=53.16[W]、周波数50[Hz]とすると数8式のとおりとなる。
【0028】
【数8】
Figure 0003940344
【0029】
ところで、出力比率Pa=52.215[%]は、50.0≦Pa<62.5であることから、図9のパターン出力となり、図9の▲1▼▲2▼▲3▼▲4▼の各半波は、ゼロクロス点からONディレイ時間t=8.06[ms]でヒータ用トライアックのスイッチング手段8を制御することで、前記設定温度Ts=40[℃]、前記給水温度Tg=10[℃]、前記吐水流量Rt=5[cc/s]の場合に、前記設定温度Tsと同様の吐水温度40[℃]を制御可能となる。
【0030】
図2に本発明における演算装置の演算処理フローを示す。温度検知部3にて給水温度を検出する。次に、温度設定部2より取り込まれた設定温度と、温度検知部3より入力された吐水温度の差と、流量検知部9より検出された吐水流量の積より、設定温度まで沸し上げるのに必要な熱量Q[cal]を熱量算出演算にて算出する。次に、数3式より左記熱量Q[cal]に対する出力比率Pa[%]を算出する。次に、図16より左記出力比率Pa[%]の場合の増加対象半波1半波あたりの出力比率Pz[%]を算出する。次に、前記出力比率Pz[%]と数6式よりヒータ出力Pe[W]を算出する。次に、周波数検出部より周波数が50[Hz]、60[Hz]の何れか検出し、その検出結果によって、数7式の(1)又は(2)と前記ヒータ出力Pe[W]より通電時間t[ms]を算出し、左記通電時間t[ms]に基づきヒータ用トライアックを制御する。
【0031】
図14は周波数50[Hz]の場合のONディレイ時間[ms]とヒータ出力[W]の関係、数7式の(1)を表している。
【0032】
図15は周波数60[Hz]の場合のONディレイ時間[ms]とヒータ出力[W]の関係、数7式の(2)を表している。
【0033】
図3は、位相角≦60°、又は位相角≧120°を満足する位相パターンを表している。この位相パターンだと、フリッカ防止には非常に効果があるが、ヒータ通電オンとオフの切替えを頻繁に行う為、機器の誤動作を引き起こす原因の1つであるノイズの誘発を完全に防止することは難しい。
【0034】
図4は、図3と同様に位相角≦60°、又は位相角≧120°を満足する位相パターンであるが、ノイズの誘発を防止する為にヒータ通電オンとオフの切替え回数を極力低減している。更に、照明がちらつく現象、所謂フリッカはヒータ通電の連続オン時間と連続オフ時間がそれぞれ3半波以上になると発生することが知られており、そのことを踏まえヒータ通電の連続オン時間と連続オフ時間がそれぞれ3半波未満になるよう設計された一例である。
【0035】
図5から図12までの各図は、図4の設計を踏襲しつつ、ヒータ出力が0[%]から100[%]までの連続した位相パターンを表した一例である。尚、各図について以下に詳述する。
【0036】
図5は図17の出力比率[%]が0[%]以上12.5[%]未満の場合の出力波形を表している。例えば、出力比率[%]が0[%]≦Pa[%]<12.5[%]を満足するPaがあると仮定する。図16、数6式より、図5内の斜線部分▲1▼▲2▼▲3▼▲4▼の出力比率Pz[%]、ヒータ出力Pe[W]は数9式のとおりとなる。
【0037】
【数9】
Figure 0003940344
【0038】
次に、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数9式の(2)より数10式のとおりとなる。
【0039】
【数10】
Figure 0003940344
【0040】
例えば、出力比率Pa[%]=10[%]であるとすると、ONディレイ時間t[ms]は数10式より数11式のとおりとなる。
【0041】
【数11】
Figure 0003940344
【0042】
つまり、上記例の場合、図5内の斜線部分▲1▼▲2▼▲3▼▲4▼は、ゼロクロス点から6.64[ms]経過後にトライアックがオンすることになる。
【0043】
図6は図17の出力比率[%]が12.5[%]以上15.625[%]未満、15.625[%]以上18.75[%]未満、18.75[%]以上21.875[%]未満、21.875[%]以上25.0[%]未満の各出力波形を表している。例えば、出力比率[%]が21.875[%]≦Pa[%]<25.0[%]を満足するPaがあるとする。図6内の斜線部分▲1▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数12式のとおりとなる。
【0044】
【数12】
Figure 0003940344
【0045】
例えば、前記出力比率Pa[%]=24[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されていると仮定すると、数7式の(1)と数12式の(2)より数13式のとおりとなる。
【0046】
【数13】
Figure 0003940344
【0047】
つまり、上記例の場合、図6内の斜線部分▲1▼は、ゼロクロス点から2.39[ms]経過後にトライアックがオンすることになる。
【0048】
図7は図17の出力比率[%]が25.0[%]以上28.125[%]未満、28.125[%]以上31.25[%]未満、31.25[%]以上34.375[%]未満、34.375[%]以上37.5[%]未満の各出力波形を表している。例えば、出力比率[%]が28.125[%]≦Pa[%]<31.25[%]を満足するPaがあるとする。図7内の斜線部分▲1▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数14式のとおりとなる。
【0049】
【数14】
Figure 0003940344
【0050】
例えば、前記出力比率Pa[%]=30[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数14式の(2)より数15式のとおりとなる。
【0051】
【数15】
Figure 0003940344
【0052】
つまり、上記例の場合、図7内の斜線部分▲1▼は、ゼロクロス点から6.99[ms]経過後にトライアックがオンすることになる。
【0053】
図8は図17の出力比率[%]が37.5[%]以上46.875[%]未満、46.875[%]以上50.0[%]未満の各出力波形を表している。例えば、出力比率[%]が37.5[%]≦Pa[%]<46.875[%]を満足するPaがあるとする。図8内の斜線部分▲1▼▲2▼▲3▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数16式のとおりとなる。
【0054】
【数16】
Figure 0003940344
【0055】
例えば、前記出力比率Pa[%]=40[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数16式の(2)より数17式のとおりとなる。
【0056】
【数17】
Figure 0003940344
【0057】
つまり、上記例の場合、図8内の斜線部分▲1▼▲2▼▲3▼は、ゼロクロス点から7.76[ms]経過後にトライアックがオンすることになる。
【0058】
図9は図17の出力比率[%]が50.0[%]以上62.5[%]未満の各出力波形を表している。例えば、出力比率[%]が50.0[%]≦Pa[%]<62.5[%]を満足するPaがあると仮定する。図9内の斜線部分▲1▼▲2▼▲3▼▲4▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数18式のとおりとなる。
【0059】
【数18】
Figure 0003940344
【0060】
例えば、前記出力比率Pa[%]=60[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数18式の(2)より数19式のとおりとなる。
【0061】
【数19】
Figure 0003940344
【0062】
つまり、上記例の場合、図9内の斜線部分▲1▼▲2▼▲3▼▲4▼は、ゼロクロス点から6.64[ms]経過後にトライアックがオンすることになる。
【0063】
図10は図17の出力比率[%]が62.5[%]以上71.875[%]未満、71.875[%]以上75.0[%]未満の各出力波形を表している。例えば、出力比率[%]が71.875[%]≦Pa[%]<75.0[%]を満足するPaがあると仮定する。図10内の斜線部分▲1▼▲2▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数20式のとおりとなる。
【0064】
【数20】
Figure 0003940344
【0065】
例えば、前記出力比率Pa[%]=74[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数15式の(2)より数21式のとおりとなる。
【0066】
【数21】
Figure 0003940344
【0067】
つまり、上記例の場合、図10内の斜線部分▲1▼▲2▼は、ゼロクロス点から6.57[ms]経過後にトライアックがオンすることになる。
【0068】
図11は図17の出力比率[%]が75.0[%]以上81.25[%]未満、81.25[%]以上87.5[%]未満の各出力波形を表している。例えば、出力比率[%]が75.0[%]≦Pa[%]<81.25[%]を満足するPaがあると仮定する。図11内の斜線部分▲1▼▲2▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数22式のとおりとなる。
【0069】
【数22】
Figure 0003940344
【0070】
例えば、前記出力比率Pa[%]=80[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数22式の(2)より数23式のとおりとなる。
【0071】
【数23】
Figure 0003940344
【0072】
つまり、上記例の場合、図11内の斜線部分▲1▼▲2▼は、ゼロクロス点から2.02[ms]経過後にトライアックがオンすることになる。
【0073】
図12は図17の出力比率[%]が87.5[%]以上93.75[%]未満、93.75[%]以上100[%]未満の各出力波形を表している。例えば、出力比率[%]が87.5[%]≦Pa[%]<93.75[%]を満足するPaがあると仮定する。図12内の斜線部分▲1▼▲2▼の出力比率Pz[%]、ヒータ出力Pe[W]は、図16、数6式より数24式のとおりとなる。
【0074】
【数24】
Figure 0003940344
【0075】
例えば、前記出力比率Pa[%]=90[%]、このヒータ容量Qh=1200[W]、周波数50[Hz]地域で使用されているとすると、数7式の(1)と数19式の(2)より数25式のとおりとなる。
【0076】
【数25】
Figure 0003940344
【0077】
つまり、上記例の場合、図12内の斜線部分▲1▼▲2▼は、ゼロクロス点から3.01[ms]経過後にトライアックがオンすることになる。
【0078】
以上のように、出力比率Pa[%]に応じてノイズ低減、フリッカ防止を考慮した位相パターンへ切替え、ヒータ出力Pe[W]に応じてゼロクロス点からのONディレイ時間t[ms]を算出し、ヒータ用トライアックのスイッチング手段を制御することで、吐水量や設定温度の急激な変化にも精度の良い温度制御が可能となり、且つ機器の誤動作を引き起こす原因の1つであるノイズの誘発やフリッカの発生を防止することができる。
【0079】
以上、各種の実施例について説明してきたが、本発明は上記すべての実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することができる。
【0080】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
【0081】
請求項1では、算出した沸き上げ熱量とヒータ出力比率に応じ、機器の誤動作を引き起こすノイズの誘発とフリッカの発生を防止することを優先してヒータのONディレイ時間を算出し、更に算出されたヒータのONディレイ時間に基づきヒータの通電を精度よく制御することができる。この方法により、使用者が設定した水量と吐水温度を確保することができるようになる。
【0082】
さらにあらかじめ、ゼロクロス点を基準とする、位相角≦60°、又は位相角≧120°でのスイッチング手段のONディレイ時間を有し、ヒータ通電の連続オン時間と連続オフ時間がそれぞれ商用電源周波数の3半波未満になるような、ノイズやフリッカを防止する位相パターンを、ヒータの最大出力熱量に対する出力熱量の比である出力比率に応じて、複数設定しておき、温度検知部と温度設定部より検出された温度の差分に流量検知部より検出された流量を積算してヒータの加熱量を算出し、その加熱量に応じた出力比率に対応する位相パターンを前記位相パターンから選択してヒータを位相制御することにより、ヒータの通電を精度よく制御することができる。この方法により、使用者が設定した水量と吐水温度を確保することができるようになる。
【0083】
請求項では、算出した沸き上げ熱量とヒータ出力比率が0[%]から100[%]までの割合に応じ、機器の誤動作を引き起こすノイズの誘発とフリッカを防止するよう18分割されたヒータの位相パターンから1つを選択し、更に算出されたヒータのONディレイ時間に基づき、ヒータの通電を精度よく制御することができる。この方法により、吐水量や設定温度の急激な変化にも制御は追従できる上、使用者が設定した水量と吐水温度を確保することができるようになる。
【0084】
【図面の簡単な説明】
【図1】本発明に係わる衛生洗浄装置の要部ブロック構成図
【図2】本発明に係わる演算装置の演算処理フロー図
【図3】従来技術における位相角≦60°、又は位相角≧120°を満足する位相パターンの一例を示す波形図
【図4】本発明に係わる位相角≦60°、又は位相角≧120°を満足し、且つノイズの誘発を防止、フリッカを防止する位相パターンの一例を示す波形図
【図5】本発明に係わる出力比率[%]が0[%]以上12.5[%]未満の位相パターンの一例を示す波形図
【図6】本発明に係わる出力比率[%]が12.5[%]以上25[%]未満の位相パターンの一例を示す波形図
【図7】本発明に係わる出力比率[%]が25[%]以上37.5[%]未満の位相パターンの一例を示す波形図
【図8】本発明に係わる出力比率[%]が37.5[%]以上50[%]未満の位相パターンの一例を示す波形図
【図9】本発明に係わる出力比率[%]が50[%]以上62.5[%]未満の位相パターンの一例を示す波形図
【図10】本発明に係わる出力比率[%]が62.5[%]以上75[%]未満の位相パターンの一例を示す波形図
【図11】本発明に係わる出力比率[%]が75[%]以上87.5[%]未満の位相パターンの一例を示す波形図
【図12】本発明に係わる出力比率[%]が87.5[%]以上100[%]未満の位相パターンの一例を示す波形図
【図13】ヒータ容量1200[W]における出力熱量[cal]と出力比率[%]の関係図
【図14】周波数50[Hz]におけるONディレイ時間[ms]とヒータ出力[W]の関係図
【図15】周波数60[Hz]におけるONディレイ時間[ms]とヒータ出力[W]の関係図
【図16】ヒータ容量1200[W]における出力比率[%]と増加対象となる半波数と各対象半波の出力比率[%]を算出する算出式の関係図
【図17】ヒータ容量1200[W]における出力W数[W]と出力熱量[cal]と出力比率[%]とONディレイ時間[ms]の関係図
【符号の説明】
1…衛生洗浄装置、2…温度設定部、3…温度検知部、4…位相制御手段、
5…制御部、6…ゼロクロス検出手段、7…温水ヒータ、
8…トライアックのスイッチング手段、9…流量検知部、10…周波数検出部[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a technique for controlling heating of hot water.
[0002]
[Prior art]
In recent years, in a sanitary washing device that cleans the local body part, a hot water control function that controls the temperature of the local wash water, a toilet seat temperature control function that controls the toilet seat temperature, a drying temperature control function for local drying, Those having a heater function such as a room temperature control function are common. In addition, when the heaters are AC drive heaters, it is common to apply an AC voltage to the heater by outputting an ON signal to a switching means such as a triac, and more quickly and accurately like a hot water control function. It is known that phase control for controlling the conduction time to the heater is an effective means for temperature control requiring the above. The specific method of phase control is to calculate the amount of heat to be applied to the heater from the temperature of the hot water and the target temperature of the hot water and the energization time according to the amount of heat, and to the value calculated for the energization time applied to the heater. Thus, an ON command is output to the switching means after a predetermined time has elapsed from the zero cross point of the AC power source, and the heater is energized to the next zero cross point (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-60981 (page 4-8, FIG. 6b)
[0004]
[Problems to be solved by the invention]
However, when the temperature control is performed by the phase control of the AC drive heater, the switching means is turned on at a conduction angle of about 90 °, for example, in order to control the ON / OFF timing of the switching means based on the zero cross point as described above. When conducting, noise that causes malfunction of the equipment will be induced, so special countermeasures against noise or phase pattern control to select the phase pattern that becomes the heat amount closest to the required heat amount according to the phase pattern that has been limited in advance Had gone. However, with this method, the control cannot follow a sudden change in the water discharge amount or the set temperature, and the water discharge amount is narrowed down from the water amount set by the user to ensure the water discharge temperature, or there is a deviation of the water discharge temperature from the set temperature. Because it is very large, the water discharge temperature cannot be raised to the set temperature set by the user, or water discharge occurs at a temperature far exceeding the set temperature, causing the user to feel uncomfortable. It was the cause.
[0005]
In view of the above-mentioned problems, the present invention does not require any special noise countermeasures, and does not select a phase pattern that approximates the required heat amount, but selects an optimal phase pattern that prevents noise and flicker according to the required heat amount. An object of the present invention is to provide a phase control technique that continuously and accurately controls the energization time.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration. A heater driven by a commercial power supply, a triac switching means for controlling energization of the heater, a zero cross detection means for detecting a zero cross point of the commercial power supply, and a temperature for detecting a feed water temperature provided in the vicinity of the heater The heating amount of the heater is determined by the detection unit, the temperature setting unit that sets the water discharge temperature set by the user, the flow rate detection unit that detects the water discharge flow rate, the temperature detection unit, the temperature setting unit, and the flow rate detection unit. In the sanitary washing apparatus that calculates and controls the hot water temperature, it has an ON delay time of the switching means in advance with the phase angle ≦ 60 ° or the phase angle ≧ 120 ° with respect to the zero cross point, and the heater is continuously energized. A phase pattern that prevents noise and flicker, such that the on-time and continuous off-time are each less than three half waves of the commercial power supply frequency, A plurality of values are set in accordance with the output ratio that is the ratio of the output heat amount to the maximum output heat amount of the heater, and the flow rate detected by the flow rate detection unit in the temperature difference detected by the temperature detection unit and the temperature setting unit And a phase control means for phase-controlling the heater by selecting a phase pattern corresponding to an output ratio corresponding to the heating amount from the phase pattern. .
[0007]
In claim 1, when water is heated to a preset water discharge temperature, priority is given to preventing the occurrence of noise and flickering that cause one of the malfunctions of the device according to the required amount of heat. The calculated ON delay time is calculated. As a result, it is possible to easily secure the temperature and the amount of water set by the user while preventing noise induction and flickering.
[0008]
Also, in advance, as a reference the zero-cross point, the phase angle ≦ 60 °, or has an ON delay time of the switching means in phase angle ≧ 120 °, commercial continuous on-time and continuous-off time of the heater energization each power A plurality of phase patterns that prevent noise and flicker that are less than three half waves of the frequency are set according to the output ratio that is the ratio of the output heat quantity to the maximum output heat quantity of the heater. The heating amount of the heater is calculated by adding the flow rate detected by the flow rate detection unit to the temperature difference detected by the setting unit, and the phase pattern corresponding to the output ratio corresponding to the heating amount is selected from the phase pattern. The phase of the heater was controlled . This prevents noise induction and flickering, and allows the control to follow the amount of water discharged by the user and sudden changes in the set temperature, thus stabilizing the water volume and water temperature set by the user. It is also possible to secure it.
[0009]
Further, in claim 2, a heater controller of the sanitary washing apparatus according to claim 1, wherein the proportion of the heat requirements and the heater capacity was 18 divided according to the proportion of from 0 [%] to 100 [%] Phase One phase pattern was selected from the patterns. As a result, noise can be prevented and flickering can be prevented, and the control can be made to accurately follow the water discharge amount and temperature set by the user as well as sudden changes in the water supply temperature. It is also possible to ensure the amount of water and the water temperature with high accuracy and stability.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to better understand the contents of the present invention, detailed description will be given below using examples.
[0011]
【Example】
FIG. 1 shows a block diagram of a main part of a sanitary washing apparatus according to the present invention. The sanitary washing device 1 includes a temperature setting unit 2, a temperature detection unit 3, a flow rate detection unit 9, a frequency detection unit 10, a zero cross detection unit 6, a hot water heater 7, a triac switching unit 8 and a control unit. It is composed of five. The control unit 5 is, for example, a microcomputer, and the phase control means 4 in the control unit 5 includes a calorific value calculation calculation, an output ratio calculation calculation, and an energization time calculation calculation. The amount of heat is calculated by adding the flow rate detected by the flow rate detection unit 9 to the difference between the temperatures detected by the temperature setting unit 2 and the temperature detection unit 3. Next, an output ratio that is a ratio of the heat amount to the left in the heater output is calculated, and an energization time is calculated from the output ratio on the left according to the frequency detected by the frequency detection unit 10. Next, the triac switching means 8 is turned on when the left energization time has elapsed from the zero cross point detected by the zero cross detection means 6, and the left switching means 8 is turned off at the next zero cross point to apply to the hot water heater 7. Can be controlled.
[0012]
Next, FIG. 1 will be described in detail. First, the calorific value calculation calculation calculates the temperature difference between the set temperature set by the water discharge temperature setting device of the temperature setting unit 2 and the feed water temperature detected by the feed water temperature detecting means of the temperature detection unit 3. Next, the output heat quantity is calculated from the product of the water discharge flow rate detected by the water discharge flow rate detection means of the flow rate detection unit 9 and the temperature difference. If the set temperature is Ts, the feed water temperature is Tg, the difference between the set temperature Ts and the feed water temperature Tg is Tq, the discharged water flow rate is Rt, and the output heat quantity is Q, the following equation is obtained.
[0013]
[Expression 1]
Figure 0003940344
[0014]
Specifically, when the set temperature Ts = 40 [° C.], the water supply temperature Tg = 10 [° C.], and the water discharge flow rate Rt = 5 [cc / s], the following formula 2 is obtained.
[0015]
[Expression 2]
Figure 0003940344
[0016]
Next, in the output ratio calculation calculation, the output heat amount [cal] calculates the output ratio [%] with respect to the maximum output heat amount [cal]. For example, assuming that the heater capacity Qh = 1200 [W], the output ratio [%] to the output heat quantity [cal] and the maximum output heat quantity [cal] are as shown in FIG. Next, the relationship between the output heat quantity [cal] and the output ratio [%] in FIG. 17 is as shown in FIG.
[0017]
[Equation 3]
Figure 0003940344
[0018]
For example, if the output heat quantity Q = 150 [cal] from Equation (2) in Equation 2, Equation 1 is obtained.
[0019]
[Expression 4]
Figure 0003940344
[0020]
Therefore, when the output heat quantity Q = 150 [cal], the output ratio Pa = 52.215 [%].
[0021]
Next, in the energization time calculation calculation, the output ratio Pz [%] per half wave to be increased is calculated from the output ratio Pa [%] and FIG. From FIG. 16, the output ratio Pz [%] per half wave to be increased is expressed by the following equation (5) when the output ratio Pa = 52.215 [%].
[0022]
[Equation 5]
Figure 0003940344
[0023]
Next, the heater output Pe [W] with respect to the output ratio Pz [%] per half wave to be increased is calculated. The heater output Pe [W] is expressed by the following equation (6), assuming that the heater capacity Qh = 1200 [W] and the output ratio Pz = 4.43 [%] per half wave to be increased.
[0024]
[Formula 6]
Figure 0003940344
[0025]
Next, the frequency detection means of the frequency detection unit 10 determines whether the power supply frequency is 50 [Hz] or 60 [Hz].
By the way, the relationship between the heater output Pe [W] and the ON delay time t [ms] from the zero cross point of the triac control that becomes the heater output Pe [W] is expressed by the following equation (7).
[0026]
[Expression 7]
Figure 0003940344
[0027]
From equation (1), if heater output Pe = 53.16 [W] and frequency 50 [Hz], equation 8 is obtained.
[0028]
[Equation 8]
Figure 0003940344
[0029]
By the way, since the output ratio Pa = 52.215 [%] is 50.0 ≦ Pa <62.5, the pattern output in FIG. 9 is obtained, and (1), (2), (3), and (4) in FIG. Are controlled by the switching means 8 of the heater triac at the ON delay time t = 8.06 [ms] from the zero cross point, so that the set temperature Ts = 40 [° C.] and the feed water temperature Tg = 10. When [° C.] and the water discharge flow rate Rt = 5 [cc / s], the water discharge temperature 40 [° C.] similar to the set temperature Ts can be controlled.
[0030]
FIG. 2 shows an arithmetic processing flow of the arithmetic device according to the present invention. The temperature detection unit 3 detects the feed water temperature. Next, the temperature is boiled up to the set temperature from the product of the difference between the set temperature fetched from the temperature setting unit 2 and the water discharge temperature input from the temperature detection unit 3 and the water discharge flow rate detected by the flow rate detection unit 9. The amount of heat Q [cal] necessary for the calculation is calculated by a heat amount calculation calculation. Next, the output ratio Pa [%] to the heat quantity Q [cal] on the left is calculated from Equation 3. Next, the output ratio Pz [%] per half wave to be increased in the case of the output ratio Pa [%] on the left is calculated from FIG. Next, the heater output Pe [W] is calculated from the output ratio Pz [%] and the equation (6). Next, the frequency detection unit detects either 50 [Hz] or 60 [Hz], and depending on the detection result, energization is performed from Equation (1) or (2) and the heater output Pe [W]. Time t [ms] is calculated, and the heater triac is controlled based on the energization time t [ms] on the left.
[0031]
FIG. 14 represents the relationship between the ON delay time [ms] and the heater output [W] when the frequency is 50 [Hz], and Equation (1) in Expression 7.
[0032]
FIG. 15 shows the relationship between the ON delay time [ms] and the heater output [W] when the frequency is 60 [Hz], and Equation (2) in Expression 7.
[0033]
FIG. 3 shows a phase pattern that satisfies a phase angle ≦ 60 ° or a phase angle ≧ 120 °. This phase pattern is very effective in preventing flicker, but since the heater energization is frequently switched on and off, the induction of noise, which is one of the causes of equipment malfunction, is completely prevented. Is difficult.
[0034]
FIG. 4 shows a phase pattern satisfying the phase angle ≦ 60 ° or the phase angle ≧ 120 ° as in FIG. 3, but the number of times the heater energization is switched on and off is reduced as much as possible in order to prevent noise induction. ing. Furthermore, it is known that the flickering phenomenon, so-called flicker, occurs when the heater energization continuous on-time and continuous off-time exceed 3 half-waves, respectively. It is an example designed so that each time is less than 3 half waves.
[0035]
Each of FIGS. 5 to 12 is an example showing a continuous phase pattern from 0 [%] to 100 [%] of the heater output while following the design of FIG. Each figure will be described in detail below.
[0036]
FIG. 5 shows an output waveform when the output ratio [%] in FIG. 17 is 0 [%] or more and less than 12.5 [%]. For example, it is assumed that there is Pa whose output ratio [%] satisfies 0 [%] ≦ Pa [%] <12.5 [%]. 16 and Equation 6, the output ratio Pz [%] and heater output Pe [W] of the shaded portion (1), (2), (3), and (4) in FIG.
[0037]
[Equation 9]
Figure 0003940344
[0038]
Next, assuming that the heater capacity Qh is 1200 [W] and the frequency is 50 [Hz], the following equation is obtained from equation (1) and equation (2). .
[0039]
[Expression 10]
Figure 0003940344
[0040]
For example, assuming that the output ratio Pa [%] = 10 [%], the ON delay time t [ms] is as shown in Expression 11 from Expression 10.
[0041]
[Expression 11]
Figure 0003940344
[0042]
That is, in the case of the above example, the triac is turned on after the passage of 6.64 [ms] from the zero cross point in the hatched portions (1), (2), (3), and (4) in FIG.
[0043]
In FIG. 6, the output ratio [%] of FIG. 17 is 12.5 [%] or more and less than 15.625 [%], 15.625 [%] or more and less than 18.75 [%], 18.75 [%] or more and 21. Each output waveform is less than .875 [%], 21.875 [%] or more and less than 25.0 [%]. For example, it is assumed that there is a Pa whose output ratio [%] satisfies 21.875 [%] ≦ Pa [%] <25.0 [%]. The output ratio Pz [%] and heater output Pe [W] of the shaded portion (1) in FIG. 6 are as shown in Equation 12 from Equation 6 and Equation 6.
[0044]
[Expression 12]
Figure 0003940344
[0045]
For example, assuming that the output ratio Pa [%] = 24 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used, the equation (1) and the equation 12 From Equation (2), Equation 13 is obtained.
[0046]
[Formula 13]
Figure 0003940344
[0047]
In other words, in the case of the above example, the triac is turned on after the lapse of 2.39 [ms] from the zero cross point in the hatched portion (1) in FIG.
[0048]
In FIG. 7, the output ratio [%] in FIG. 17 is 25.0 [%] or more and less than 28.125 [%], 28.125 [%] or more and less than 31.25 [%], 31.25 [%] or more 34 Each output waveform is less than .375 [%], 34.375 [%] or more and less than 37.5 [%]. For example, it is assumed that there is a Pa whose output ratio [%] satisfies 28.125 [%] ≦ Pa [%] <31.25 [%]. The output ratio Pz [%] and the heater output Pe [W] of the hatched portion (1) in FIG. 7 are as shown in Equation 14 from Equation 6 and Equation 6.
[0049]
[Expression 14]
Figure 0003940344
[0050]
For example, assuming that the output ratio Pa [%] = 30 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used in the region, Equation (1) and Equation 14 are used. From Equation (2), Equation 15 is obtained.
[0051]
[Expression 15]
Figure 0003940344
[0052]
That is, in the case of the above example, the TRIAC is turned on after the lapse of 6.99 [ms] from the zero cross point in the hatched portion (1) in FIG.
[0053]
FIG. 8 shows output waveforms in which the output ratio [%] in FIG. 17 is 37.5 [%] or more and less than 46.875 [%] and 46.875 [%] or more and less than 50.0 [%]. For example, it is assumed that there is Pa that satisfies the output ratio [%] of 37.5 [%] ≦ Pa [%] <46.875 [%]. The output ratio Pz [%] and heater output Pe [W] of the shaded portion (1), (2), and (3) in FIG.
[0054]
[Expression 16]
Figure 0003940344
[0055]
For example, assuming that the output ratio Pa [%] = 40 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used in the region, Equation (1) and Equation 16 are used. From Equation (2), Equation 17 is obtained.
[0056]
[Expression 17]
Figure 0003940344
[0057]
In other words, in the case of the above example, the triac is turned on after lapse of 7.76 [ms] from the zero cross point in the hatched portions (1), (2), and (3) in FIG.
[0058]
FIG. 9 shows output waveforms in which the output ratio [%] in FIG. 17 is 50.0 [%] or more and less than 62.5 [%]. For example, it is assumed that there is Pa whose output ratio [%] satisfies 50.0 [%] ≦ Pa [%] <62.5 [%]. The output ratio Pz [%] and heater output Pe [W] of the shaded portion (1), (2), (3), and (4) in FIG.
[0059]
[Formula 18]
Figure 0003940344
[0060]
For example, assuming that the output ratio Pa [%] = 60 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used, the equation (1) and the equation 18 are used. From Equation (2), Equation 19 is obtained.
[0061]
[Equation 19]
Figure 0003940344
[0062]
That is, in the case of the above example, the triac is turned on after the passage of 6.64 [ms] from the zero cross point in the hatched portions (1), (2), (3), and (4) in FIG.
[0063]
FIG. 10 shows output waveforms in which the output ratio [%] in FIG. 17 is 62.5 [%] or more and less than 71.875 [%] and 71.875 [%] or more and less than 75.0 [%]. For example, it is assumed that there is Pa whose output ratio [%] satisfies 71.875 [%] ≦ Pa [%] <75.0 [%]. The output ratio Pz [%] and heater output Pe [W] of the hatched portion (1) and (2) in FIG. 10 are as shown in Equation 20 from Equation 6 and Equation 6.
[0064]
[Expression 20]
Figure 0003940344
[0065]
For example, assuming that the output ratio Pa [%] = 74 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used in the region, Equation (1) and Equation 15 are used. From Equation (2), Equation 21 is obtained.
[0066]
[Expression 21]
Figure 0003940344
[0067]
In other words, in the case of the above example, the triac is turned on after the lapse of 6.57 [ms] from the zero cross point in the hatched portions (1) and (2) in FIG.
[0068]
FIG. 11 shows output waveforms in which the output ratio [%] in FIG. 17 is 75.0 [%] or more and less than 81.25 [%], or 81.25 [%] or more and less than 87.5 [%]. For example, it is assumed that there is a Pa whose output ratio [%] satisfies 75.0 [%] ≦ Pa [%] <81.25 [%]. The output ratio Pz [%] and heater output Pe [W] of the hatched portion (1) and (2) in FIG. 11 are as shown in Equation 22 from Equation 6 and Equation 6.
[0069]
[Expression 22]
Figure 0003940344
[0070]
For example, assuming that the output ratio Pa [%] = 80 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used in the region, the equation (1) and the equation 22 are used. From Equation (2), Equation 23 is obtained.
[0071]
[Expression 23]
Figure 0003940344
[0072]
In other words, in the case of the above example, the triac is turned on after the lapse of 2.02 [ms] from the zero cross point in the hatched portions (1) and (2) in FIG.
[0073]
FIG. 12 shows output waveforms in which the output ratio [%] in FIG. 17 is 87.5 [%] or more and less than 93.75 [%] and 93.75 [%] or more and less than 100 [%]. For example, it is assumed that there is a Pa whose output ratio [%] satisfies 87.5 [%] ≦ Pa [%] <93.75 [%]. The output ratio Pz [%] and heater output Pe [W] of the hatched portion (1) and (2) in FIG. 12 are as shown in Equation 24 from Equation 6 and Equation 6.
[0074]
[Expression 24]
Figure 0003940344
[0075]
For example, assuming that the output ratio Pa [%] = 90 [%], the heater capacity Qh = 1200 [W], and the frequency 50 [Hz] are used in the region, Equation (1) and Equation 19 are used. From Equation (2), Equation 25 is obtained.
[0076]
[Expression 25]
Figure 0003940344
[0077]
That is, in the case of the above example, the triac is turned on after the passage of 3.01 [ms] from the zero cross point in the hatched portions (1) and (2) in FIG.
[0078]
As described above, the phase pattern considering noise reduction and flicker prevention is switched according to the output ratio Pa [%], and the ON delay time t [ms] from the zero cross point is calculated according to the heater output Pe [W]. By controlling the switching means of the heater TRIAC, it is possible to control the temperature with high accuracy even for sudden changes in the water discharge amount and set temperature, and to induce noise and flicker, which is one of the causes of malfunction of the equipment. Can be prevented.
[0079]
While various embodiments have been described above, the present invention is not limited to all the embodiments described above, and can be implemented in various modes without departing from the scope of the invention.
[0080]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
[0081]
According to claim 1, the heater ON delay time is calculated according to the calculated amount of heating heat and the heater output ratio, with priority given to preventing the induction of noise and flicker that cause malfunction of the device, and further calculated. The energization of the heater can be accurately controlled based on the heater ON delay time. By this method, it becomes possible to secure the water amount and water discharge temperature set by the user.
[0082]
In addition , there is an ON delay time of the switching means with a phase angle ≦ 60 ° or a phase angle ≧ 120 ° with reference to the zero cross point in advance, and the continuous on time and continuous off time of the heater energization are respectively commercial power supply frequencies. Set a plurality of phase patterns to prevent noise and flicker, depending on the output ratio, which is the ratio of the output heat quantity to the maximum output heat quantity of the heater, so that it becomes less than 3 half-waves, and the temperature detector and temperature setting The flow rate detected by the flow rate detection unit is added to the temperature difference detected by the unit to calculate the heating amount of the heater, and a phase pattern corresponding to the output ratio corresponding to the heating amount is selected from the phase pattern. By controlling the phase of the heater, the energization of the heater can be accurately controlled. By this method, it becomes possible to secure the water amount and water discharge temperature set by the user.
[0083]
According to the second aspect of the present invention , according to the ratio of the calculated heating heat amount and the heater output ratio from 0 [%] to 100 [%], the heater divided into 18 parts to prevent the induction of noise and flicker that cause malfunction of the device. One of the phase patterns is selected, and the heater energization can be accurately controlled based on the calculated heater ON delay time. By this method, control can follow a sudden change in the water discharge amount and the set temperature, and the water amount and water discharge temperature set by the user can be secured.
[0084]
[Brief description of the drawings]
FIG. 1 is a block diagram of a main part of a sanitary washing apparatus according to the present invention. FIG. 2 is a flowchart of an arithmetic processing of an arithmetic apparatus according to the present invention. FIG. 4 is a waveform diagram showing an example of a phase pattern satisfying the angle. FIG. 4 is a phase pattern that satisfies the phase angle ≦ 60 ° or the phase angle ≧ 120 ° according to the present invention, prevents noise induction, and prevents flicker. Waveform diagram showing an example. FIG. 5 is a waveform diagram showing an example of a phase pattern in which the output ratio [%] according to the present invention is 0 [%] or more and less than 12.5 [%]. FIG. 6 is an output ratio according to the present invention. FIG. 7 is a waveform diagram showing an example of a phase pattern in which [%] is 12.5 [%] or more and less than 25 [%]. FIG. 7 is an output ratio [%] of 25 [%] or more and 37.5 [%] according to the present invention. FIG. 8 is a waveform diagram showing an example of a phase pattern of less than FIG. FIG. 9 is a waveform diagram showing an example of a phase pattern with a force ratio [%] of 37.5 [%] or more and less than 50 [%]. FIG. 9 is an output ratio [%] of 50 [%] or more and 62.5 [%] according to the present invention. FIG. 10 is a waveform diagram showing an example of a phase pattern with an output ratio [%] of 62.5 [%] or more and less than 75 [%] according to the present invention. FIG. 12 is a waveform diagram showing an example of a phase pattern in which the output ratio [%] according to the present invention is 75 [%] or more and less than 87.5 [%]. FIG. 12 is an output ratio [%] according to the present invention of 87.5 [%]. %] Waveform diagram showing an example of a phase pattern of 100% or less and less than 100%. FIG. 13 is a relationship diagram of output calorie [cal] and output ratio [%] at a heater capacity of 1200 [W]. FIG. ] Relationship between ON delay time [ms] and heater output [W] FIG. 15 is a relationship diagram of ON delay time [ms] and heater output [W] at a frequency of 60 [Hz]. FIG. 16 is an output ratio [%] at a heater capacity of 1200 [W], a half wave number to be increased, and each target. FIG. 17 is a relational diagram of calculation formulas for calculating the half-wave output ratio [%]. FIG. 17 shows the output W number [W], the output heat amount [cal], the output ratio [%], and the ON delay time in the heater capacity 1200 [W]. ms] [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sanitary washing apparatus, 2 ... Temperature setting part, 3 ... Temperature detection part, 4 ... Phase control means,
5 ... Control unit, 6 ... Zero cross detection means, 7 ... Hot water heater,
8 ... Triac switching means, 9 ... Flow rate detection unit, 10 ... Frequency detection unit

Claims (2)

商用電源で駆動されるヒータと、
前記ヒータの通電を制御するトライアックのスイッチング手段と、
前記商用電源のゼロクロス点を検出するゼロクロス検出手段と、
前記ヒータの近傍に設けられた給水温度を検出する温度検知部と、
使用者が設定した吐水温度に設定する温度設定部と、
吐水流量を検知する流量検知部と、
前記温度検知部及び前記温度設定部及び前記流量検知部より前記ヒータの加熱量を算出し温水温度制御を行なう衛生洗浄装置において、
あらかじめ、ゼロクロス点を基準とする、位相角≦60°、又は位相角≧120°での前記スイッチング手段のONディレイ時間を有し、ヒータ通電の連続オン時間と連続オフ時間がそれぞれ商用電源周波数の3半波未満になるような、ノイズやフリッカを防止する位相パターンを、前記ヒータの最大出力熱量に対する出力熱量の比である出力比率に応じて、複数設定しておき、
前記温度検知部と前記温度設定部より検出された温度の差分に前記流量検知部より検出された流量を積算してヒータの加熱量を算出し、その加熱量に応じた出力比率に対応する位相パターンを前記位相パターンから選択して前記ヒータを位相制御する位相制御手段を設けたことを特徴とする衛生洗浄装置。
A heater driven by a commercial power source;
Triac switching means for controlling energization of the heater;
Zero-cross detection means for detecting a zero-cross point of the commercial power supply;
A temperature detection unit for detecting a feed water temperature provided in the vicinity of the heater;
A temperature setting unit for setting the water discharge temperature set by the user;
A flow rate detector for detecting the discharged water flow rate;
In the sanitary washing apparatus that calculates the heating amount of the heater from the temperature detection unit, the temperature setting unit, and the flow rate detection unit and performs hot water temperature control,
There is an ON delay time of the switching means with a phase angle ≦ 60 ° or a phase angle ≧ 120 ° with respect to the zero cross point in advance, and the continuous ON time and the continuous OFF time of the heater energization are respectively commercial power supply frequency A plurality of phase patterns for preventing noise and flicker that are less than 3 half-waves are set according to the output ratio that is the ratio of the output heat amount to the maximum output heat amount of the heater,
A phase corresponding to an output ratio corresponding to the heating amount is calculated by adding the flow rate detected by the flow rate detection unit to the difference between the temperatures detected by the temperature detection unit and the temperature setting unit. A sanitary washing apparatus comprising phase control means for selecting a pattern from the phase pattern and controlling the phase of the heater .
前記位相パターンは、前記ヒータの加熱量の割合が0[%]から100[%]までの割合に応じ18分割された位相パターンからなることを特徴とする請求項記載の衛生洗浄装置。 The phase pattern is, the sanitary washing device according to claim 1, characterized in that it consists of 18 divided position phase pattern according to the ratio of the proportion of the heating amount of the heater from 0 [%] to 100 [%].
JP2002283249A 2002-09-27 2002-09-27 Hot water heating control device Expired - Fee Related JP3940344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283249A JP3940344B2 (en) 2002-09-27 2002-09-27 Hot water heating control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283249A JP3940344B2 (en) 2002-09-27 2002-09-27 Hot water heating control device

Publications (3)

Publication Number Publication Date
JP2004116206A JP2004116206A (en) 2004-04-15
JP2004116206A5 JP2004116206A5 (en) 2005-09-08
JP3940344B2 true JP3940344B2 (en) 2007-07-04

Family

ID=32277166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283249A Expired - Fee Related JP3940344B2 (en) 2002-09-27 2002-09-27 Hot water heating control device

Country Status (1)

Country Link
JP (1) JP3940344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695925A (en) * 2009-11-17 2012-09-26 熊津豪威株式会社 Method and apparatus for supplying hot water by controlling the number of pulses applied to a heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673767B1 (en) * 2013-09-26 2015-02-18 Toto株式会社 Sanitary washing device
KR102365773B1 (en) * 2019-12-06 2022-02-18 한국수력원자력 주식회사 Apparatus for testing heater capacity of air cleaning unit in nuclear power plant and method for testing heater capacity of air cleaning unit in nuclear power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695925A (en) * 2009-11-17 2012-09-26 熊津豪威株式会社 Method and apparatus for supplying hot water by controlling the number of pulses applied to a heater
CN102695925B (en) * 2009-11-17 2015-02-04 熊津豪威株式会社 Method and apparatus for supplying hot water by controlling the number of pulses applied to a heater

Also Published As

Publication number Publication date
JP2004116206A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
BRPI1004358A2 (en) Energy supply method for induction cooking zones of an induction cooking stove having a plurality of power converters, and induction cooking stove using such a method
KR100629334B1 (en) Induction heating cooker to limit the power level when input voltage is low and its operating method therefor
JP6680027B2 (en) Power control device
JP3940344B2 (en) Hot water heating control device
JPH0515439A (en) Control circuit for jar type rice cooker
JPH01227720A (en) Electric rice boiler capable of hard/soft selective boiling
JP2685942B2 (en) How to limit the peak value of power consumption
US20220074598A1 (en) Temperature Control System for Cooking Appliances
JPH11151183A (en) Heating toilet seat unit, its control unit and product with heating toilet seat unit
JP5249563B2 (en) Toilet seat temperature controller
GB2081889A (en) Cooker grill
JP3695189B2 (en) Local cleaning equipment
JP3724278B2 (en) Sanitary washing device
JPH0645058A (en) Induction heating cooker
JP4431346B2 (en) Induction heating cooker
JP2007111164A (en) Toilet seat device
JP3941697B2 (en) Induction heating cooker
JP2004116206A5 (en)
JP4660992B2 (en) Induction heating cooker
JP6233695B2 (en) Sanitary washing device
KR100712840B1 (en) Induction heating cooker and its current controlling method
JP2009050486A (en) Toilet seat device
JP2023084830A (en) Induction heating cooker
JP3687580B2 (en) Hot water storage water heater
JP2006019149A (en) Induction heating cooking device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Ref document number: 3940344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees