JP3939292B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3939292B2
JP3939292B2 JP2003428355A JP2003428355A JP3939292B2 JP 3939292 B2 JP3939292 B2 JP 3939292B2 JP 2003428355 A JP2003428355 A JP 2003428355A JP 2003428355 A JP2003428355 A JP 2003428355A JP 3939292 B2 JP3939292 B2 JP 3939292B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
heat exchanger
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428355A
Other languages
Japanese (ja)
Other versions
JP2005188790A (en
Inventor
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2003428355A priority Critical patent/JP3939292B2/en
Priority to KR1020040058201A priority patent/KR100561537B1/en
Publication of JP2005188790A publication Critical patent/JP2005188790A/en
Application granted granted Critical
Publication of JP3939292B2 publication Critical patent/JP3939292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和装置に関する。   The present invention relates to an air conditioner.

従来、少なくとも2つの熱交換器を用いて圧縮式冷凍サイクル制御を行うことにより、冷暖房を行う空気調和装置が知られている。このような空気調和装置では、エネルギー効率を高めるために、冷房モードの場合には蒸発器の冷媒過熱度を、暖房モードの場合には凝縮器の冷媒過冷却度を精度よく検出し、それらを所定の温度範囲内に収める制御を行う必要がある。その場合、熱交換器内の蒸発圧力または凝縮圧力を正確に知る必要があるが、高価な圧力センサに代えて温度センサを用いることが知られている。
また、熱交換器の出入口にそれぞれ温度センサを配置して冷媒過熱度または冷媒過冷却度を推定するようにした装置が提案されている。
例えば、特許文献1には、冷媒の圧力−飽和温度曲線の勾配を基にして、熱交換器内の冷媒飽和蒸気圧力または冷媒飽和凝縮圧力を算出する空気調和機が記載されている。
また、特許文献2には、蒸発器の出入口にそれぞれ設けられた温度センサの出力差から仮過熱度を求め、蒸発器の冷媒側圧力損失特性から過熱度を推定することにより膨張弁の開度の制御を行う電動式膨張弁の制御装置が記載されている。
特開平9−152237号公報(第2−4頁、図1、2) 特開平10−38398号公報(第4−7頁、図1、5)
2. Description of the Related Art Conventionally, an air conditioner that performs cooling and heating by performing compression refrigeration cycle control using at least two heat exchangers is known. In such an air conditioner, in order to increase energy efficiency, the refrigerant superheat degree of the evaporator in the cooling mode and the refrigerant subcool degree of the condenser in the heating mode are accurately detected, and these are detected. It is necessary to perform control within a predetermined temperature range. In that case, it is necessary to accurately know the evaporation pressure or condensation pressure in the heat exchanger, but it is known to use a temperature sensor instead of an expensive pressure sensor.
In addition, an apparatus has been proposed in which a temperature sensor is arranged at each inlet / outlet of the heat exchanger to estimate the degree of refrigerant superheat or the degree of refrigerant subcooling.
For example, Patent Literature 1 describes an air conditioner that calculates a refrigerant saturated vapor pressure or a refrigerant saturated condensing pressure in a heat exchanger based on a gradient of a refrigerant pressure-saturation temperature curve.
Further, Patent Document 2 describes the degree of opening of the expansion valve by obtaining the temporary superheat degree from the output difference of the temperature sensors respectively provided at the inlet and outlet of the evaporator and estimating the superheat degree from the refrigerant side pressure loss characteristic of the evaporator. A control device for an electric expansion valve that performs the above control is described.
JP-A-9-152237 (page 2-4, FIGS. 1 and 2) Japanese Patent Laid-Open No. 10-38398 (page 4-7, FIGS. 1 and 5)

しかしながら、上記のような従来の空気調和装置には以下のような問題があった。
特許文献1に記載の技術では、熱交換器の1箇所に取り付けた温度センサで検知される温度から冷媒飽和蒸気圧力または飽和凝縮圧力を算出するので、熱交換器の冷媒側圧力損失が無視され算出値が実際の値からずれていた。そのため、冷凍サイクルのエネルギー効率が最適状態に対して劣ってしまうという問題があった。
特許文献2に記載の技術では、蒸発器の出入口に設けられた温度センサの差を仮過熱度とし、蒸発器の冷媒側圧力損失特性から過熱度を推定するのでより精度よく過熱度を推定できるものの、運転状態に応じた蒸発器の冷媒側圧力損失特性をシステムごとに実測して求めておく必要がある。そのための作業にたいへんな手間がかかるという問題があった。
However, the conventional air conditioner as described above has the following problems.
In the technique described in Patent Document 1, the refrigerant saturated vapor pressure or the saturated condensation pressure is calculated from the temperature detected by a temperature sensor attached to one place of the heat exchanger, so the refrigerant-side pressure loss of the heat exchanger is ignored. The calculated value deviated from the actual value. Therefore, there has been a problem that the energy efficiency of the refrigeration cycle is inferior to the optimum state.
In the technique described in Patent Document 2, the difference between the temperature sensors provided at the entrance and exit of the evaporator is used as the temporary superheat degree, and the superheat degree is estimated from the refrigerant-side pressure loss characteristics of the evaporator, so that the superheat degree can be estimated more accurately. However, it is necessary to obtain the refrigerant-side pressure loss characteristics of the evaporator according to the operating state by actually measuring each system. There was a problem that it took a lot of work to do so.

本発明は、上記のような問題に鑑みてなされたものであって、簡素かつ低コストな構成で冷凍サイクルを高精度に制御することにより冷凍サイクルを最適状態に制御することができる空気調和装置を提供することを目的とする。   The present invention has been made in view of the above problems, and is an air conditioner capable of controlling a refrigeration cycle to an optimum state by controlling the refrigeration cycle with high accuracy with a simple and low-cost configuration. The purpose is to provide.

上記の課題を解決するために、請求項1に記載の発明では、凝縮器および蒸発器に用いる少なくとも2つの熱交換器、圧縮機および膨張弁を流路上に配置し、該流路に冷媒を循環させて圧縮式冷凍サイクル制御を行う空気調和装置であって、前記熱交換器のうち少なくとも一方の熱交換器の冷媒出入口配管温度をそれぞれ検出する出入口温度センサと、前記少なくとも一方の熱交換器内の冷媒流路の中間部に設けた中間部冷媒温度センサと、該中間部冷媒温度センサの検出温度から前記熱交換器内の中間部冷媒圧力を算出する中間部冷媒圧力算出手段と、前記中間部冷媒圧力に前記冷媒流路の中間部から前記少なくとも一方の熱交換器の出口までの冷媒側圧力損失を補正して冷媒側飽和圧力を算出する冷媒圧力補正手段と、該冷媒圧力補正手段により算出された前記冷媒側飽和圧力を温度に換算して冷媒飽和蒸気温度または冷媒飽和液温度を算出する飽和温度算出手段と、前記少なくとも一方の熱交換器の出口側に設けられた前記出入口温度センサにより検出される出口側温度と前記冷媒飽和蒸気温度または冷媒飽和液温度から冷媒過熱度または冷媒過冷却度を算出する過熱度/過冷却度算出手段と、該過熱度/過冷却度算出手段で算出された前記冷媒過熱度または冷媒過冷却度が所定温度範囲内に収まるように前記膨張弁の開度を制御する膨張弁制御手段とを備え、前記冷媒圧力補正手段は、前記中間部冷媒圧力算出手段が算出した前記中間部冷媒圧力に基づいて冷媒循環量を求め、前記中間部冷媒圧力と前記冷媒循環量とから算出される、前記少なくとも一方の熱交換器の単位長さ当たりの冷媒流動抵抗を算出することにより、前記冷媒流路の中間部から前記少なくとも一方の熱交換器の出口までの冷媒側圧力損失を算出するようにした構成とする。
この発明によれば、中間部冷媒圧力算出手段により中間部冷媒温度センサで検出される検出温度基づいて熱交換器内の中間部冷媒圧力を算出し、冷媒圧力補正手段により中間部冷媒圧力に冷媒側圧力損失を補正した冷媒側飽和圧力を算出し、この冷媒側飽和圧力を飽和温度算出手段により温度換算して冷媒飽和蒸気温度または冷媒飽和液温度を算出し、過熱度/過冷却度算出手段により熱交換器の出口側の出入口温度センサで検出される出口側温度と冷媒飽和蒸気温度または冷媒飽和液温度とから冷媒過熱度または冷媒冷却度を算出することができる。その結果、圧力センサなどを用いることなく、より安価な温度センサを用いて、運転状態に応じた冷媒過熱度または冷媒冷却度を精度よく求めることができる。
そして膨張弁制御手段によりそのような冷媒過熱度または冷媒冷却度が所定温度範囲内に収まるように膨張弁の開度を制御するので、冷凍サイクルを最適状に制御することができる。
In order to solve the above problems, in the invention described in claim 1, at least two heat exchangers, a compressor, and an expansion valve used for the condenser and the evaporator are arranged on the flow path, and the refrigerant is supplied to the flow path. An air conditioner that circulates and performs compression refrigeration cycle control, an inlet / outlet temperature sensor that detects a refrigerant inlet / outlet pipe temperature of at least one of the heat exchangers, and the at least one heat exchanger An intermediate refrigerant temperature sensor provided at an intermediate part of the refrigerant flow path in the internal refrigerant passage, an intermediate refrigerant pressure calculating means for calculating an intermediate refrigerant pressure in the heat exchanger from a temperature detected by the intermediate refrigerant temperature sensor, Refrigerant pressure correction means for calculating a refrigerant side saturation pressure by correcting a refrigerant side pressure loss from an intermediate part of the refrigerant flow path to an outlet of the at least one heat exchanger to an intermediate part refrigerant pressure; A saturation temperature calculation means for calculating the refrigerant saturated vapor temperature or the refrigerant saturated liquid temperature by converting the refrigerant side saturation pressure calculated by the above into a temperature, and the inlet / outlet temperature provided on the outlet side of the at least one heat exchanger Superheat degree / supercooling degree calculating means for calculating a refrigerant superheat degree or a refrigerant supercooling degree from the outlet side temperature detected by the sensor and the refrigerant saturated vapor temperature or the refrigerant saturated liquid temperature, and the superheat degree / supercooling degree calculating means. Expansion valve control means for controlling the opening degree of the expansion valve so that the refrigerant superheat degree or the refrigerant supercooling degree calculated in step 4 falls within a predetermined temperature range, and the refrigerant pressure correcting means includes the intermediate refrigerant. A unit of the at least one heat exchanger, wherein a refrigerant circulation amount is calculated based on the intermediate refrigerant pressure calculated by the pressure calculation means, and is calculated from the intermediate refrigerant pressure and the refrigerant circulation amount. By calculating the refrigerant flow resistance per a, a configuration which is adapted to calculate the refrigerant pressure loss to the outlet of said at least one heat exchanger from an intermediate portion of the refrigerant passage.
According to the present invention, based on the detected temperature detected by the intermediate unit refrigerant temperature sensor to calculate the intermediate portion the refrigerant pressure in the heat exchanger by the intermediate portion the refrigerant-pressure calculating means, the refrigerant pressure correction means to the intermediate part refrigerant pressure Calculate the refrigerant side saturation pressure with the refrigerant side pressure loss corrected, calculate the refrigerant saturated vapor temperature or refrigerant saturated liquid temperature by converting the refrigerant side saturated pressure using the saturation temperature calculation means, and calculate the superheat / supercool degree The refrigerant superheat degree or the refrigerant cooling degree can be calculated from the outlet side temperature detected by the inlet / outlet temperature sensor on the outlet side of the heat exchanger and the refrigerant saturated vapor temperature or the refrigerant saturated liquid temperature. As a result, without using a pressure sensor or the like, it is possible to accurately determine the degree of refrigerant superheat or the degree of refrigerant cooling according to the operating state using a cheaper temperature sensor.
And since such a refrigerant superheating degree or a refrigerant-cooling degree by the expansion valve control means controls the opening degree of the expansion valve so as to fall within a predetermined temperature range, can be controlled to the optimum state of the refrigeration cycle.

請求項2に記載の発明では、請求項1に記載の空気調和装置において、前記中間部冷媒温度センサが、前記熱交換器内の冷媒流路の長さ方向の略中央に設けられた構成とする。
この発明によれば、中間部冷媒温度センサが熱交換器の冷媒流路の長さ方向の略中央に設けられるので、運転状態によらず安定した温度を検出することができるから、中間圧力を高精度に算出することができる。
According to a second aspect of the present invention, in the air conditioner according to the first aspect, the intermediate refrigerant temperature sensor is provided substantially at the center in the length direction of the refrigerant flow path in the heat exchanger. To do.
According to the present invention, since the intermediate refrigerant temperature sensor is provided at substantially the center in the length direction of the refrigerant flow path of the heat exchanger, a stable temperature can be detected regardless of the operating state. It can be calculated with high accuracy.

請求項3に記載の発明では、請求項1または2に記載の空気調和装置において、前記熱交換器の冷媒流路が外方に屈曲して突出する流路屈曲部を有し、該流路屈曲部に前記中間部冷媒温度センサが設けられた構成とする。
この発明によれば、中間部冷媒温度センサの取り付けやメンテナンスが容易となる。
According to a third aspect of the present invention, in the air conditioner according to the first or second aspect, the refrigerant flow path of the heat exchanger has a flow path bent portion that is bent outward and protrudes, and the flow path The bent portion is provided with the intermediate refrigerant temperature sensor.
According to this invention, attachment and maintenance of the intermediate part refrigerant temperature sensor are facilitated.

本発明の空気調和装置によれば、安価な温度センサによる検出温度を中間部冷媒圧力に換算するようにした簡素な構成で、冷媒側圧力損失補正を行うことができるので、運転時の冷媒側飽和圧力を精度よく求めることができ、それにより精度のよい冷媒過熱度または冷媒過冷却度を用いて膨張弁の開度を制御できるから、冷凍サイクルを最適状態に制御できるという効果を奏する。   According to the air conditioner of the present invention, the refrigerant-side pressure loss correction can be performed with a simple configuration in which the temperature detected by an inexpensive temperature sensor is converted to the intermediate refrigerant pressure. Since the saturation pressure can be obtained with high accuracy, and the opening degree of the expansion valve can be controlled using the high degree of refrigerant superheat or the high degree of refrigerant supercooling, the refrigeration cycle can be controlled to the optimum state.

以下では、本発明の実施の形態を、添付図面を参照して説明する。
図1(a)は、本発明の実施形態に係る空気調和装置の概略構成について説明するための機能ブロック図を含む模式説明図である。図1(b)は、同じくその一部の詳細な機能ブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a schematic explanatory diagram including a functional block diagram for explaining a schematic configuration of an air-conditioning apparatus according to an embodiment of the present invention. FIG. 1B is also a detailed functional block diagram of a part thereof.

本発明の実施形態に係る空気調和装置1の概略構成は、圧縮機2、四方弁8、室外熱交換器4(熱交換器)、膨張弁7、室内熱交換器9(熱交換器)、制御ユニット50からなり、これらにより圧縮式冷凍サイクルを構成するものである。これらにより冷房および暖房を切替えて運転することが可能とされている。
以下では、便宜上、冷房運転の場合を中心に説明する。すなわち、冷媒は、圧縮機2、室外熱交換器4、膨張弁7、室内熱交換器9の順に(図1(a)の矢印方向)循環するものとして説明する。この場合、室外熱交換器4は蒸発器として、室内熱交換器9は凝縮器として機能する。そして、特に断らなければ、このような冷媒の流れに基づいて上流側、下流側、入口側、出口側という用語を用いる。暖房運転時にはこれらの方向が逆転することは言うまでもない。
The schematic configuration of the air conditioner 1 according to the embodiment of the present invention includes a compressor 2, a four-way valve 8, an outdoor heat exchanger 4 (heat exchanger), an expansion valve 7, an indoor heat exchanger 9 (heat exchanger), It consists of a control unit 50 and constitutes a compression refrigeration cycle. Thus, it is possible to operate by switching between cooling and heating.
Hereinafter, for the sake of convenience, the case of the cooling operation will be mainly described. That is, the refrigerant is described as circulating in the order of the compressor 2, the outdoor heat exchanger 4, the expansion valve 7, and the indoor heat exchanger 9 (in the arrow direction in FIG. 1A). In this case, the outdoor heat exchanger 4 functions as an evaporator, and the indoor heat exchanger 9 functions as a condenser. Unless otherwise specified, the terms upstream side, downstream side, inlet side, and outlet side are used based on the refrigerant flow. Needless to say, these directions are reversed during heating operation.

圧縮機2は、気体状の冷媒を圧縮するためのもので、圧縮式冷凍サイクルで用いられるどのようなタイプの圧縮機を用いてもよい。
圧縮機2の吐出口には冷媒の吐出温度Thdを検出するための温度センサ12が設けられる。また吸入口には冷媒の吸入温度Thsを検出するための温度センサ11が設けられる。
四方弁8は、圧縮機2の吐出口および吸入口を、冷媒流路3a、3dに対して切り替え可能に接続するための切替弁である。すなわち、切替制御信号により、冷房時には吐出口、吸入口がそれぞれ冷媒流路3a、3dに接続され(図1(a)参照)、逆に暖房時には吐出口、吸入口がそれぞれ冷媒流路3d、3aに接続されるようになっている。それにより流路上の冷媒の循環方向を切り替えることが可能とされる。
The compressor 2 is for compressing a gaseous refrigerant, and any type of compressor used in a compression refrigeration cycle may be used.
A temperature sensor 12 for detecting the refrigerant discharge temperature Thd is provided at the discharge port of the compressor 2. A temperature sensor 11 for detecting the refrigerant suction temperature Ths is provided at the suction port.
The four-way valve 8 is a switching valve for connecting the discharge port and the suction port of the compressor 2 to the refrigerant flow paths 3a and 3d in a switchable manner. That is, according to the switching control signal, the discharge port and the suction port are connected to the refrigerant flow paths 3a and 3d, respectively, during cooling (see FIG. 1A). It is connected to 3a. As a result, the circulation direction of the refrigerant on the flow path can be switched.

室外熱交換器4は、冷媒流路3aの下流側に接続されて室外に配置され、室外空気を送風するためのファン6を備え、冷媒と室外空気との間で熱交換するための熱交換器である。熱交換器の種類はどのようなものであってもよいが、本実施形態では、扁平なS字状の屈曲を繰り返して折り畳まれた複数の伝熱管4a、4b(熱交換器内の冷媒流路)の間に放熱フィンを設けたフィンチューブ熱交換器の例を示した。なお、伝熱管は2つとは限らず、もっと多くてもよいが、それぞれは略同一長さを有し、冷媒の圧力損失が略同一となるように設けられる。
また、伝熱管4a、4bは、室外熱交換器4の入口側、出口側でそれぞれ分岐合流された分岐流路を形成している。そしてそれらの入口側には入口温度を検出する温度センサ20A(出入口温度センサ)、出口側には出口温度を検出する温度センサ20B(出入口温度センサ)が設けられる。
The outdoor heat exchanger 4 is connected to the downstream side of the refrigerant flow path 3a and is arranged outside, includes a fan 6 for blowing outdoor air, and performs heat exchange for exchanging heat between the refrigerant and the outdoor air. It is a vessel. Any type of heat exchanger may be used, but in the present embodiment, a plurality of heat transfer tubes 4a and 4b (refrigerant flow in the heat exchanger) that are folded by repeating flat S-shaped bending. The example of the finned-tube heat exchanger which provided the radiation fin between (path) was shown. Note that the number of heat transfer tubes is not limited to two, but may be more, but each has substantially the same length and is provided so that the pressure loss of the refrigerant is substantially the same.
Further, the heat transfer tubes 4 a and 4 b form branch flow paths that are branched and joined on the inlet side and the outlet side of the outdoor heat exchanger 4. A temperature sensor 20A (entrance / entrance temperature sensor) for detecting the inlet temperature is provided on the inlet side, and a temperature sensor 20B (entrance / exit temperature sensor) for detecting the outlet temperature is provided on the outlet side.

また、伝熱管4a、4bは、その屈曲部のうちフィンなどから外方に突出して室外熱交換器4の外方から容易に接近できるベンド部4cを備える。そして、伝熱管4aの長さ方向の中間部におけるベンド部4cに、そこでの冷媒の温度を検出するための温度センサ5(中間部冷媒温度センサ)が設けられる。
温度センサの種類は、適宜のものを採用することができる。
中間部の位置は、伝熱管4aの長さに対する正確な位置が分かれば中央である必要はないが、運転状態によらず安定した温度検出を行うためには、伝熱管4aの長さ方向の略中央とすることが好ましい。
Further, the heat transfer tubes 4 a and 4 b include a bend portion 4 c that protrudes outward from a fin or the like among the bent portions and can be easily approached from the outside of the outdoor heat exchanger 4. And the temperature sensor 5 (intermediate part refrigerant | coolant temperature sensor) for detecting the temperature of the refrigerant | coolant there is provided in the bend part 4c in the intermediate part of the length direction of the heat exchanger tube 4a.
An appropriate type of temperature sensor can be adopted.
The position of the intermediate portion does not need to be in the center if an accurate position with respect to the length of the heat transfer tube 4a is known, but in order to perform stable temperature detection regardless of the operation state, the length of the heat transfer tube 4a It is preferable that the center be approximately the center.

膨張弁7は、室外熱交換器4で放熱する冷媒を減圧して膨張させるためのもので、室外熱交換器4の出口側から延ばされた冷媒流路3bの下流側に接続される。
そして、後述する制御ユニット50による電子制御可能な構成とされ、制御ユニット50の制御信号により開度が制御されるものである。
The expansion valve 7 is for decompressing and expanding the refrigerant radiated by the outdoor heat exchanger 4, and is connected to the downstream side of the refrigerant flow path 3 b extending from the outlet side of the outdoor heat exchanger 4.
And it is set as the structure which can be electronically controlled by the control unit 50 mentioned later, and an opening degree is controlled by the control signal of the control unit 50. FIG.

室内熱交換器9は、冷媒流路3cの下流側に接続されて室内に配置され、室内空気を送風するためのファン6を備え、室内空気と熱交換するための熱交換器である。本実施形態では、室外熱交換器4と同様なフィンチューブ熱交換器とされ、室外熱交換器4の伝熱管4a、4b、ベンド部4c、温度センサ5、温度センサ20A、20Bに対応して、それぞれ伝熱管9a、9b、ベンド部9c、温度センサ10、温度センサ21A、21Bを備える。それぞれの構成や配置は室外熱交換器4の場合と同様なので説明を省略する。
そして室内熱交換器9の出口に冷媒流路3dの上流側が接続されることで、圧縮式冷凍サイクルを行うための冷媒循環流路が構築される。
The indoor heat exchanger 9 is connected to the downstream side of the refrigerant flow path 3c and is disposed indoors. The indoor heat exchanger 9 includes a fan 6 for blowing indoor air, and is a heat exchanger for exchanging heat with indoor air. In this embodiment, it is a fin tube heat exchanger similar to the outdoor heat exchanger 4, and corresponds to the heat transfer tubes 4a, 4b, the bend portion 4c, the temperature sensor 5, and the temperature sensors 20A, 20B of the outdoor heat exchanger 4. The heat transfer tubes 9a and 9b, the bend portion 9c, the temperature sensor 10, and the temperature sensors 21A and 21B are provided. Since each structure and arrangement are the same as in the case of the outdoor heat exchanger 4, the description thereof is omitted.
And the refrigerant | coolant circulation flow path for performing a compression-type refrigeration cycle is constructed | assembled by connecting the upstream of the refrigerant flow path 3d to the exit of the indoor heat exchanger 9. FIG.

制御ユニット50は、このような圧縮式冷凍サイクルを動作させるとともにエネルギー効率が最適状態で運転されるように制御を行うための制御手段を備えたユニットである。
その概略構成は、温度検出部14、過熱度/冷却度算出部15、膨張弁制御手段16、運転モード制御手段18、圧縮機制御手段17、四方弁制御手段19からなる。
これらの具体的構成は適宜の手段を採用することができる。例えば、それぞれ適宜の電気回路が構成された回路基板部材として独立に構成されてもよいし、適宜の入出力インタフェース、記憶手段を備えたマイクロコンピュータに組み込まれたプログラムにより実現されるものでもよい。
The control unit 50 is a unit including control means for operating such a compression refrigeration cycle and performing control so that the energy efficiency is operated in an optimum state.
The schematic configuration includes a temperature detection unit 14, a superheat / cooling degree calculation unit 15, an expansion valve control unit 16, an operation mode control unit 18, a compressor control unit 17, and a four-way valve control unit 19.
These specific configurations may employ appropriate means. For example, it may be configured independently as a circuit board member on which each appropriate electric circuit is configured, or may be realized by a program incorporated in a microcomputer provided with appropriate input / output interfaces and storage means.

温度検出部14は、温度検出手段14a、14bからなる。
温度検出手段14aは、温度センサ11、12、20A、20B、21A、21Bにより検出される圧縮機吐出温度Thd、圧縮機吸入温度Ths、室外機入口温度t、室外機出口温度T、室内機入口温度t、室内機出口温度Tを、数値演算処理可能なデジタル信号に変換するための手段である。
温度検出手段14bは、温度センサ5、10により検出されるベンド部温度TbV、TbLを、数値演算処理可能なデジタル信号に変換するための手段である。
The temperature detection unit 14 includes temperature detection means 14a and 14b.
The temperature detection means 14a includes a compressor discharge temperature T hd detected by the temperature sensors 11, 12, 20A, 20B, 21A, and 21B, a compressor suction temperature T hs , an outdoor unit inlet temperature t 1 , and an outdoor unit outlet temperature T 1. This is a means for converting the indoor unit inlet temperature t 2 and the indoor unit outlet temperature T 2 into digital signals that can be numerically processed.
Temperature detecting means 14b may bend the temperature T bV detected by the temperature sensor 5 and 10, the T bL, a means for converting the numerical operations processable digital signals.

過熱度/冷却度算出部15は、図1(b)に示したように、温度検出手段14bから出力される温度信号中間部冷媒圧力算出手段15a、冷媒圧力補正手段15b、飽和温度算出手段15c、過熱度/過冷却度算出手段15dからなる。
中間部冷媒圧力算出手段15aは、温度検出手段14bから入力されるベンド部温度TbV、TbLを、冷媒の温度圧力特性を参照することにより、それぞれ対応する蒸気圧力P(中間部冷媒圧力)、凝縮圧力P(中間部冷媒圧力)を算出するための手段である。
冷媒の温度圧力特性は、あらかじめ近似式を作成してその係数のデータを記憶するようにする。あるいは、表データとして記憶してもよい。
As shown in FIG. 1 (b), the superheat degree / cooling degree calculation unit 15 includes temperature signal intermediate part refrigerant pressure calculation means 15a, refrigerant pressure correction means 15b, and saturation temperature calculation means 15c output from the temperature detection means 14b. And a superheating degree / supercooling degree calculating means 15d.
The intermediate refrigerant pressure calculation means 15a refers to the bend temperature T bV and T bL input from the temperature detection means 14b by referring to the temperature-pressure characteristics of the refrigerant, so that the corresponding vapor pressure Pe (intermediate refrigerant pressure) is obtained. ), A means for calculating the condensation pressure P c (intermediate refrigerant pressure).
For the temperature-pressure characteristics of the refrigerant, an approximate expression is created in advance and the coefficient data is stored. Alternatively, it may be stored as table data.

冷媒圧力補正手段15bは、中間部冷媒圧力算出手段15aから入力される蒸気圧力P、凝縮圧力Pをそれぞれ平均して、中間部の長さ方向の位置に応じた冷媒側圧力損失量を加算し、室外熱交換器4または室内熱交換器9の出口部の冷媒飽和蒸気圧力PesV、冷媒飽和液圧力PcsLを算出するための手段である。 The refrigerant pressure correction means 15b averages the vapor pressure Pe and the condensation pressure Pc input from the intermediate refrigerant pressure calculation means 15a, respectively, and calculates the refrigerant-side pressure loss amount according to the position in the length direction of the intermediate part. This is a means for adding and calculating the refrigerant saturated vapor pressure P esV and the refrigerant saturated liquid pressure P csL at the outlet of the outdoor heat exchanger 4 or the indoor heat exchanger 9.

飽和温度算出手段15cは、冷媒の温度圧力特性に基づいて、冷媒圧力補正手段15bから入力される冷媒飽和蒸気圧力PesV、冷媒飽和液圧力PcsLより、それぞれ冷媒飽和蒸気温度TesV、冷媒飽和液温度TcsLを算出するための手段である。 The saturation temperature calculation means 15c is based on the refrigerant temperature / pressure characteristics, and from the refrigerant saturation vapor pressure P esV and refrigerant saturation liquid pressure P csL input from the refrigerant pressure correction means 15b, the refrigerant saturation vapor temperature T esV and the refrigerant saturation respectively. This is means for calculating the liquid temperature TcsL .

過熱度/過冷却度算出手段15dは、飽和温度算出手段15cから入力される冷媒飽和蒸気温度TesV、冷媒飽和液温度TcsLと、温度検出手段14aから入力される室外機出口温度T、室内機出口温度Tとのそれぞれの差から、冷媒過熱度SH、冷媒過冷却度SCを算出するための手段である。 The superheat / supercooling degree calculation means 15d includes a refrigerant saturated vapor temperature T esV input from the saturation temperature calculation means 15c, a refrigerant saturated liquid temperature TcsL, and an outdoor unit outlet temperature T 1 input from the temperature detection means 14a. from respective differences between the indoor unit outlet temperature T 2, which is a means for calculating the refrigerant superheating degree SH, the refrigerant supercooling degree SC.

膨張弁制御手段16は、過熱度/冷却度算出部15から入力される冷媒過熱度SH、冷媒過冷却度SCに応じて、冷房運転の場合は冷媒過熱度SHを、暖房運転の場合は冷媒過冷却度SCをそれぞれ所定範囲内に収めるように膨張弁7の開度を制御するための手段である。   The expansion valve control means 16 determines the refrigerant superheat degree SH in the cooling operation and the refrigerant in the heating operation according to the refrigerant superheat degree SH and the refrigerant supercool degree SC input from the superheat degree / cooling degree calculation unit 15. This is a means for controlling the opening degree of the expansion valve 7 so that the degree of supercooling SC falls within a predetermined range.

運転モード制御手段18は、空気調和装置1の動作制御を行うとともに、少なくとも冷房、暖房運転を選択的に切替える制御を行うための手段である。
過熱度/冷却度算出部15に対しては、冷房・暖房運転の運転モードを通知し、圧縮機制御手段17に対しては、制御温度に応じた冷媒圧縮圧力などを出力し、四方弁制御手段19に対しては、冷房・暖房運転の運転モードに応じて圧縮機2から吐出される冷媒の流れる方向を切替える制御信号を出力するようになっている。
The operation mode control means 18 is a means for performing operation control of the air conditioner 1 and performing control for selectively switching between at least cooling and heating operations.
The superheat degree / cooling degree calculation unit 15 is notified of the operation mode of the cooling / heating operation, and the compressor control means 17 is output with a refrigerant compression pressure or the like corresponding to the control temperature to control the four-way valve. A control signal for switching the flow direction of the refrigerant discharged from the compressor 2 is output to the means 19 in accordance with the cooling / heating operation mode.

空気調和装置1の動作について、冷房運転の場合を中心に説明する。
図2は、本発明の実施形態に係る空気調和装置の動作を説明するための模式的なP−I線図である。図3は、冷媒過熱度SH、冷媒過冷却度SCとエネルギー効率COPとの関係を示す概念図である。
The operation of the air conditioner 1 will be described focusing on the cooling operation.
FIG. 2 is a schematic PI diagram for explaining the operation of the air-conditioning apparatus according to the embodiment of the present invention. FIG. 3 is a conceptual diagram showing the relationship between the refrigerant superheat degree SH, the refrigerant supercool degree SC, and the energy efficiency COP.

周知のように圧縮式冷凍サイクルは、一般に横軸にエンタルピh、縦軸に圧力PをとったP−I線図上で上底が長く、左端の内角がいずれも直角な台形として記述される(図2の台形P)。そして状態量がこの台形の辺上を図示反時計回り(図示矢印方向)に沿って変化する。直線Pが蒸発器、直線pが圧縮機2、直線Pが凝縮器、直線pが膨張弁7における変化を表す。
しかしこれは理想的な場合であって、実際には、蒸発器、凝縮器における冷媒側圧力損失が無視できないため、直線Pが傾斜して直線Pとなり(p>P)、直線Pが傾斜して直線Pとなり(p>P)、四辺形Pのような軌跡をたどるような変化を起こす。また、一般に凝縮器の冷媒側圧力損失より、蒸発器の冷媒側圧力損失の方が大きくなる。
As is well known, a compression-type refrigeration cycle is generally described as a trapezoid with a long upper base on the P-I diagram with the horizontal axis representing enthalpy h and the vertical axis representing pressure P, and the inner angles at the left end being right angles. (Trapezoid P 1 p 2 P 3 p 4 in FIG. 2). Then, the state quantity changes along the counterclockwise direction (arrow direction shown in the figure) on the side of the trapezoid. The straight line P 3 P 4 represents the change in the evaporator, the straight line p 4 P 1 represents the compressor 2, the straight line P 1 p 2 represents the condenser, and the straight line p 2 P 3 represents the change in the expansion valve 7.
However, this is an ideal case. Actually, the refrigerant-side pressure loss in the evaporator and condenser cannot be ignored, so the straight line P 3 p 4 is inclined to become a straight line P 3 P 4 (p 4 > P 4 ), the straight line P 1 p 2 is inclined to become a straight line P 1 P 2 (p 2 > P 2 ), and changes such that a locus such as a quadrilateral P 1 P 2 P 3 P 4 is followed. In general, the refrigerant-side pressure loss of the evaporator is larger than the refrigerant-side pressure loss of the condenser.

このような冷凍サイクルにおいて、冷房運転時のエネルギー効率COPは、蒸発器における冷媒過熱度SHの関数となり、図3に示したように、所定範囲の冷媒過熱度SHに対して極大値Qを有する曲線40のような変化を示す。したがって、冷媒過熱度SHをエネルギー効率COPがQ以上となる所定区間Wの間の値をとるように運転状態を制御することにより、効率的で良好な最適状態の冷房運転が行える。
なお暖房運転の場合は、同様に凝縮器において冷媒過冷却度SCを所定範囲内に収めるように制御することで同様な作用効果が得られる。
冷媒過熱度SH(冷媒過冷却度SC)は、膨張弁7の開度により制御することができる。したがって、最適な冷凍サイクル制御を行うには冷媒過熱度SH(冷媒過冷却度SC)を正確に検出することがきわめて重要となる。
In such a refrigeration cycle, energy efficiency COP in the cooling operation, a function of the refrigerant superheating degree SH at the evaporator, as shown in FIG. 3, the maximum value Q 1 with respect to the refrigerant superheating degree SH of the given range A change like curve 40 is shown. Therefore, by the refrigerant superheat degree SH energy efficiency COP to control the operating conditions to take a value between predetermined interval W as a Q 2 or more, perform cooling operation efficiently in good optimal state.
In the case of heating operation, a similar effect can be obtained by controlling the degree of refrigerant supercooling SC within a predetermined range in the condenser.
The refrigerant superheat degree SH (refrigerant supercool degree SC) can be controlled by the opening degree of the expansion valve 7. Therefore, it is extremely important to accurately detect the refrigerant superheat degree SH (refrigerant supercool degree SC) in order to perform optimal refrigeration cycle control.

冷媒側圧力損失がない理想的な場合の冷媒過熱度SHは、蒸発器内の湿り蒸気圧力pと冷媒飽和蒸気圧力pesVとが等しいことから、例えば、温度センサ10で検出された温度から湿り蒸気圧力pを算出し、それを冷媒飽和蒸気圧力pesVとして、飽和蒸気温度Te0に換算し、温度センサ21Bで検出される室内機出口温度Tとの差から、
SH=T−Te0 ・・・(1)
として求められる。
Refrigerant superheating degree SH 0 when the refrigerant pressure loss is not ideal, since the wet vapor pressure p e in the evaporator and the refrigerant saturation vapor pressure p ESV are equal, for example, detected by the temperature sensor 10 Temperature calculating the wet steam pressure p e, it as a refrigerant saturation vapor pressure p ESV, converted to the saturated steam temperature T e0, the difference between the indoor unit outlet temperature T 0 detected by the temperature sensor 21B from,
SH 0 = T 0 −T e0 (1)
As required.

本実施形態における冷房運転時の室内熱交換器出口の冷媒過熱度SHについて説明する。
図2において、曲線31は、ある運転状態における冷媒の飽和液線31aと飽和蒸気線31bを表す。
曲線32、33、34、35、36は、単一冷媒の場合の等温線を示す。これらは、飽和液線31aを境にした液側では急峻な左上がりの曲線となり、飽和蒸気線31bを境にした過熱蒸気側では、右下がりの曲線となり、飽和液線31aと飽和蒸気線31bとの間の湿り蒸気側では、水平な直線となる。そして、同一エンタルピでは圧力が大きい方が高温となっているものである。これら等温線において温度を符号の後にかっこ書きした。
The refrigerant superheat degree SH at the outlet of the indoor heat exchanger during the cooling operation in the present embodiment will be described.
In FIG. 2, a curve 31 represents a saturated liquid line 31a and a saturated vapor line 31b of the refrigerant in a certain operation state.
Curves 32, 33, 34, 35 and 36 show isotherms for a single refrigerant. These are sharp left-up curves on the liquid side with the saturated liquid line 31a as a boundary, and right-down curves on the superheated steam side with the saturated vapor line 31b as a boundary. It becomes a horizontal straight line on the wet steam side between. In the same enthalpy, the higher the pressure, the higher the temperature. In these isotherms, the temperature is shown in parentheses after the sign.

点Pは、室内熱交換器9の入口、点Pは、室内熱交換器9の出口の状態量を示し、圧力がそれぞれP、Pである。それぞれの温度は、室内機入口温度t、室内機出口温度Tであり、それぞれ温度センサ21A、21Bにより検出される。
ベンド部温度TbVは、温度センサ10により検出される。このベンド部9cでの冷媒の蒸気圧力Pは、冷媒側圧力損失のない場合の蒸気圧力pよりも小さいから、
bV<Te0 ・・・(2)
である(曲線33、34参照)。
また、冷媒飽和蒸気圧力PesVは、飽和蒸気線31bと直線Pとの交点から得られ、冷媒飽和蒸気温度は、点PesVを通る等温線である曲線32が表す温度TesVである。図2より分かるように、
esV<TbV ・・・(3)
である。
冷媒過熱度SHは、
SH=T−TesV ・・・(4)
である。
Point P 3 indicates the state quantity at the inlet of the indoor heat exchanger 9, and point P 4 indicates the state quantity at the outlet of the indoor heat exchanger 9. The pressures are P 3 and P 4 , respectively. The respective temperatures are the indoor unit inlet temperature t 2 and the indoor unit outlet temperature T 2 and are detected by the temperature sensors 21A and 21B, respectively.
The bend temperature T bV is detected by the temperature sensor 10. Since the steam pressure P e of the refrigerant in the bend portion 9c is less than the vapor pressure p e in the absence of refrigerant pressure loss,
T bV <T e0 (2)
(See curves 33 and 34).
The refrigerant saturated vapor pressure P esV is obtained from the intersection of the saturated vapor line 31b and the straight line P 3 P 4, and the refrigerant saturated vapor temperature is a temperature T esV represented by a curve 32 that is an isotherm passing through the point P esV. is there. As can be seen from FIG.
T esV <T bV (3)
It is.
The refrigerant superheat degree SH is
SH = T 2 −T esV (4)
It is.

次に本実施形態において、ベンド部温度TbVから、冷媒飽和蒸気温度TesVを算出する方法について説明する。
温度センサ5、10の検出出力が温度検出手段14bに入力され、それぞれベンド部温度TbL、TbVが得られる。
そして、それらが中間部冷媒圧力算出手段15aに入力されると凝縮圧力P、蒸発圧力Pが算出される。すなわち、中間部冷媒圧力算出手段15aにあらかじめ冷媒の温度圧力特性を近似式gなどとして組み込み、例えば、
=g(TbL) ・・・(5)
=g(TbV) ・・・(6)
により算出される。
Next, in this embodiment, from the bend portion temperature T bV, a method of calculating the refrigerant saturated steam temperature T ESV be described.
The detection outputs of the temperature sensors 5 and 10 are input to the temperature detection means 14b, and the bend temperature TbL and TbV are obtained, respectively.
Then, when they are input to the intermediate refrigerant pressure calculation means 15a, the condensation pressure P c and the evaporation pressure Pe are calculated. That is, the temperature / pressure characteristic of the refrigerant is preliminarily incorporated in the intermediate refrigerant pressure calculation means 15a as an approximate expression g, for example,
P c = g (T bL ) (5)
P e = g (T bV ) (6)
Is calculated by

そして冷媒圧力補正手段15bにより、蒸発圧力Pから冷媒飽和蒸気圧力PesVを算出する。
そのために、冷媒圧力補正手段15bにあらかじめ、圧縮機2について凝縮圧力P、蒸発圧力Pをパラメータとした冷媒循環量Grを求める実験相関式fを組み込んでおく。すなわち、
Gr=f(P,P) ・・・(7)
一方、伝熱管9aの伝熱管内径、内面溝形状などの熱交換器仕様から単位長さ当たりの冷媒流動抵抗Fを、冷媒圧力と冷媒循環量Grの関数として記述できるのでそれを組み込んでおく。すると伝熱管9aの長さ(温度センサ21A、21B間の長さ)をLとして、室内熱交換器9の冷媒側圧力損失dPrが、次式より算出できる。
dPr=F(P,Gr)・L ・・・(8)
よって、次式により冷媒飽和蒸気圧力PesVが算出される。
esV=P−dPr・(L/L) ・・・(9)
ここで、長さLは、温度センサ10の配置位置から温度センサ21Bの配置までの長さである。特に温度センサ10aが伝熱管9aの長さ方向の中央に設けられている場合は、(L/L)=1/2である。
なお、冷媒圧力補正手段15bにおいて、各式の組み込み方は任意である。例えば、式(7)、(8)をまとめて、圧力補正項ΔPを次式(10)のように求める相関近似式、データテーブルなどを用意して組み込むようにしてもよい。
ΔP=F(P,f(P,P))・L・(L/L) ・・・(10)
これにより、式(9)は、
esV=P−ΔP ・・・(9a)
のように組み込むことができる。
さらに、(L/L)をパラメータとする関数として組み込んでもよい。
Then the refrigerant pressure compensation means 15b, calculates the refrigerant saturated steam pressure P ESV from the evaporation pressure P e.
For this purpose, the experimental correlation equation f for obtaining the refrigerant circulation amount Gr with the condensation pressure P c and the evaporation pressure Pe as parameters for the compressor 2 is incorporated in the refrigerant pressure correction means 15b in advance. That is,
Gr = f (P c , P e ) (7)
On the other hand, since the refrigerant flow resistance F per unit length can be described as a function of the refrigerant pressure and the refrigerant circulation amount Gr from the heat exchanger specifications such as the inner diameter of the heat transfer pipe 9a and the inner surface groove shape, it is incorporated. Then the length of the heat transfer tube 9a (the temperature sensor 21A, the length between 21B) as L e, the refrigerant pressure loss dPr of the indoor heat exchanger 9, can be calculated from the following equation.
dPr = F (P e , Gr) · L e (8)
Therefore, the refrigerant saturation vapor pressure P esV is calculated by the following equation.
· P esV = P e -dPr ( L b / L e) ··· (9)
Here, the length Lb is the length from the arrangement position of the temperature sensor 10 to the arrangement of the temperature sensor 21B. In particular, when the temperature sensor 10a is provided at the center in the length direction of the heat transfer tube 9a, (L b / L e ) = ½ .
In addition, in the refrigerant pressure correction means 15b, how to incorporate each formula is arbitrary. For example, the equations (7) and (8) may be combined and a correlation approximation equation for obtaining the pressure correction term ΔP e as in the following equation (10), a data table, and the like may be prepared and incorporated.
ΔP e = F (P e , f (P c , P e )) · L e · (L b / L e ) (10)
Thus, equation (9) becomes
P esV = P e −ΔP e (9a)
Can be incorporated.
Furthermore, it may be incorporated as a function having (L b / L e ) as a parameter.

次に、飽和温度算出手段15cにより、冷媒飽和蒸気圧力PesVから冷媒飽和蒸気温度TesVを算出する。そのために、飽和温度算出手段15cには、冷媒飽和蒸気圧力PesVと冷媒飽和蒸気温度TesVとの相関近似式Hをあらかじめ組み込んでおく。
よって、次式より冷媒飽和蒸気温度TesVが算出される。
esV=H(PesV) ・・・(11)
Next, the refrigerant saturation vapor temperature T esV is calculated from the refrigerant saturation vapor pressure P esV by the saturation temperature calculation means 15c. For this purpose, the correlation approximate expression H between the refrigerant saturation vapor pressure P esV and the refrigerant saturation vapor temperature T esV is incorporated in advance in the saturation temperature calculation means 15c.
Therefore, the refrigerant saturated vapor temperature TesV is calculated from the following equation.
T esV = H (P esV ) (11)

そして、過熱度/冷却度算出部15dにおいて、飽和温度算出手段15cにより入力される冷媒飽和蒸気温度TesVと、温度検出手段14aから入力される室内機出口温度Tから、上記の式(4)によって冷媒過熱度SHが求められる。 Then, the degree of superheating / cooling degree calculating section 15d, and the refrigerant saturated steam temperature T ESV inputted by the saturation temperature calculation section 15c, the indoor unit outlet temperature T 2 that is input from the temperature detecting means 14a, the above equation (4 ) To obtain the refrigerant superheat degree SH.

このように、本実施形態によれば、冷媒側圧力損失を補正することにより、冷媒飽和蒸気温度TesVを精度よく算出して、冷媒過熱度SHを求めることができる。
そして、冷媒過熱度SHの値が所定範囲内に収まるように、圧縮機制御手段17により膨張弁7の開度を制御する。
通常の冷房運転では、例えばTbV=5(℃)、T=6(℃)、TesV=3(℃)といったような値となるので、冷媒過熱度SH=3(K)となる。したがって、TbV=Tと見なして、冷媒過熱度SHを制御に用いる場合、大きな誤差を含むのに対して、本実施形態によればきわめて正確な制御が可能となることが分かる。
その際、高価な圧力センサを用いることなく、簡素かつ安価な温度センサにより圧力を算出することができて好都合である。
As described above, according to this embodiment, the refrigerant saturation pressure T esV can be accurately calculated by correcting the refrigerant side pressure loss, and the refrigerant superheat degree SH can be obtained.
Then, the opening degree of the expansion valve 7 is controlled by the compressor control means 17 so that the value of the refrigerant superheat degree SH falls within a predetermined range.
In a normal cooling operation, for example, T bV = 5 (° C.), T 2 = 6 (° C.), T esV = 3 (° C.), and the refrigerant superheat degree SH = 3 (K). Therefore, when T bV = T 2 is considered and the refrigerant superheat degree SH 0 is used for the control, a large error is included, but it can be seen that the present embodiment enables extremely accurate control.
At this time, it is convenient that the pressure can be calculated by a simple and inexpensive temperature sensor without using an expensive pressure sensor.

なお、上記の動作の説明では、主として冷房運転の場合について説明したが、暖房運転の場合も上記の説明から容易に理解することができる。
暖房運転の場合は、運転モード制御手段18、四方弁制御手段19により、四方弁8の接続を切替え、冷媒の循環方向を逆転させる。それにより、室外熱交換器4が蒸発器として機能し、室内熱交換器9が凝縮器として機能するから、エネルギー効率が最適となるように冷凍サイクルを制御するには、凝縮器の冷媒過冷却度SCを所定範囲に収めるように、膨張弁7を制御する。
凝縮圧力Pに圧力補正を行って冷媒飽和液圧力PcsLを求め、それにより、冷媒飽和液温度TcsLを算出し、室内機出口温度Tとの差から、
SC=TcsL−T ・・・(11)
を算出する。
ただし、この場合の室内機出口温度Tは、上記と異なり温度センサ21Aで検出される温度を採用することになる。
その際、上記の冷媒の温度圧力特性などの相関近似式、関数などもすべて凝縮器におけるものを採用することは言うまでもない。
加えて、冷媒が混合冷媒になった場合も、二相域にて等温線が勾配を持つことが異なるだけで、本発明を同様に適用できる。
In the above description of the operation, the case of the cooling operation has been mainly described. However, the case of the heating operation can be easily understood from the above description.
In the case of heating operation, the operation mode control means 18 and the four-way valve control means 19 switch the connection of the four-way valve 8 to reverse the refrigerant circulation direction. Thereby, since the outdoor heat exchanger 4 functions as an evaporator and the indoor heat exchanger 9 functions as a condenser, in order to control the refrigeration cycle so that energy efficiency is optimal, the refrigerant is supercooled in the condenser. The expansion valve 7 is controlled so that the degree SC falls within a predetermined range.
Calculated refrigerant saturated liquid pressure P CSL performing pressure compensation the condensing pressure P c, thereby calculates the refrigerant saturated liquid temperature T CSL, from the difference between the indoor unit outlet temperature T 2,
SC = T csL −T 2 (11)
Is calculated.
However, the indoor unit outlet temperature T 2 in this case is to adopt the temperature detected by the temperature sensor 21A differs from the above.
In this case, it is needless to say that all the correlation approximation expressions and functions such as the temperature-pressure characteristics of the refrigerant described above are employed in the condenser.
In addition, even when the refrigerant is a mixed refrigerant, the present invention can be similarly applied except that the isotherm has a gradient in the two-phase region.

また、上記の説明では、室内の冷暖房運転の最適化を目的としているので、室内熱交換器を制御対象とした例で説明したが、室外熱交換器に設けられた温度センサなどで室外熱交換器を制御対象としてもよいことは言うまでもない。
一般に複数の熱交換器を有する冷凍サイクルシステムにおいてどの熱交換器を制御対象とするかは自由に選択でき、室内機のみを制御対象とするとは限らない。例えば、室外機が1つで、室内機が多数あるマルチシステムでは、あらゆる運転パタンに対応するためには室内機の運転数が少ない場合に室外機の能力過多を抑えるべく室外機の能力を低下させることが考えられる。この場合冷房時に室外機を制御対象として、室外熱交換器出口(凝縮器)での過冷却度を大きくし、凝縮器の冷媒側有効伝熱面積を小さくする際の指標に使う、といったことが考えられる。
ただし、制御対象が特定の熱交換器に限定されている場合は、出入口温度センサや中間部冷媒温度センサなどは、特定の熱交換器に設けるだけでもよい。
In the above description, the purpose is to optimize the indoor heating / cooling operation. Therefore, the indoor heat exchanger has been described as an example of control, but outdoor heat exchange is performed using a temperature sensor or the like provided in the outdoor heat exchanger. It goes without saying that the vessel may be the control target.
In general, in a refrigeration cycle system having a plurality of heat exchangers, which heat exchanger is to be controlled can be freely selected, and only the indoor unit is not necessarily controlled. For example, in a multi-system with one outdoor unit and many indoor units, the capacity of the outdoor unit is reduced in order to suppress excessive capacity of the outdoor unit when the number of indoor unit operations is small in order to support all operation patterns. It is possible to make it. In this case, the outdoor unit is controlled during cooling, the degree of supercooling at the outlet of the outdoor heat exchanger (condenser) is increased, and it is used as an index for reducing the effective heat transfer area on the refrigerant side of the condenser. Conceivable.
However, when the object to be controlled is limited to a specific heat exchanger, the inlet / outlet temperature sensor, the intermediate refrigerant temperature sensor, and the like may be provided only in the specific heat exchanger.

本発明の実施形態に係る空気調和装置の概略構成について説明するための模式説明図および詳細の機能ブロック図である。It is the model explanatory drawing for demonstrating schematic structure of the air conditioning apparatus which concerns on embodiment of this invention, and a detailed functional block diagram. 本発明の実施形態に係る空気調和装置の動作を説明するための模式的なP−I線図である。It is a typical PI diagram for demonstrating operation | movement of the air conditioning apparatus which concerns on embodiment of this invention. 冷媒過熱度、冷媒過冷却度とエネルギー効率との関係を示す概念図である。It is a conceptual diagram which shows the relationship between a refrigerant | coolant superheat degree, a refrigerant | coolant supercooling degree, and energy efficiency.

符号の説明Explanation of symbols

1 空気調和装置
2 圧縮機
3a、3b、3c、3d 冷媒流路
4 室外熱交換器(熱交換器)
4a、4b、9a、9b 伝熱管(熱交換器内の冷媒流路)
4c、9c ベンド部(流路屈曲部)
5、10 温度センサ(中間部冷媒温度センサ)
7 膨張弁
8 四方弁
9 室内熱交換器(熱交換器)
14b 温度検出手段
15a 中間部冷媒圧力算出手段
15b 冷媒圧力補正手段
15c 飽和温度算出手段
15d 過熱度/過冷却度算出手段
16 膨張弁制御手段
50 制御ユニット
20A、20B、21A、21B 温度センサ(出入口温度センサ)
bV、TbL ベンド部温度
SH 冷媒過熱度
SC 冷媒過冷却度
蒸発圧力(中間部冷媒圧力)
凝縮圧力(中間部冷媒圧力)
室外機出口温度(出口側温度)
室内機出口温度(出口側温度)
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Compressor 3a, 3b, 3c, 3d Refrigerant flow path 4 Outdoor heat exchanger (heat exchanger)
4a, 4b, 9a, 9b Heat transfer tube (refrigerant flow path in heat exchanger)
4c, 9c Bend part (flow path bending part)
5, 10 Temperature sensor (intermediate refrigerant temperature sensor)
7 Expansion valve 8 Four-way valve 9 Indoor heat exchanger (heat exchanger)
14b Temperature detection means 15a Intermediate refrigerant pressure calculation means 15b Refrigerant pressure correction means 15c Saturation temperature calculation means 15d Superheat / supercooling degree calculation means 16 Expansion valve control means 50 Control units 20A, 20B, 21A, 21B Temperature sensors (entrance / exit temperatures) Sensor)
T bV , T bL Bend part temperature SH Refrigerant superheat degree SC Refrigerant supercool degree Pe evaporation pressure (intermediate part refrigerant pressure)
PC condensation pressure (intermediate refrigerant pressure)
T 1 outdoor unit outlet temperature (outlet temperature)
T 2 indoor unit outlet temperature (outlet temperature)

Claims (3)

凝縮器および蒸発器に用いる少なくとも2つの熱交換器、圧縮機および膨張弁を流路上に配置し、該流路に冷媒を循環させて圧縮式冷凍サイクル制御を行う空気調和装置であって、
前記熱交換器のうち少なくとも一方の熱交換器の冷媒出入口配管温度をそれぞれ検出する出入口温度センサと、
前記少なくとも一方の熱交換器内の冷媒流路の中間部に設けた中間部冷媒温度センサと、
該中間部冷媒温度センサの検出温度から前記熱交換器内の中間部冷媒圧力を算出する中間部冷媒圧力算出手段と、
前記中間部冷媒圧力に前記冷媒流路の中間部から前記少なくとも一方の熱交換器の出口までの冷媒側圧力損失を補正して冷媒側飽和圧力を算出する冷媒圧力補正手段と、
該冷媒圧力補正手段により算出された前記冷媒側飽和圧力を温度に換算して冷媒飽和蒸気温度または冷媒飽和液温度を算出する飽和温度算出手段と、
前記少なくとも一方の熱交換器の出口側に設けられた前記出入口温度センサにより検出される出口側温度と前記冷媒飽和蒸気温度または冷媒飽和液温度から冷媒過熱度または冷媒過冷却度を算出する過熱度/過冷却度算出手段と、
該過熱度/過冷却度算出手段で算出された前記冷媒過熱度または冷媒過冷却度が所定温度範囲内に収まるように前記膨張弁の開度を制御する膨張弁制御手段とを備え、
前記冷媒圧力補正手段は、
前記中間部冷媒圧力算出手段が算出した前記中間部冷媒圧力に基づいて冷媒循環量を求め、前記中間部冷媒圧力と前記冷媒循環量とから算出される、前記少なくとも一方の熱交換器の単位長さ当たりの冷媒流動抵抗を算出することにより、
前記冷媒流路の中間部から前記少なくとも一方の熱交換器の出口までの冷媒側圧力損失を算出するようにしたことを特徴とする空気調和装置。
An air conditioner that performs compression refrigeration cycle control by disposing at least two heat exchangers used in a condenser and an evaporator, a compressor, and an expansion valve on a flow path, and circulating a refrigerant in the flow path.
An inlet / outlet temperature sensor for detecting a refrigerant inlet / outlet pipe temperature of at least one of the heat exchangers;
An intermediate refrigerant temperature sensor provided in an intermediate part of the refrigerant flow path in the at least one heat exchanger;
An intermediate refrigerant pressure calculating means for calculating an intermediate refrigerant pressure in the heat exchanger from a temperature detected by the intermediate refrigerant temperature sensor;
Refrigerant pressure correcting means for calculating refrigerant side saturation pressure by correcting refrigerant side pressure loss from the intermediate part of the refrigerant flow path to the outlet of the at least one heat exchanger to the intermediate part refrigerant pressure;
Saturation temperature calculation means for calculating the refrigerant saturated vapor temperature or the refrigerant saturated liquid temperature by converting the refrigerant-side saturation pressure calculated by the refrigerant pressure correction means into a temperature;
The degree of superheat for calculating the degree of refrigerant superheat or the degree of refrigerant subcooling from the outlet side temperature detected by the inlet / outlet temperature sensor provided on the outlet side of the at least one heat exchanger and the refrigerant saturated vapor temperature or refrigerant saturated liquid temperature. / Supercooling degree calculation means,
Expansion valve control means for controlling the degree of opening of the expansion valve so that the refrigerant superheat degree or the refrigerant supercooling degree calculated by the superheat degree / supercooling degree calculating means falls within a predetermined temperature range;
The refrigerant pressure correcting means is
The unit length of the at least one heat exchanger is calculated from the intermediate part refrigerant pressure and the refrigerant circulation amount by obtaining the refrigerant circulation amount based on the intermediate refrigerant pressure calculated by the intermediate refrigerant pressure calculating means. By calculating the refrigerant flow resistance per unit,
An air conditioner characterized in that a refrigerant-side pressure loss from an intermediate portion of the refrigerant flow path to an outlet of the at least one heat exchanger is calculated .
前記中間部冷媒温度センサが、前記熱交換器内の冷媒流路の長さ方向の略中央に設けられたことを特徴とする請求項1に記載の空気調和装置。   The air conditioner according to claim 1, wherein the intermediate refrigerant temperature sensor is provided at a substantially center in a length direction of a refrigerant flow path in the heat exchanger. 前記熱交換器の冷媒流路が外方に屈曲して突出する流路屈曲部を有し、該流路屈曲部に前記中間部冷媒温度センサが設けられたことを特徴とする請求項1または2に記載の空気調和装置。   The refrigerant flow path of the heat exchanger has a flow path bending portion that protrudes by bending outward, and the intermediate portion refrigerant temperature sensor is provided in the flow path bending portion. 2. The air conditioning apparatus according to 2.
JP2003428355A 2003-12-24 2003-12-24 Air conditioner Expired - Fee Related JP3939292B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003428355A JP3939292B2 (en) 2003-12-24 2003-12-24 Air conditioner
KR1020040058201A KR100561537B1 (en) 2003-12-24 2004-07-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428355A JP3939292B2 (en) 2003-12-24 2003-12-24 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005188790A JP2005188790A (en) 2005-07-14
JP3939292B2 true JP3939292B2 (en) 2007-07-04

Family

ID=34787356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428355A Expired - Fee Related JP3939292B2 (en) 2003-12-24 2003-12-24 Air conditioner

Country Status (2)

Country Link
JP (1) JP3939292B2 (en)
KR (1) KR100561537B1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
JP2008032250A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
KR20080069824A (en) * 2007-01-24 2008-07-29 삼성전자주식회사 System for controlling degree of superheat in air conditioner and method thereof
US20080307819A1 (en) * 2007-06-12 2008-12-18 Pham Hung M Refrigeration monitoring system and method
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
WO2009038624A1 (en) * 2007-09-19 2009-03-26 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
JP4902723B2 (en) * 2009-11-12 2012-03-21 三菱電機株式会社 Condensation pressure detection system and refrigeration cycle system
WO2012118830A2 (en) 2011-02-28 2012-09-07 Arensmeier Jeffrey N Residential solutions hvac monitoring and diagnosis
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
WO2014144446A1 (en) 2013-03-15 2014-09-18 Emerson Electric Co. Hvac system remote monitoring and diagnosis
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
AU2014248049B2 (en) 2013-04-05 2018-06-07 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
JP5979112B2 (en) * 2013-09-30 2016-08-24 ダイキン工業株式会社 Refrigeration equipment
JP5858022B2 (en) * 2013-10-24 2016-02-10 ダイキン工業株式会社 Air conditioner
KR101700538B1 (en) * 2015-11-27 2017-01-26 주식회사 신성엔지니어링 Method for sensing contamination of heat exchanger and system for the same
CN105865106A (en) * 2016-03-30 2016-08-17 杭州佳力斯韦姆新能源科技有限公司 Overheat control method of electronic expansion valve used for optimized operation of water source carbon-dioxide heat pump system
AU2017416002B2 (en) * 2017-05-24 2021-07-01 Toshiba Carrier Corporation Air conditioner
WO2019038804A1 (en) * 2017-08-21 2019-02-28 三菱電機株式会社 Air conditioning device
CN112078806B (en) * 2020-09-25 2022-12-30 中国直升机设计研究所 Helicopter liquid cooling integrated control system
KR102613267B1 (en) * 2023-06-02 2023-12-14 주식회사 삼원테크놀로지 Energy-saving thermostat temperature control system

Also Published As

Publication number Publication date
KR100561537B1 (en) 2006-03-17
KR20050065263A (en) 2005-06-29
JP2005188790A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP3939292B2 (en) Air conditioner
JP6320568B2 (en) Refrigeration cycle equipment
JP5055965B2 (en) Air conditioner
KR20130018917A (en) Control device for an air-conditioning device and air-conditioning device provided therewith
JP6021955B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
US7171818B2 (en) System and method for controlling temperature of refrigerant in air conditioner
JPWO2018008139A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP4966742B2 (en) Air conditioner
JP6246394B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP5855284B2 (en) Air conditioner
JP5369953B2 (en) Multi-room air conditioner performance calculator
JP3984250B2 (en) Multi-room air conditioner
JP7171414B2 (en) Air conditioning system controller, air conditioning system, air conditioning system control method, and air conditioning system control program
JPWO2019102538A1 (en) air conditioner
JP6846915B2 (en) Multi-chamber air conditioner
JP2018146169A (en) air conditioner
JPWO2019155506A1 (en) Air conditioning system
JP7065681B2 (en) Air conditioner
JP2800362B2 (en) Multi-room air conditioner
KR20180037644A (en) Air Conditioner
JP6932551B2 (en) Heat exchange system and its control method
JP6468333B1 (en) Refrigerant cycle equipment
WO2023047534A1 (en) Air conditioner, method for controlling air conditioner, and program
JP2005351588A (en) Heat pump water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees