JP3933012B2 - 圧縮着火式内燃機関及びハイブリッド自動車 - Google Patents

圧縮着火式内燃機関及びハイブリッド自動車 Download PDF

Info

Publication number
JP3933012B2
JP3933012B2 JP2002245536A JP2002245536A JP3933012B2 JP 3933012 B2 JP3933012 B2 JP 3933012B2 JP 2002245536 A JP2002245536 A JP 2002245536A JP 2002245536 A JP2002245536 A JP 2002245536A JP 3933012 B2 JP3933012 B2 JP 3933012B2
Authority
JP
Japan
Prior art keywords
combustion
compression ignition
engine
internal combustion
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245536A
Other languages
English (en)
Other versions
JP2004084531A (ja
Inventor
友則 漆原
和也 長谷川
淳 寺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002245536A priority Critical patent/JP3933012B2/ja
Publication of JP2004084531A publication Critical patent/JP2004084531A/ja
Application granted granted Critical
Publication of JP3933012B2 publication Critical patent/JP3933012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮着火式内燃機関及びこれを動力源に備えるハイブリッド自動車に関する。
【0002】
【従来の技術】
低燃費実現のため、圧縮着火式内燃機関を採用するとともに、この内燃機関において、排気上死点及びその前後に吸気弁と排気弁とがともに閉じるマイナスオーバーラップ期間を設け、内部EGRにより混合気を加熱して、圧縮着火燃焼運転領域を高回転低負荷側に拡大させることが知られている(特開平10−266878号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、この技術には、次のような問題がある。すなわち、内部EGRにより混合気が加熱されて高温となると、それに伴って壁面熱損失が増大する。このため、圧縮着火燃焼運転領域を拡大させたとしても、この拡大された領域でそれほどの効率改善を望めないことである。
【0004】
そこで、本発明は、圧縮着火式内燃機関において、圧縮着火燃焼を比較的に生じさせ易い低回転高負荷域での効率を改善し、これを通じて一層の低燃費を実現することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、圧縮着火燃焼と火花点火燃焼とで燃焼方式が切り換えられる圧縮着火式内燃機関において、過給機を設け、圧縮着火燃焼による運転において、圧縮比を13.5〜16.5に設定する一方過給機による過給圧を、設定された圧縮比及び一定のエンジン回転数のもと、吸気温及び空燃比に関して定められる燃焼安定領域における最大トルク点が大気吸入条件下で得られ、かつこの最大トルク点について求められる図示平均有効圧力が略最大となる過給圧に設定する。
これにより、低回転高負荷域において、内部EGR等の混合気加熱手段によることなく圧縮着火燃焼を生じさせることが可能となるので、効率が改善され、一層の低燃費を実現することができる。
【0006】
また、このような圧縮着火式内燃機関と電気モータとを駆動源としてハイブリッド自動車を構成し、低出力域走行モードとして、内燃機関を停止して電気モータからの出力で走行するモードを設定する。
【0007】
【発明の実施の形態】
以下に図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係る自動車用エンジン(以下「エンジン」という。)1の断面図である。
シリンダブロック2上にシリンダヘッド3が固定されている。このシリンダブロック2にピストン4が挿入されており、ピストン4とシリンダヘッド3との間に燃焼室5が形成される。シリンダヘッド3の一側には、吸気通路のポート部31が形成されており、このポート部31とサージタンク6とが吸気管7aにより接続されている。吸気管7aには、インジェクタ8が設置されており、このインジェクタ8から燃料であるガソリンが噴射される。エンジン1には、過給機としてのターボチャージャ9が設置されており、そのコンプレッサ部とサージタンク6とが吸気管7bにより接続されている。一方、シリンダヘッド3の他側には、排気通路のポート部32が形成されており、このポート部32とターボチャージャ9のタービン部91とが排気管10により接続されている。そして、この排気管10には、触媒としての酸化触媒若しくは三元触媒を内蔵した排気浄化装置11が介装されている。
ここで、エンジン本体において、シリンダヘッド3には、ポート部31を開閉するための吸気弁12と、ポート部32を開閉するための排気弁(図示せず)とが設置されている。これらのうち吸気弁12の動弁装置13が可変式とされ、吸気カム131の位相をクランク角に対して進遅させうるようになっている。シリンダヘッド3上にロッカーカバー14が取り付けられており、シリンダヘッド3のカムシャフト収納空間をシールしている。
また、シリンダヘッド3には、燃焼室5の上部中央に臨ませて点火プラグ15が設置されている。
このようなエンジン1において、図示しないエアクリーナを通過した空気は、ターボチャージャ9のコンプレッサ部により圧縮され、吸気管7bに送り出される。そして、サージタンク6から対応するマニホールド部を経由してポート部31に至り、インジェクタ8から噴射された燃料との混合気が筒内に吸入される。燃焼の結果生じた排気ガスは、ピストン4の上昇に伴って排気管10に送り出され、排気浄化装置11に流入する。排気浄化装置11では、排気ガス中の未燃燃料及び一酸化炭素が浄化される。そして、排気ガスは、ターボチャージャ9のタービン部91に流入してタービンホイールを回転させ、タービン部91を通過し、大気中に放出される。
ここで、燃焼制御手段としての機能を備えるエンジンコントローラ101は、インジェクタ8、可変動弁装置13及び点火プラグ15を作動させるための指令信号を発生する。このエンジンコントローラ101には、アクセルセンサからのアクセル開度検出信号、クランク角センサからのエンジン回転数検出信号及び水温センサからの冷却水温検出信号等の各種運転状態検出信号が入力される。エンジンコントローラ101は、入力信号に基づいてエンジン1の運転状態を判断し、これに応じた指令信号を発生する。
エンジン1は、運転状態に応じて、圧縮着火燃焼と火花点火燃焼とで燃焼方式を切り換えて運転される。エンジンコントローラ101は、エンジン1が低回転高負荷域(図2の領域A)にあると判断すると、圧縮着火燃焼を行わせるための指令信号を発生する。この指令信号により可変動弁装置13が作動し、吸気カム131のリフトカーブを進角側のプロフィールCa(図3)に設定する。このプロフィールCaにおいて、吸気弁閉時期IVCは、第1の時期IVCaである。一方、エンジンコントローラ101は、エンジン1が領域A以外の運転領域(図2の領域B)にあると判断すると、火花点火燃焼を行わせるための指令信号を発生する。この指令信号により可変動弁装置13が作動し、吸気カム131のリフトカーブを遅角側のプロフィールCbに設定する(図3)。このプロフィールCbにおいて、吸気弁閉時期IVCは、第1の時期IVCaよりもクランク角に関して遅い第2の時期IVCbである。また、エンジンコントローラ101は、火花点火燃焼に際して、ターボチャージャ9のタービン部91に形成されたウェイストゲート911を開放し、タービン部91を迂回させて排気ガスを流す。
【0008】
次に、エンジン1の過給圧Pc及び圧縮比CRの設定について説明する。
エンジン1において、ターボチャージャ9による過給圧Pcは50kPa(0.5bar)に、圧縮比CRは15に設定されている。
図4は、吸気温Ti及び空燃比AFに対して圧縮比CR毎に定められる圧縮着火燃焼の燃焼安定領域Aを示している。同図において、Ti及びAFに対する全領域は、燃焼安定限界線を基準として高吸気温側の燃焼可能領域Cと、低吸気温側の失火領域Dとに二分される。燃焼可能領域Cでは、圧縮着火燃焼を生じさせることができる一方、失火領域Dでは、圧縮着火燃焼が生じないか、あるいは着火が不安定となる。そして、燃焼可能領域Cは、ノッキング限界線を基準として高空燃比側の燃焼安定領域Aと、低空燃比側のノッキング発生領域Bとに二分される。燃焼安定領域Aでは、燃焼が比較的に緩慢であるため、圧縮着火燃焼を安定して生じさせることができる一方、ノッキング発生領域Bでは、燃焼が急峻となるため、ノッキングが発生する。このように、圧縮着火燃焼の燃焼安定領域Aは、吸気温Ti及び空燃比AFに対して、燃焼安定限界線とノッキング限界線とで挟まれた楔型の領域として定められる。ここで、エンジン1への燃料供給量は、充填効率の点から低吸気温側ほど多くなるとともに、一定吸気温のもとで低空燃比側ほど多くなる。従って、熱効率が一定であるとすれば、この領域Aの楔の頂点Pでその圧縮比での最大トルクが得られることになる。
【0009】
図5は、ターボチャージャ9による過給を停止して行われる自然吸気下でエンジン1をエンジン回転数=1200rpmで運転した場合の圧縮着火燃焼の燃焼安定領域Aを、圧縮比CR毎に示している。CR=18(A11),16.5(A21),15(A31),13.5(A41),12(A51)のそれぞれについて示している。図のように、自然吸気下での燃焼安定領域Aは、圧縮比CRが大きいほど低吸気温側に形成されることとなり、CR=18(A11)でTi=25〜50℃の大気吸入下での圧縮着火燃焼が可能となる。
【0010】
図6は、図5の燃焼安定領域A11〜A51の各最大トルク点P11〜P51について算出される図示平均有効圧力IMEPを示している。自然吸気下では、圧縮比CRが大きくなるほどIMEPも増大することとなり、CR=18(P11)で最大となっている。同図において、IMEPは、P11について540kPa、P21について520kPa、P31について450kPa、P41について430kPa、P51について410kPaである。
このように、自然吸気下では、大気吸入下での圧縮着火燃焼が可能となる圧縮比CR=18で図示平均有効圧力IMEPが最大となり、効率も最良となる。これは、CRが12〜16.5では、吸気弁12(図1)と排気弁とのマイナスオーバーラップ期間を形成するなど、圧縮着火燃焼を生じさせるために何らかの方法で混合気を加熱する必要があるので、壁面熱損失が増大することによる。
【0011】
図7は、ターボチャージャ9により50kPa(0.5bar)の過給圧Pcを形成して行われる過給下でエンジン1をエンジン回転数=1200rpmで運転した場合の圧縮着火燃焼の燃焼安定領域Aを、圧縮比CR毎に示している。図5と同様にCR=18(A12),16.5(A22),15(A32),13.5(A42),12(A52)のそれぞれについて示している。ここでも圧縮比CRが大きいほど燃焼安定領域Aが低吸気温側に形成される傾向にあるが、過給下では、CR=15以上のA12〜A32で大気吸入下での圧縮着火燃焼が可能となっている。
【0012】
図8は、図7の燃焼安定領域A12〜A52の各最大トルク点P12〜P52について算出される図示平均有効圧力IMEPを示している。過給下でも圧縮比CRが大きくなるほどIMEPも増大する傾向にあるが、IMEPは、CR=15(P32)で最大となっている。これは、CR=18(P12)及びCR=16.5(P22)では、大気吸入下におけるPc=50kPaの過給下での圧縮着火燃焼が急峻となるので、ノッキングを回避するために空燃比AFを上げる必要があるためである。図8において、IMEPは、P12について500kPa、P22について610kPa、P32について744kPa、P42について663kPa、P52について675kPaである。
このように、Pc=50kPaの過給下では、圧縮比CR=15で図示平均有効圧力IMEPが最大となるとともに、効率も最良となる。これは、CRが16.5及び18では、トルクの低下による相対的フリクションの増大により、また、CRが12及び13.5では、トルクの低下による相対的フリクションの増大と、吸気加熱による壁面熱損失の増大により効率が低下するためである(CRが13.5以下では、大気吸入下で圧縮着火燃焼を生じさせるために混合気を加熱する必要があり、これによる壁面熱損失も効率を低下させる一因となる。)。
【0013】
図9は、圧縮比CRを12,13.5,15,16.5又は18とした場合に大気吸入下で圧縮着火燃焼を生じさせるために必要な過給圧Pcを示している。本実施形態では、CRを15とし、Pcを50kPaとしているが、Pcの調整によりCRが13.5及び16.5でも圧縮着火燃焼を生じさせることができる。すなわち、CR=13.5では、Pcを75kPaに上げることで混合気を加熱せずに圧縮着火燃焼を生じさせることが可能となり、CR=16.5では、Pcを25kPaに下げることで空燃比AFを下げずに圧縮着火燃焼を生じさせることが可能となる。従って、Pc=75kPa,25kPaのもとで、CRが13.5又は16.5である場合の最大図示平均有効圧力IMEPmaxが得られる。なお、図5から分かるように、CR=18とすれば自然吸気下(Pc=0kPa)で圧縮着火燃焼を生じさせることが可能であるが、火花点火燃焼による場合にノッキングを回避することができず、火花点火燃焼の燃焼安定領域が著しく狭くなってしまう。
【0014】
本実施形態に係るエンジン1によれば、次の効果を得ることができる。
第1に、圧縮比CRを15に設定するとともに、ターボチャージャ9により50kPaの過給圧Pcを生じさせることとした。このため、吸気弁12と排気弁とのマイナスオーバーラップ期間を形成するなどの手段により混合気を加熱することなく大気吸入下で圧縮着火燃焼を生じさせることが可能となるので(図7)、図2の低回転高負荷域Aの効率を改善することができる。そして、これ以外の圧縮着火燃焼が生じ難い運転領域Bでは、燃焼方式を切り換えて火花点火燃焼によることとし、併せて可変動弁装置13により吸気弁閉時期IVCを下死点よりも大幅に遅らせた第2の時期IVCbとした。このため、圧縮比CRが実質的に低下したアトキンソンサイクルによりノッキングを起こすことなく火花点火燃焼を行わせることができるとともに、火花点火燃焼に切り換えたことによる効率低下も極力抑制される。このように、圧縮着火燃焼を比較的に生じさせ易い低回転高負荷域Aにおける効率改善を通じて運転領域全体としての効率を改善することができるので、一層の低燃費を実現することができる。
ここで、火花点火燃焼運転領域Bでは、吸気弁閉時期IVCをエンジン回転数の上昇とともに進角させるとよい(図2)。これは、火花点火燃焼による場合のノッキングが高回転時ほど緩和されるためである。このようにすれば、ノッキングの抑制と、最高出力点での出力とを両立させることができる。
【0015】
第2に、排気浄化装置11をターボチャージャ9の上流に位置させたことで、希薄燃焼下でも50kPaの過給圧Pcを生じさせることが可能となる。例えば、エンジン1の排気ガスに4000ppmほどのHCが含まれている場合に、排気ガスは、排気浄化装置11を通過する際に発熱し、温度が100℃ほど上昇することが分かっている。圧縮着火燃焼による場合には、空燃比AFが30〜40に設定されるため、排気ガスをエンジン1からそのままターボチャージャ9に流入させただけでは、エネルギーが不足し、充分な過給圧Pcを生じさせることができない。そこで、ターボチャージャ9に流入する前に排気浄化装置11において排気ガスを発熱させることで、排気ガスに充分なエネルギーを持たせ、希薄燃焼下でも50kPaの過給圧Pcを生じさせることができる。また、排気浄化装置11をターボチャージャ9の上流に位置させたことで、排気浄化触媒11の下流の排気管10内が高圧となるので、触媒が高温に保たれ、酸化反応が促進されるという効果も得られる。
【0016】
次に、エンジン1を適用したハイブリッド自動車について説明する。
図10は、その一例としてのハイブリッド自動車Vの駆動系の構成図である。ハイブリッド自動車Vは、駆動源としてエンジン1と、モータ及び発電機としての機能を兼ねた2つのモータジェネレータ51,52とを備えている。エンジン1のクランクシャフトと一方のモータジェネレータ51の回転軸とが直に結合されており、このモータジェネレータ51と他方のモータジェネレータ52とが電磁クラッチ53を介して連結されている。そして、これらの駆動源から出力されたトルクがトランスミッション54を介して車軸55、ディファレンシャル・ギヤ56及び車輪駆動軸57,57に伝達され、駆動輪58,58が回転されるようになっている。モータジェネレータ51,52は、バッテリ59にインバータ60を介して接続されている。このような駆動系のハイブリッド自動車Vは、運転領域に応じて次に述べるモータ走行モード、シリーズ・ハイブリッド走行モード及びパラレル・ハイブリッド走行モードでモードを切り換えて走行することが可能である。
1)モータ走行モード
クラッチ53を切り離してエンジン1と車軸55との機械的連結を断ち、モータジェネレータ52をバッテリ59からの電力で作動させて走行する。バッテリ59の充電量が一定値を下回った場合には、エンジン1によりモータジェネレータ51を発電機として作動させ、得られた電力をバッテリ59の充電に充てることができる。モータ走行モードは、一般的に効率の悪いエンジン1の低出力域での運転を不要にする。
2) シリーズ・ハイブリッド走行モード
クラッチ53を切り離したままでモータジェネレータ52のみにより走行するが、モータジェネレータ52の電力は、エンジン1によりモータジェネレータ51を発電機として作動させることで発生させる。ここで、モータジェネレータ52が必要とする電力に応じてモータジェネレータ51の負荷を変化させる。このようなリアルタイム発電によらない場合には、エンジン1を最も効率の良い領域で運転することが可能である。
3) パラレル・ハイブリッド走行モード
クラッチ53を結合させてエンジン1と車軸55とを連結させ、エンジン1により走行するとともに、トルクの不足分をモータジェネレータ52によりアシストする。パラレル・ハイブリッド走行モードを採用することで、エンジン1の最高出力が低くて済むため、エンジン1の小型化を通じて燃費を向上させることができる。
【0017】
図11は、エンジンのみを駆動源とする自動車におけるエンジン出力の発生頻度分布を、図12は、駆動源としてエンジン1とモータジェネレータ51,52とを備えたハイブリッド自動車Vにおけるエンジン出力の発生頻度分布を、それぞれ燃費と照らし合わせて示している。ハイブリッド自動車Vでは、エンジン1の効率が悪い低出力域にモータ走行モードを設定するとともに、運転条件に応じて適宜にシリーズ・ハイブリッド走行モードに切り換えるようにしたことで、発生頻度がピークとなるエンジン出力Lp2(図12)がLp1(図11)と比較して最低燃費点側に形成されている。また、排気量が2000ccクラスのハイブリッド自動車Vでは、エンジン出力の発生頻度は、10〜20kWの範囲に集中する。
【0018】
図13は、2000ccクラスの排気量を前提として、図2のエンジン1の運転領域上に10kW及び20kWの等出力線を書き加えたものである。このように、ハイブリッド自動車Vにおけるエンジン出力が集中する10〜20kWの範囲に渡り、圧縮着火燃焼運転領域Aが含まれている。従って、ハイブリッド自動車Vで要求されるエンジン1の運転条件は、圧縮着火燃焼による運転でほぼ賄うことが可能である。
【0019】
このように、ハイブリッド自動車Vでは、低出力域にエンジン1を停止してモータジェネレータ52により走行するモータ走行モードを設定し、エンジン1を効率の悪い領域で運転させずに済ませるとともに、エンジン1に要求される出力全域を圧縮着火燃焼でほぼ賄うことが可能であるので、一層の低燃費を実現することができる。
【0020】
なお、以上では、空気に対して筒内に吸入される前に燃料が添加されるポート噴射タイプのエンジン1に本発明を適用した例について説明したが、これに限らず、インジェクタをシリンダヘッド3に設置して燃料が筒内に直接噴射されるようにした直噴タイプのエンジンに適用することも可能である。
また、過給機として、排気タービン以外の手段により作動する機械駆動式等のスーパーチャージャを採用してもよい。スーパーチャージャとクランクシャフトとの間にクラッチを設置し、燃焼方式に応じてこのクラッチを作動させ、スーパーチャージャとクランクシャフトとを結合又は解放する。スーパーチャージャによれば、過給圧Pcを排気ガスの温度によらず、速やかに形成することが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る自動車用エンジンの断面図
【図2】同上エンジンにおける運転条件に応じた燃焼方式の振分け
【図3】同上エンジンの吸気弁及び排気弁の作動特性
【図4】同上エンジンの燃焼安定領域及び最大トルク点
【図5】自然吸気下での圧縮比毎の燃焼安定領域
【図6】最大トルク点について算出される自然吸気下での図示平均有効圧力
【図7】過給下での圧縮比毎の燃焼安定領域
【図8】最大トルク点について算出される過給下での図示平均有効圧力
【図9】大気吸入下で圧縮着火燃焼を生じさせるための圧縮比に応じた過給圧
【図10】本発明の一実施形態に係るエンジンを備えるハイブリッド自動車の駆動系
【図11】エンジンのみを駆動源とする自動車におけるエンジン出力の発生頻度分布
【図12】ハイブリッド自動車におけるエンジン出力の発生頻度分布
【図13】エンジンの運転領域全体に対する、ハイブリッド自動車におけるエンジン出力発生頻度の集中領域
【符号の説明】
1…圧縮着火式内燃機関としての自動車用エンジン、2…シリンダブロック、3…シリンダヘッド、4…ピストン、5…燃焼室、7a,7b…吸気管、8…インジェクタ、9…過給機としてのターボチャージャ、91…ターボチャージャのタービン部、911…ターボチャージャのウェイストゲート、10…排気管、11…排気浄化装置、12…吸気弁、13…可変動弁手段としての可変動弁装置、131…吸気カム、15…点火プラグ、101…燃焼制御手段としてのエンジンコントローラ、51,52…電気モータとしてのモータジェネレータ、53…クラッチとしての電磁クラッチ、54…トランスミッション、56…ディファレンシャル・ギヤ、58…駆動輪、59…バッテリ、60…インバータ。

Claims (9)

  1. 圧縮着火燃焼と火花点火燃焼とで燃焼方式が切り換えられる圧縮着火式内燃機関であって、
    過給機を備え、
    圧縮着火燃焼による運転において、圧縮比が13.5〜16.5に設定される一方前記過給機による過給圧が、設定された圧縮比及び一定のエンジン回転数のもと、吸気温及び空燃比に関して定められる燃焼安定領域における最大トルク点が大気吸入条件下で得られ、かつこの最大トルク点について求められる図示平均有効圧力が略最大となる過給圧に設定された圧縮着火式内燃機関。
  2. 前記過給圧が、前記圧縮比に応じて25〜75kPaの範囲内で設定された請求項1に記載の圧縮着火式内燃機関。
  3. 前記圧縮比が略15に、前記過給圧が略50kPaに設定された請求項2に記載の圧縮着火式内燃機関。
  4. 前記過給機としてターボチャージャを備えるとともに、排気通路において、このターボチャージャの上流に酸化機能を有する触媒が配設された請求項1〜3のいずれかに記載の圧縮着火式内燃機関。
  5. 前記過給機としてスーパーチャージャを備える請求項1〜3のいずれかに記載の圧縮着火式内燃機関。
  6. 機関運転条件に応じて燃焼方式を圧縮着火燃焼と火花点火燃焼とで切り換える燃焼制御手段と、
    吸気弁をクランク角に関して異なる複数の弁閉時期をもって開閉させる可変動弁手段とを備え、
    前記燃焼制御手段が、火花点火燃焼による運転において、前記過給機による過給を停止するとともに、少なくとも低回転時において、前記可変動弁手段による吸気弁閉時期を圧縮着火燃焼による場合よりも遅い下死点後の所定時期に設定する請求項1〜5のいずれかに記載の圧縮着火式内燃機関。
  7. 火花点火燃焼による運転において、前記可変動弁手段による吸気弁閉時期がエンジン回転数の上昇に伴って進角側に変更される請求項6に記載の圧縮着火式内燃機関。
  8. 請求項1〜7のいずれかに記載の圧縮着火式内燃機関と、電気モータとを駆動源に備え、
    前記内燃機関を停止して電気モータからの出力で走行する走行モードが低出力域に設定されたハイブリッド自動車。
  9. 過給機と、
    機関運転条件に応じて燃焼方式を圧縮着火燃焼と火花点火燃焼とで切り換える燃焼制御手段と、
    吸気弁をクランク角に関して異なる複数の弁閉時期をもって開閉させる可変動弁手段と、を含んで構成され、
    圧縮着火燃焼による運転において、圧縮比が13.5〜16.5に設定される一方前記過給機による過給圧が、25〜75kPaの範囲内で、設定された圧縮比及び一定のエンジン回転数のもとで得られる図示平均有効圧力が略最大となる過給圧に設定され、
    前記燃焼制御手段が、火花点火燃焼による運転において、前記過給機による過給を停止するとともに、少なくとも低回転時において、前記可変動弁手段による吸気弁閉時期を圧縮着火燃焼による場合よりも遅い下死点後の所定時期に設定する圧縮着火式内燃機関。
JP2002245536A 2002-08-26 2002-08-26 圧縮着火式内燃機関及びハイブリッド自動車 Expired - Fee Related JP3933012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245536A JP3933012B2 (ja) 2002-08-26 2002-08-26 圧縮着火式内燃機関及びハイブリッド自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245536A JP3933012B2 (ja) 2002-08-26 2002-08-26 圧縮着火式内燃機関及びハイブリッド自動車

Publications (2)

Publication Number Publication Date
JP2004084531A JP2004084531A (ja) 2004-03-18
JP3933012B2 true JP3933012B2 (ja) 2007-06-20

Family

ID=32053702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245536A Expired - Fee Related JP3933012B2 (ja) 2002-08-26 2002-08-26 圧縮着火式内燃機関及びハイブリッド自動車

Country Status (1)

Country Link
JP (1) JP3933012B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708063B2 (en) 2021-09-01 2023-07-25 Hyundai Motor Company Hybrid electric vehicle and method of operating engine of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545698B2 (ja) * 2006-02-23 2010-09-15 ヤンマー株式会社 予混合圧縮自着火式エンジン
JP4858398B2 (ja) * 2007-10-15 2012-01-18 株式会社豊田自動織機 予混合圧縮着火機関

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708063B2 (en) 2021-09-01 2023-07-25 Hyundai Motor Company Hybrid electric vehicle and method of operating engine of the same

Also Published As

Publication number Publication date
JP2004084531A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
US7415966B2 (en) Engine
JP5540729B2 (ja) 過給機付エンジンの制御方法および制御装置
US6817349B2 (en) Control system and method and engine control unit for compression ignition internal combustion engine
EP2079914B1 (en) Internal combustion engine and internal combustion engine control method
JP4033110B2 (ja) 内燃機関および内燃機関の制御方法
JP5644123B2 (ja) エンジンの制御方法および制御装置
US8439002B2 (en) Methods and systems for engine control
CN106939845B (zh) 内燃机的控制装置
JP3994855B2 (ja) 内燃機関の制御装置
CN108730052B (zh) 内燃机的控制装置
JP2000073803A (ja) 筒内噴射ガソリンエンジン
JP3933012B2 (ja) 圧縮着火式内燃機関及びハイブリッド自動車
JP4797868B2 (ja) 過給機付きエンジン
US20220348186A1 (en) Method of Reducing Cold Start Emissions in Hybrid Electric Vehicles
JP2002004903A (ja) 過給機付きエンジン
JP4466164B2 (ja) ターボ式過給機付き多気筒エンジン
JP3807473B2 (ja) 内燃機関
JP2009264138A (ja) エンジンの制御装置
JP2003322038A (ja) 内燃機関制御装置
JP2005291019A (ja) 多気筒内燃機関の過給装置
JP3994867B2 (ja) 内燃機関の制御装置
JP7477049B2 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
JP2007016682A (ja) 圧縮自己着火内燃機関の制御装置
WO2023007530A1 (ja) 内燃機関の触媒暖機制御方法および装置
JP7360804B2 (ja) 車両の制御方法及び車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees