JP3932874B2 - Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound - Google Patents

Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound Download PDF

Info

Publication number
JP3932874B2
JP3932874B2 JP2001360297A JP2001360297A JP3932874B2 JP 3932874 B2 JP3932874 B2 JP 3932874B2 JP 2001360297 A JP2001360297 A JP 2001360297A JP 2001360297 A JP2001360297 A JP 2001360297A JP 3932874 B2 JP3932874 B2 JP 3932874B2
Authority
JP
Japan
Prior art keywords
ruthenium
compound
chemical vapor
vapor deposition
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360297A
Other languages
Japanese (ja)
Other versions
JP2003160865A (en
Inventor
英之 平社
篤 齋
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001360297A priority Critical patent/JP3932874B2/en
Publication of JP2003160865A publication Critical patent/JP2003160865A/en
Application granted granted Critical
Publication of JP3932874B2 publication Critical patent/JP3932874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機金属化学蒸着法に適したルテニウム化合物及び該化合物により得られたルテニウム含有薄膜に関する。更に詳しくは、固体昇華法を用いた有機金属化学蒸着法に最適なルテニウム化合物及び該化合物により得られたルテニウム含有薄膜に関するものである。
【0002】
【従来の技術】
パーソナルコンピュータ、ワークステーションのメインメモリーとして使われるDRAM(Dynamic Random Access Memory)は高集積化の動きがめまぐるしく、高集積化に対応可能な誘電体材料や電極材料の技術開発が盛んである。
誘電体材料に所定の誘電特性を付与するためには、酸化雰囲気下での結晶化熱処理が必須である。誘電体と積層される電極の材質には、従来ポリシリコン、タングスチン、窒化チタン等が使われてきたが、酸素雰囲気で高温熱処理を行うと電極が酸化してしまうため、電極の耐熱性に問題があった。そこで高融点で酸素と反応しにくいPtや酸化しても電気伝導性を有するRu、RuO2、Ir、IrO2が注目されている。RuやRuO2を成膜する方法は、現在スパッタ法が広く用いられているが、今後更に進む高集積化に伴って要求される微細加工のために有機金属化学蒸着法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)が検討されている。
【0003】
Ruを用いたMOCVD材料としてはシクロペンタジエン系のビスシクロペンタジエニルルテニウム錯体(以下、Ru(Cp)2という。)やビスエチルシクロペンタジエニルルテニウム錯体(以下、Ru(EtCp)2という。)、βジケトン系のトリス2,2,6,6テトラメチル3,5ヘプタジオナートルテニウム錯体(以下、Ru(DPM)3という。)等が用いられている。
このうちRu(DPM)3はRu(Cp)2やRu(EtCp)2と比較すると蒸気圧が低いため、MOCVD原料として使用される頻度は低い。またRu(EtCp)2は室温付近で液体として存在するため、従来の成膜装置を利用でき、また従来のマスフローコントローラによる流量制御が可能であるために、原料供給の安定化が図れるという利点がある。しかし、空気に対して不安定であり、その取扱いが難しい問題点があった。Ru(Cp)2は、室温付近では固体として存在し、更に有機溶媒に殆ど溶解しないことから成膜室への供給を昇華法に頼らなければならないため、供給量の増加と安定性に問題があるが、空気に対して安定であり、取扱いが容易であるという有利な点を有している。
【0004】
Ru(Cp)2を用いたMOCVD法による成膜についての研究は、Thin Solid Films 287(1996)P.74-79(P.C.Liaoら)、Jpn.J.Appl.Physics, 38(1999)2194-2199(青山ら)、第47回応用物理学会学術講演会講演予稿集 P515(門島ら)によってそれぞれ報告されている。これらによると固体昇華法を用いたMOCVD法により、RuやRuO2膜を成膜し、特性の優れた膜を得ている。
【0005】
【発明が解決しようとする課題】
しかし、前述したRu(Cp)2を用いたMOCVD法による成膜についての研究報告は、成膜したRuやRuO2膜の特性を評価することに主眼を置いており、原料であるRu(Cp)2の粒径が及ぼす成膜速度や成膜速度の再現性の影響についての記述はない。
【0006】
本発明の目的は、固体昇華法を用いた有機金属化学蒸着法により成膜速度及び成膜速度の再現性を制御し得る有機金属化学蒸着法用ルテニウム化合物及び該化合物により得られたルテニウム含有薄膜を提供することにある。
【0007】
【課題を解決するための手段
請求項に係る発明は、Ru(Cp)2からなるルテニウム化合物であって、化合物が粒径が0.09〜0.12mm、平均粒径が0.1mmであるルテニウム化合物と粒径が1.5〜2.5mm、平均粒径が2.0mmであるルテニウム化合物とを2〜8:8〜2の割合で混合した化合物である有機金属化学蒸着法用ルテニウム化合物である。
請求項に係る発明では、再現性は程々であるが成膜速度が特に優れた粒径範囲の化合物と、成膜速度は程々であるが成膜速度の再現性が特に優れた粒径範囲の化合物を上記所定の割合で混合することにより、両者の長所を併せ持った化合物となる。
【0008】
請求項2に係る発明は、請求項1記載のルテニウム化合物を原料にして固体昇華法を用いたMOCVD法により成膜されたルテニウム含有薄膜である。
請求項2に係る発明では、請求項1記載のルテニウム化合物を原料として用いることにより、MOCVD装置に原料を安定して供給できるため、成膜されたルテニウム含有薄膜の膜厚は常に均一化されたものが得られる。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明のルテニウム化合物はMOCVD法に用いる原料として従来供給量の増加と安定性に問題のあったRu(Cp)2を最適な成膜速度、成膜速度の再現性を得るためにRu(Cp)2の粒径を最適化することである。
【0010】
本発明の特徴ある構成は、Ru(Cp)2からなるルテニウム化合物であって、粒径が0.09〜0.12mm、平均粒径が0.1mmであるルテニウム化合物と粒径が1.5〜2.5mm、平均粒径が2.0mmであるルテニウム化合物とを2〜8:8〜2の割合で混合した化合物であることにある。上記数値範囲内に粒径を制御することにより、このルテニウム化合物を用いて固体昇華法を用いたMOCVD法によりルテニウム含有薄膜を成膜すると、成膜速度及び成膜速度の再現性に優れる。
ここで本発明のルテニウム化合物の粒径は、Ru(Cp)2を光学顕微鏡で観察したときの長軸長と短軸長の平均値である。
【0011】
所定の数値範囲に粒径を制御する方法としては、例えば、ルテニウム化合物の粒径を0.02〜5mmに制御する場合、先ず粒径5mm未満の粒子が通過する大きさの篩目を有する第1篩にルテニウム化合物を通過させて篩を通過しない5mmを越える大きさの粒子を除去し、次に粒径0.02mm未満の粒子が通過する大きさの篩目を有する第2篩に先ほど第1篩を通過させたルテニウム化合物を通過させ、第2篩を通過した0.02mm未満の粒子を除去することにより得られる。
【0012】
また粒径が0.09〜0.12mm、平均粒径が0.1mmであるルテニウム化合物は、成膜速度の再現性は程々であるが成膜速度が特に優れ、粒径が1.5〜2.5mm、平均粒径が2.0mmであるルテニウム化合物は、成膜速度は程々であるが成膜速度の再現性が特に優れる。このような粒径、平均粒径が異なる2種類のルテニウム化合物を2〜8:8〜2の割合で混合して得られる化合物は、それぞれの長所を併せ持った化合物となる。この混合して得られる化合物の好ましい混合割合は3〜7:7〜3である。
【0013】
図1に示すように、固体昇華法を用いたMOCVD装置は、成膜室10を備え、装置全体を加熱装置11により覆った構成となっている。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力計14及びニードルバルブ16を備える配管17により真空引きされる。加熱装置11は原料タンク18を備え、この原料タンク18には常温で固体のRu(Cp)2を貯蔵する。原料タンク18にはガス流量調節装置19を介してキャリアガス導入管21が接続され、また原料タンク18には供給管22が接続される。供給管22にはフィルタ23、ニードルバルブ24及びガス流量調節装置26がそれぞれ設けられ、供給管22は成膜室10に接続される。成膜室10にはニードルバルブ27、ガス流量調節装置28を介して酸素ガス導入管29が接続される。
【0014】
この装置では、加熱装置11により原料タンク18が約180℃に加熱されてタンク18内に貯蔵されたRu(Cp)2が徐々に昇華する。キャリアガスが導入管21から原料タンク18内に導入され、原料タンク18内で昇華したRu(Cp)2を供給管22により成膜室10に搬送する。キャリアガスとしては、アルゴン、ヘリウム、窒素等が挙げられる。また、酸素ガスが酸素ガス導入管29から成膜室10内に供給される。成膜室10内において、Ru(Cp)2の蒸気を酸素とともに熱分解させ、これにより生成したRu或いはRuO2を加熱された基板13上に堆積させてRu含有薄膜を形成する
【0015】
【発明の効果】
以上述べたように、本発明の有機金属化学蒸着法用ルテニウム化合物は、Ru(Cp)2からなるルテニウム化合物であって、この化合物の粒径を適当な粒径に制御し、粒径、平均粒径が異なる2種類のルテニウム化合物を所望の割合で混合して得られるルテニウム化合物は成膜において適度な成膜速度と成膜速度の再現性を実現する。
【図面の簡単な説明】
【図1】 固体昇華法を用いたMOCVD装置の概略図。
【符号の説明】
10 成膜室
11 加熱装置
12 ヒータ
13 基板
14 圧力計
16 ニードルバルブ
17 配管
18 原料タンク
19 ガス流量調節装置
21 キャリアガス導入管
22 供給管
23 フィルタ
24 ニードルバルブ
26 ガス流量調節装置
27 ニードルバルブ
28 ガス流量調節装置
29 酸素ガス導入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ruthenium compound suitable for metal organic chemical vapor deposition and a ruthenium-containing thin film obtained from the compound. More specifically, the present invention relates to a ruthenium compound that is optimal for a metal organic chemical vapor deposition method using a solid sublimation method, and a ruthenium-containing thin film obtained from the compound.
[0002]
[Prior art]
Dynamic Random Access Memory (DRAM) used as the main memory of personal computers and workstations is rapidly becoming highly integrated, and technological development of dielectric materials and electrode materials that can support high integration is thriving.
In order to impart predetermined dielectric properties to the dielectric material, a crystallization heat treatment in an oxidizing atmosphere is essential. Conventionally, polysilicon, tungsten, titanium nitride, etc. have been used as the material of the electrode laminated with the dielectric, but the electrode is oxidized when subjected to high-temperature heat treatment in an oxygen atmosphere, so there is a problem with the heat resistance of the electrode. was there. Therefore, attention is paid to Pt which has a high melting point and hardly reacts with oxygen, and Ru, RuO 2 , Ir, and IrO 2 that have electrical conductivity even when oxidized. A sputtering method is widely used as a method for forming Ru or RuO 2 , but metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition) is required for the fine processing required for further high integration. Hereinafter, it is referred to as MOCVD method).
[0003]
As an MOCVD material using Ru, a cyclopentadiene-based biscyclopentadienyl ruthenium complex (hereinafter referred to as Ru (Cp) 2 ) or a bisethylcyclopentadienyl ruthenium complex (hereinafter referred to as Ru (EtCp) 2 ). Β-diketone tris 2,2,6,6 tetramethyl 3,5 heptadionate ruthenium complex (hereinafter referred to as Ru (DPM) 3 ) and the like are used.
Of these, Ru (DPM) 3 has a lower vapor pressure than Ru (Cp) 2 and Ru (EtCp) 2, and therefore is less frequently used as a MOCVD raw material. In addition, since Ru (EtCp) 2 exists as a liquid near room temperature, a conventional film forming apparatus can be used, and the flow rate can be controlled by a conventional mass flow controller, so that the supply of raw materials can be stabilized. is there. However, there is a problem that it is unstable to air and difficult to handle. Since Ru (Cp) 2 exists as a solid near room temperature and hardly dissolves in an organic solvent, the supply to the film formation chamber must be relied on by a sublimation method. However, it has the advantage of being stable to air and easy to handle.
[0004]
Studies on film formation by MOCVD using Ru (Cp) 2 are described in Thin Solid Films 287 (1996) P. 74-79 (PCLiao et al.), Jpn. J. Appl. Physics, 38 (1999) 2194-2199. (Aoyama et al.) And 47th JSAP Scientific Lecture Proceedings P515 (Kadoshima et al.). According to these, a Ru or RuO 2 film is formed by MOCVD using a solid sublimation method to obtain a film having excellent characteristics.
[0005]
[Problems to be solved by the invention]
However, the research report on the film formation by the MOCVD method using Ru (Cp) 2 described above focuses on evaluating the characteristics of the formed Ru and RuO 2 films. ) There is no description about the influence of the film formation rate and the reproducibility of the film formation rate on the particle size of 2 .
[0006]
An object of the present invention is to provide a ruthenium compound for metal organic chemical vapor deposition capable of controlling the deposition rate and the reproducibility of the film deposition rate by metal organic chemical vapor deposition using solid sublimation, and a ruthenium-containing thin film obtained by the compound Is to provide.
[0007]
[Means for Solving the Problems ]
The invention according to claim 1 is a ruthenium compound comprising Ru (Cp) 2 , wherein the compound has a particle size of 0.09 to 0.12 mm and an average particle size of 0.1 mm and a particle size of 1 It is a ruthenium compound for metal organic chemical vapor deposition which is a compound in which a ruthenium compound having an average particle diameter of 2.0 to 2.5 mm is mixed in a ratio of 2 to 8: 8 to 2.
In the invention according to claim 1 , a compound having a particle size range in which the reproducibility is moderate but the film forming speed is particularly excellent, and a particle size range in which the film forming speed is moderate but the reproducibility of the film forming speed is particularly excellent. By mixing the above compound at the predetermined ratio, a compound having both advantages is obtained.
[0008]
The invention according to claim 2 is a ruthenium-containing thin film formed by the MOCVD method using the solid sublimation method using the ruthenium compound according to claim 1 as a raw material .
In the invention according to claim 2, since the raw material can be stably supplied to the MOCVD apparatus by using the ruthenium compound according to claim 1, the film thickness of the formed ruthenium-containing thin film is always made uniform. Things are obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
The ruthenium compound of the present invention uses Ru (Cp) 2 as a raw material used in the MOCVD method, and Ru (Cp) 2 which has been problematic in terms of stability and stability in order to obtain the optimum deposition rate and reproducibility of the deposition rate. ) To optimize the particle size of 2 .
[0010]
A characteristic configuration of the present invention is a ruthenium compound made of Ru (Cp) 2 , which has a particle size of 0.09 to 0.12 mm and an average particle size of 0.1 mm and a particle size of 1.5. It is a compound in which a ruthenium compound having an average particle diameter of 2.0 mm is mixed at a ratio of 2-8: 8-2 . When the ruthenium-containing thin film is formed by the MOCVD method using the solid sublimation method using this ruthenium compound by controlling the particle diameter within the above numerical range, the film formation rate and the reproducibility of the film formation rate are excellent.
Here, the particle diameter of the ruthenium compound of the present invention is an average value of the major axis length and the minor axis length when Ru (Cp) 2 is observed with an optical microscope.
[0011]
As a method for controlling the particle diameter within a predetermined numerical range, for example, when controlling the particle diameter of the ruthenium compound to 0.02 to 5 mm, first, a first mesh having a size that allows particles having a particle diameter of less than 5 mm to pass through. The ruthenium compound is passed through one sieve to remove particles larger than 5 mm that do not pass through the sieve, and then the second sieve having a sieve having a size that allows particles smaller than 0.02 mm to pass through is passed through the second sieve. It is obtained by passing a ruthenium compound that has passed through one sieve and removing particles less than 0.02 mm that have passed through the second sieve.
[0012]
In addition, a ruthenium compound having a particle size of 0.09 to 0.12 mm and an average particle size of 0.1 mm has a reproducibility of the film formation rate, but the film formation rate is particularly excellent. A ruthenium compound having an average particle diameter of 2.5 mm and 2.5 mm has a particularly good reproducibility of the film forming speed although the film forming speed is moderate. A compound obtained by mixing two kinds of ruthenium compounds having different particle diameters and average particle diameters in a ratio of 2 to 8: 8 to 2 is a compound having both advantages. A preferable mixing ratio of the compound obtained by mixing is 3 to 7: 7 to 3.
[0013]
As shown in FIG. 1, the MOCVD apparatus using the solid sublimation method includes a film forming chamber 10 and the entire apparatus is covered with a heating device 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 having a pressure gauge 14 and a needle valve 16. The heating device 11 includes a raw material tank 18 in which Ru (Cp) 2 that is solid at room temperature is stored. A carrier gas introduction pipe 21 is connected to the raw material tank 18 through a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material tank 18. The supply pipe 22 is provided with a filter 23, a needle valve 24, and a gas flow rate adjusting device 26, and the supply pipe 22 is connected to the film forming chamber 10. An oxygen gas introduction pipe 29 is connected to the film forming chamber 10 via a needle valve 27 and a gas flow rate control device 28.
[0014]
In this apparatus, the raw material tank 18 is heated to about 180 ° C. by the heating device 11 and Ru (Cp) 2 stored in the tank 18 is gradually sublimated. Carrier gas is introduced into the raw material tank 18 from the introduction pipe 21, and Ru (Cp) 2 sublimated in the raw material tank 18 is conveyed to the film forming chamber 10 through the supply pipe 22. Examples of the carrier gas include argon, helium, nitrogen and the like. Further, oxygen gas is supplied from the oxygen gas introduction pipe 29 into the film forming chamber 10. In the film forming chamber 10, Ru (Cp) 2 vapor is thermally decomposed together with oxygen, and Ru or RuO 2 generated thereby is deposited on the heated substrate 13 to form a Ru-containing thin film .
[0015]
【The invention's effect】
As mentioned above, metal-organic chemical vapor deposition for the ruthenium compound of the present invention is a ruthenium compound consisting Ru (Cp) 2, to control the particle size of this compound to a suitable particle size, particle size, average A ruthenium compound obtained by mixing two kinds of ruthenium compounds having different particle diameters in a desired ratio realizes an appropriate film formation rate and reproducibility of the film formation rate.
[Brief description of the drawings]
FIG. 1 is a schematic view of an MOCVD apparatus using a solid sublimation method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Deposition chamber 11 Heating device 12 Heater 13 Substrate 14 Pressure gauge 16 Needle valve 17 Pipe 18 Raw material tank 19 Gas flow control device 21 Carrier gas introduction pipe 22 Supply pipe 23 Filter 24 Needle valve 26 Gas flow control device 27 Needle valve 28 Gas Flow control device 29 Oxygen gas introduction pipe

Claims (2)

ビス(シクロペンタジエニル)ルテニウムからなるルテニウム化合物であって、
前記化合物が粒径が0.09〜0.12mm、平均粒径が0.1mmであるルテニウム化合物と粒径が1.5〜2.5mm、平均粒径が2.0mmであるルテニウム化合物とを2〜8:8〜2の割合で混合した化合物である有機金属化学蒸着法用ルテニウム化合物。
A ruthenium compound comprising bis (cyclopentadienyl) ruthenium,
A ruthenium compound having a particle size of 0.09 to 0.12 mm and an average particle size of 0.1 mm and a ruthenium compound having a particle size of 1.5 to 2.5 mm and an average particle size of 2.0 mm 2-8: A ruthenium compound for metal organic chemical vapor deposition which is a compound mixed at a ratio of 8-2.
請求項1記載のルテニウム化合物を原料にして固体昇華法を用いた有機金属化学蒸着法により成膜されたルテニウム含有薄膜。A ruthenium-containing thin film formed by metalorganic chemical vapor deposition using a solid sublimation method using the ruthenium compound according to claim 1 as a raw material .
JP2001360297A 2001-11-27 2001-11-27 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound Expired - Fee Related JP3932874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360297A JP3932874B2 (en) 2001-11-27 2001-11-27 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360297A JP3932874B2 (en) 2001-11-27 2001-11-27 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound

Publications (2)

Publication Number Publication Date
JP2003160865A JP2003160865A (en) 2003-06-06
JP3932874B2 true JP3932874B2 (en) 2007-06-20

Family

ID=19171144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360297A Expired - Fee Related JP3932874B2 (en) 2001-11-27 2001-11-27 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound

Country Status (1)

Country Link
JP (1) JP3932874B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921062B2 (en) 2002-07-23 2005-07-26 Advanced Technology Materials, Inc. Vaporizer delivery ampoule
US7300038B2 (en) * 2002-07-23 2007-11-27 Advanced Technology Materials, Inc. Method and apparatus to help promote contact of gas with vaporized material
JP4571787B2 (en) 2003-07-08 2010-10-27 東ソー・ファインケム株式会社 Filling container for solid organometallic compound and filling method thereof
JP4585182B2 (en) * 2003-07-11 2010-11-24 東ソー・ファインケム株式会社 Trimethylindium filling method and filling container
US8673413B2 (en) * 2006-01-27 2014-03-18 Tosoh Finechem Corporation Method for packing solid organometallic compound and packed container
JP2021001361A (en) * 2019-06-19 2021-01-07 東京エレクトロン株式会社 Processing method and substrate processing system

Also Published As

Publication number Publication date
JP2003160865A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US5462014A (en) Apparatus for growing a thin metallic film
TWI383449B (en) Manufacturing method for a semiconductor device, substrate processing apparatus and substrate processing method
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
JP2009084625A (en) Raw material gas supply system and film deposition apparatus
JP3563819B2 (en) Method for producing titanium nitride thin film and thin film producing apparatus used for the method
JP2002167672A (en) Film deposition method
JP3932874B2 (en) Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound
JP4559223B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2000104172A (en) Coating film forming method, coating film forming apparatus and solid raw material
JPH09246214A (en) Thin film formation, semiconductor device and manufacture thereof
JP3676004B2 (en) Method for forming ruthenium oxide film and method for manufacturing semiconductor device
KR100393209B1 (en) A method for formation of semiconductor capacitor having Ta2O5 film as dielectric layer
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
JP4051532B2 (en) Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound
TWI363377B (en)
JP4421119B2 (en) Manufacturing method of semiconductor device
JP3130757B2 (en) Method for forming thin film for capacitor electrode, semiconductor device and method for manufacturing the same
JP3194256B2 (en) Film growth method and film growth apparatus
Hiratani et al. Crystallographic and electrical properties of platinum film grown by chemical vapor deposition using (methylcyclopentadienyl) trimethylplatinum
JP6114525B2 (en) Method for forming ruthenium oxide film
JP2887240B2 (en) Thin film growth method and apparatus
JP2004256510A (en) Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
JP2001332514A (en) Method of forming oriented metal thin film and function device therewith
JP4055935B2 (en) Method for producing iridium thin film using chemical vapor deposition
JP2004292332A (en) Method for producing ruthenium compound and ruthenium-containing thin film obtained from the compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees