JP4055935B2 - Method for producing iridium thin film using chemical vapor deposition - Google Patents

Method for producing iridium thin film using chemical vapor deposition Download PDF

Info

Publication number
JP4055935B2
JP4055935B2 JP2002058542A JP2002058542A JP4055935B2 JP 4055935 B2 JP4055935 B2 JP 4055935B2 JP 2002058542 A JP2002058542 A JP 2002058542A JP 2002058542 A JP2002058542 A JP 2002058542A JP 4055935 B2 JP4055935 B2 JP 4055935B2
Authority
JP
Japan
Prior art keywords
thin film
film
substrate
iridium
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002058542A
Other languages
Japanese (ja)
Other versions
JP2003253443A (en
Inventor
石原  宏
信人 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Tokyo Institute of Technology NUC
Original Assignee
Sharp Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Tokyo Institute of Technology NUC filed Critical Sharp Corp
Priority to JP2002058542A priority Critical patent/JP4055935B2/en
Publication of JP2003253443A publication Critical patent/JP2003253443A/en
Application granted granted Critical
Publication of JP4055935B2 publication Critical patent/JP4055935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は化学気相成長法を用いたイリジウム薄膜の製造方法に関する。より詳しくは、有機金属化学気相成長法(MOCVD法)により、有機イリジウム化合物を原料として基板上にイリジウム薄膜を形成する方法に関する。
【0002】
【従来の技術】
不揮発性記憶素子を構成する強誘電体キャパシタの電極材料には、強誘電体材料の形成に必要な高温プロセスへの耐熱性が要求される。このため、当初は電極材料としてPt(白金)を用いるのが通常であった。しかしながら、Pt電極を用いた場合、特にPZTでは疲労特性やインプリント特性が非常に悪く、デバイスとしての信頼性の面で大きな問題となっていた。そこで、Pt電極に変わる電極材料としてIr(イリジウム)あるいはその酸化物であるIrO2が注目された。これらのIrまたはIrO2材料は、高温プロセスに対する耐熱性を有していると同時に、PZTキャパシタの疲労特性、インプリント特性改善という効果を持つ。更には、高温プロセス時における酸素バリアの役目も果たす。特に、不揮発性記憶素子の高集積化に必要なスタック型メモリセル構造において、ポリシリコンプラグとキャパシタ電極材料との相互拡散を防止するための拡散バリア膜の酸化を防止するために使用することができる。このことから、これらのIrまたはIrO2材料は、PZTのみでなく、SBTを用いた強誘電体キャパシタ用にも盛んに検討されており、今後の電極材料として主流になっていくと思われる。
【0003】
これらのIrまたはIrO2材料は、当初はスパッタリング法で形成されていた。しかし、スパッタリング法ではキャパシタの立体構造における段差被覆性が不十分であり、今後の高集積化を考慮すれば、段差被覆性に優れた化学気相成長法(CVD法)、特に有機金属化学気相成長法(MOCVD法)による薄膜形成が必要となる。MOCVD法による薄膜形成の利点として、上記のように段差被覆性が優れた点のみではなく、スパッタリング法による場合と異なり、下地基板がプラズマに晒されることがない点が挙げられる。特に、MOCVD法による薄膜形成技術を次世代強誘電体デバイスである強誘電体ゲート−トランジスタの中間電極形成に用いれば、トランジスタのチャネルへのプラズマダメージを抑えることができ、良好なトランジスタ特性が得られると考えられる。
【0004】
近年、このイリジウムに関して幾つかのMOCVD原料が開発されており、MOCVD法による薄膜形成の検討が始まっている。例えば、特開平06−290789号公報、特開平08−260148号公報には、固体原料であるIr(acac)3やIr(DPM)3を200℃程度の温度で昇華させ、蒸気ガスの状態で基板上に供給して、イリジウム薄膜を形成する技術が開示されている。しかしながら、これらの原料(固体原料)の蒸気圧は温度の変動に敏感であるため、原料の昇華に必要とされる200℃程度の温度で蒸気圧を高い精度で一定に保つことが難しい、また蒸気ガスが配管中で固化して詰まりの原因になるなど、安定な原料供給が困難であるといった問題がある。これに対して、いくつかの液体原料も開発されており、検討がなされている。例えば特開平11−292888号公報には、室温で液体である原料イリジウム−エチルシクロペンタジエニル−1,5−シクロオクタジエン(Ir(C5425)(1,5−C812)またはIr(EtCp)(cod)とも表記される。)の製造方法及びその原料を用いたイリジウム薄膜のMOCVD法による形成方法が開示されている。しかしながら、同公報には、基板温度300℃、低酸素分圧という条件下でイリジウム薄膜が形成されたことが記載されているものの、形成されたイリジウム薄膜の膜質に関しては何ら記載されていない。
【0005】
【発明が解決しようとする課題】
イリジウム薄膜をMOCVD法により形成した場合、一般的に、薄膜の表面形状が粗いという問題がある。通常、有機イリジウム化合物をCVD原料とし、酸素ガスや水素ガスを反応ガスとして、250℃〜500℃程度の温度に保たれた基板上に気相成長させるが、最適な基板温度と酸素分圧の条件を選んでやらなければ、膜表面の凹凸が激しい、あるいは隙間の多いポーラスな膜となる。例えば、ある基板温度で酸素分圧が高すぎると、結晶性が良好で抵抗率が低い値を示すものの、グレインサイズが大きくなり、膜の凹凸が激しくなる傾向がある。逆に酸素分圧が低すぎると、グレインサイズの減少によって膜の平坦性は向上するものの、残留カーボンによる結晶性の低下のために抵抗率が大きくなる傾向がある。
【0006】
また、イリジウム薄膜をMOCVD法により形成した場合、一般的に、緻密なイリジウム膜を得ることが難しいという問題がある。酸素分圧が低く結晶性が良好でない場合は、細かいグレイン同士が繋がらず、ポーラスな膜になる傾向がある。逆に酸素分圧が高く結晶性が良好な場合も、グレインの増大のために隙間の多い膜となる傾向がある。特に、このような粒界が疎な膜の場合、次のような問題が生じる。すなわち、このイリジウム膜を強誘電体の下地電極として600℃以上の強誘電体薄膜形成プロセスを経ると、膜の凝縮が起こるために強誘電体キャパシタの特性が著しく劣化することになる。また、膜が緻密であっても、表面の凹凸が大きい場合、強誘電体薄膜の膜厚が薄い部分が生じ、強誘電体キャパシタの耐圧劣化の要因となる。
【0007】
また、イリジウム薄膜の平坦性を改善する手法として、特開2001−181841号公報には、液体原料Ir(EtCp)(cod)を用い、SiO2/Si基板を水素雰囲気中で暴露したあと基板温度250℃〜400℃の減圧酸素雰囲気中で成膜を行う方法により、平坦なイリジウム薄膜が得られることが開示されている。しかしながら、そのように水素雰囲気を使うと、下地膜として用いられた金属酸化物や金属窒化物などが還元や分解によって劣化することが予想される。このため、この方法は、用途が限定されるという問題がある。
【0008】
そこで、この発明の課題は、広い用途に適し、緻密かつ平坦なイリジウム薄膜を形成できる化学気相成長法を用いたイリジウム薄膜の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、この発明の化学気相成長法を用いたイリジウム薄膜の製造方法は、反応室内に基板を収容し、上記基板を加熱した状態で上記反応室内にイリジウム化合物であるIr(EtCp)(cod)を含んだキャリアガスと酸素ガスとを導入して、上記基板上にイリジウム薄膜を形成する化学気相成長法を用いたイリジウム薄膜の製造方法において、上記反応室内の圧力を1Torr〜10Torrの範囲、上記基板の温度を450℃〜550℃の範囲、上記反応室内の酸素分圧を0.05Torr〜0.5Torrの範囲にそれぞれ設定することを特徴とする。
【0010】
この発明の製造方法により形成されたイリジウム薄膜は、後述するように、緻密かつ平坦で抵抗率も低い。したがって、この発明の製造方法を、強誘電体キャパシタの電極材料(下部電極あるいは上部電極)の形成に適用した場合、強誘電体の良好な特性を引き出すことができる。また、CVD法による成膜であるため、段差被覆性が良好であり、立体構造のキャパシタの形成に非常に有用である。また、この発明の製造方法は、水素ではなく酸素を反応ガスとして用いているので、広い用途に適する。
【0011】
また、一実施形態の化学気相成長法を用いたイリジウム薄膜の製造方法は、上記Ir(EtCp)(cod)イリジウム化合物を含んだキャリアガスをバブリング法により生成することを特徴とする。
【0012】
また、一実施形態の化学気相成長法を用いたイリジウム薄膜の製造方法は、上記キャリアガスとしてアルゴン(Ar)を用いることを特徴とする。
【0013】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0014】
図1は、本発明のイリジウム薄膜の製造方法に用いられるMOCVD装置の構成を示している。このMOCVD装置は、成膜を行うべき基板9を収容するための反応室5と、液体原料Ir(EtCp)(cod)4を収容するためのCVD原料用シリンダ3とを備えている。
【0015】
反応室5には、基板加熱用ヒータ7を内蔵したヒータブロック13が設けられている。このヒータブロック13上に基板用サセプタ8を介して基板9が水平に載置される。また、反応室5の天井壁にはガス導入口17が形成されている。ガス導入口17と基板用サセプタ8との間には、ガスシャワーヘッド6が配置されている。このガスシャワーヘッド6は、ガス導入口17を通して導入されたガスを、基板面へ略均一に供給するために働く。
【0016】
CVD原料用シリンダ3には、シリンダ壁面を貫通して配管14A,14Bが取り付けられている。シリンダ3内では、バブリング法を行うために、上流側の配管14Aの端部は液体原料4内に配置され、下流側の配管14Bの端部は液体原料4の液面の上方に配置されている。上流側の配管14Aにはアルゴン(Ar)からなるキャリアガスが流され、このArキャリアガスが液体原料4内を泡になって通って、液体原料4の蒸気を含んだArキャリアガスとなる(バブリング法)。この液体原料4の蒸気を含んだArキャリアガスは、下流側の配管14B、ガス導入口17を通して、反応室5内へ供給される。これとともに、反応室5内へは、配管15を通して、酸素(O2)ガスが供給される。これらのArキャリアガス、O2ガスの流量は、それぞれ配管14A,15に介挿されたArキャリアガス用流量計2、O2ガス用流量計1(いずれもマスフローコントローラ(MFC)からなる)によって制御される。
【0017】
反応室5内のガス(未反応のガスなど)は、ガス排気管16を介して真空ポンプ12によって排気されるようになっている。この排気の流量はガス排気管16に介挿された圧力制御バルブ11によって制御される。反応室5内の圧力は圧力計10によって監視される。
【0018】
さて、この装置を用いてイリジウム薄膜の形成を行う場合、液体原料であるIr(EtCp)(cod)4をシリンダ容器3に詰め、Arをキャリアガスとしてバブリング法により、原料ガスの蒸気を反応室5へ搬送する。一方、原料を分解するための反応ガスとして、O2ガスを反応室5内に導入する。このとき、蒸気圧を高めるためにシリンダ容器3を80℃〜140℃程度に加熱するのが適当である。加熱方法は、シリンダ容器3を恒温オイル槽に浸す、あるいはシリンダ容器3にリボンヒータを巻いて加熱する等何でも良い。また同様にシリンダ3から反応室5までの配管14Bも、途中で原料が凝集するのを防ぐため、シリンダ容器3の加熱温度以上の温度に加熱するのが良い。Arキャリアガス流量、O2ガス流量はそれぞれ0sccm〜1000sccm程度の範囲に設定するのが通常である。
【0019】
成膜がなされる基板9は、トランジスタなどの素子や層間絶縁膜、ポリシリコンプラグ、メタル配線等が形成されたシリコン基板など、何でも良い。以下の例では、Si基板上に下地膜としてSiO2が形成された状態の基板(これを「SiO2/Si基板」と呼ぶ。)を用いるものとする。
【0020】
図2は、反応室5内の圧力(反応室5におけるArキャリアガスとO2ガスとの混合ガスの全圧力を意味する。以下「反応室圧力」という。)を5Torrに設定して成膜したイリジウム膜表面の緻密さを、隙間を含む割合(これを「隙間含有率」と呼ぶ。)で評価した結果(散布図)を表している。図中、○印は隙間含有率が0.1%未満の膜、△印は隙間含有率が0.1%〜1%の膜、□印は隙間含有率が1%〜10%の膜、◆印は隙間含有率が1%〜10%の膜を示している。この図2から、基板温度450℃〜550℃、反応室5内の酸素分圧(以下、単に「酸素分圧」という。)0.05Torr〜0.5Torrの範囲で、隙間含有率1%以下の緻密な膜が得られることが分かる。また、反応室圧力が1Torr〜10Torrの範囲で、同じ結果が得られた。
【0021】
このような範囲にある条件の例として、基板温度を500℃、反応室圧力を5Torr、酸素分圧を0.25Torrに設定し、SiO2/Si基板上に成膜した場合の、イリジウム薄膜の表面SEM写真及び断面SEM写真をそれぞれ図3(a)(b)に示す。この図3(a)(b)から、この膜は緻密かつ平坦な膜であることが分かる。この膜の抵抗率は8.7μΩcm、自乗平均表面粗さは3.0nmであった。これに対して、隙間含有率が高くなる条件の例として、基板温度を300℃、反応室圧力を5Torr、酸素分圧を1.5Torrに設定し、SiO2/Si基板上に成膜した場合の、イリジウム膜の表面SEM写真及び断面SEM写真をそれぞれ図4(a)(b)に示す。図4(a)(b)から、この膜は非常に隙間の多い疎な膜であることが分かる。この膜の抵抗率は20.5μΩcm、自乗平均表面粗さは7.7nmであった。
【0022】
このような膜質の相違が生ずる理由は、次のように説明される。すなわち、図4(a)(b)のように成膜時の基板温度が300℃程度と低い場合、原料の分解には主に酸素による分解が寄与しており、できる限り良好な膜質を得るには比較的高い酸素分圧が必要である。しかしながら、それでも膜中にカーボンが残りやすく、また過剰に酸素を導入すると膜中に酸素が取り込まれるようになり、モフォロジーの荒れなどの悪影響を与える。従って、緻密で平坦という良好な膜質が得られる酸素分圧の範囲がほとんどないか、あっても非常に狭い範囲に限られることになる。これに対して、図3(a)(b)のように成膜時の基板温度が500℃程度と高い場合は、原料の分解に酸素によるものと熱のみによるものの両方が寄与していると考えられる。従って酸素分圧を比較的低く抑えてもカーボンが膜中に残りにくく、膜質の良好なイリジウム膜が得られるようになると思われる。
【0023】
【発明の効果】
以上より明らかなように、この発明の化学気相成長法を用いたイリジウム薄膜の製造方法によれば、緻密かつ平坦なイリジウム薄膜を形成できる。
【図面の簡単な説明】
【図1】 本発明のイリジウム薄膜の製造方法に用いられるMOCVD装置の構成を示す図である。
【図2】 MOCVD法によるイリジウム薄膜形成時における各基板温度及び酸素分圧で形成した膜の膜表面における隙間含有率を示すグラフである。
【図3】 (a)は、基板温度500℃、反応室圧力5Torr、酸素分圧0.25Torrとし、SiO2/Si基板上にイリジウム薄膜を形成した場合の表面SEM写真である。(b)は、基板温度500℃、反応室圧力5Torr、酸素分圧0.25Torrとし、SiO2/Si基板上にイリジウム薄膜を形成した場合の断面SEM写真である。
【図4】 (a)は、基板温度300℃、反応室圧力5Torr、酸素分圧1.5Torrとし、SiO2/Si基板上にイリジウム薄膜を形成した場合の表面SEM写真である。(b)は、基板温度300℃、反応室圧力5Torr、酸素分圧1.5Torrとし、SiO2/Si基板上にイリジウム薄膜を形成した場合の断面SEM写真である。
【符号の説明】
1 O2ガス用流量計
2 Arキャリアガス用流量計
3 CVD原料用シリンダ
4 液体原料Ir(EtCp)(cod)
5 反応室
6 ガスシャワーヘッド
7 基板加熱用ヒータ
8 基板用サセプタ
9 基板
10 圧力計
11 圧力制御バルブ
12 真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an iridium thin film using chemical vapor deposition. More specifically, the present invention relates to a method of forming an iridium thin film on a substrate using an organic iridium compound as a raw material by a metal organic chemical vapor deposition method (MOCVD method).
[0002]
[Prior art]
The electrode material of the ferroelectric capacitor that constitutes the nonvolatile memory element is required to have heat resistance to a high temperature process necessary for forming the ferroelectric material. For this reason, it was normal to use Pt (platinum) as an electrode material at the beginning. However, when a Pt electrode is used, particularly in PZT, fatigue characteristics and imprint characteristics are very poor, which is a serious problem in terms of device reliability. Thus, Ir (iridium) or its oxide IrO 2 has attracted attention as an electrode material that can be used as a Pt electrode. These Ir or IrO 2 materials have heat resistance against high-temperature processes and, at the same time, have an effect of improving fatigue characteristics and imprint characteristics of PZT capacitors. Furthermore, it also serves as an oxygen barrier during high temperature processes. In particular, in a stacked memory cell structure necessary for high integration of a nonvolatile memory element, it is used to prevent oxidation of a diffusion barrier film for preventing mutual diffusion between a polysilicon plug and a capacitor electrode material. it can. Therefore, these Ir or IrO 2 materials are actively studied not only for PZT but also for ferroelectric capacitors using SBT, and are expected to become mainstream as future electrode materials.
[0003]
These Ir or IrO 2 materials were originally formed by sputtering. However, in the sputtering method, the step coverage in the three-dimensional structure of the capacitor is insufficient, and considering the future high integration, the chemical vapor deposition method (CVD method), which is excellent in the step coverage, particularly the organometallic chemical vapor. Thin film formation by the phase growth method (MOCVD method) is required. Advantages of forming a thin film by the MOCVD method include not only that the step coverage is excellent as described above, but also that the base substrate is not exposed to plasma unlike the case of the sputtering method. In particular, if the thin film formation technology by MOCVD is used to form the intermediate electrode of the ferroelectric gate-transistor, which is the next-generation ferroelectric device, plasma damage to the transistor channel can be suppressed, and good transistor characteristics can be obtained. It is thought that.
[0004]
In recent years, several MOCVD raw materials have been developed for this iridium, and studies on thin film formation by the MOCVD method have begun. For example, in Japanese Patent Application Laid-Open Nos. 06-290789 and 08-260148, Ir (acac) 3 and Ir (DPM) 3 which are solid raw materials are sublimated at a temperature of about 200 ° C. A technique for forming an iridium thin film by supplying on a substrate is disclosed. However, since the vapor pressure of these raw materials (solid raw materials) is sensitive to temperature fluctuations, it is difficult to keep the vapor pressure constant with high accuracy at a temperature of about 200 ° C. required for sublimation of the raw materials. There is a problem that it is difficult to supply a stable raw material, for example, vapor gas is solidified in a pipe and causes clogging. On the other hand, several liquid raw materials have been developed and are being studied. For example, JP-A-11-292888 discloses a raw material iridium-ethylcyclopentadienyl-1,5-cyclooctadiene (Ir (C 5 H 4 C 2 H 5 ) (1,5-C 8 H 12 ) or Ir (EtCp) (cod).) And a method for forming an iridium thin film using the raw material by MOCVD. However, although the publication describes that the iridium thin film was formed under the conditions of the substrate temperature of 300 ° C. and the low oxygen partial pressure, there is no description regarding the film quality of the formed iridium thin film.
[0005]
[Problems to be solved by the invention]
When an iridium thin film is formed by the MOCVD method, there is generally a problem that the surface shape of the thin film is rough. Usually, an organic iridium compound is used as a CVD raw material, and oxygen gas or hydrogen gas is used as a reaction gas to cause vapor phase growth on a substrate maintained at a temperature of about 250 ° C. to 500 ° C. Unless the conditions are selected, the film surface becomes a porous film with severe irregularities or many gaps. For example, if the oxygen partial pressure is too high at a certain substrate temperature, the crystallinity is good and the resistivity is low, but the grain size tends to be large and the film unevenness tends to be severe. On the other hand, if the oxygen partial pressure is too low, the flatness of the film is improved by reducing the grain size, but the resistivity tends to increase due to a decrease in crystallinity due to residual carbon.
[0006]
Further, when the iridium thin film is formed by the MOCVD method, there is a problem that it is generally difficult to obtain a dense iridium film. When the oxygen partial pressure is low and the crystallinity is not good, fine grains are not connected to each other and a porous film tends to be formed. Conversely, even when the oxygen partial pressure is high and the crystallinity is good, the film tends to be a film with many gaps due to the increase in grains. In particular, in the case of such a film having a loose grain boundary, the following problem occurs. That is, when this iridium film is used as a ferroelectric base electrode and a ferroelectric thin film forming process at 600 ° C. or higher is performed, the film condenses and the characteristics of the ferroelectric capacitor are remarkably deteriorated. Even if the film is dense, if the surface unevenness is large, a portion where the thickness of the ferroelectric thin film is thin is generated, which causes deterioration of the breakdown voltage of the ferroelectric capacitor.
[0007]
As a technique for improving the flatness of an iridium thin film, Japanese Patent Application Laid-Open No. 2001-181841 discloses that a liquid source Ir (EtCp) (cod) is used, and a substrate temperature after exposing a SiO 2 / Si substrate in a hydrogen atmosphere. It is disclosed that a flat iridium thin film can be obtained by a method of forming a film in a reduced pressure oxygen atmosphere at 250 ° C. to 400 ° C. However, when such a hydrogen atmosphere is used, it is expected that metal oxides, metal nitrides, and the like used as the base film deteriorate due to reduction or decomposition. For this reason, this method has a problem that its application is limited.
[0008]
Accordingly, an object of the present invention is to provide a method for producing an iridium thin film using chemical vapor deposition which is suitable for a wide range of applications and can form a dense and flat iridium thin film.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the method for producing an iridium thin film using the chemical vapor deposition method of the present invention accommodates a substrate in a reaction chamber, and Ir (which is an iridium compound in the reaction chamber while the substrate is heated ). In the method for producing an iridium thin film using a chemical vapor deposition method in which a carrier gas containing EtCp) (cod) and an oxygen gas are introduced to form an iridium thin film on the substrate, the pressure in the reaction chamber is set to 1 Torr. 10 to Torr, the substrate temperature is set to 450 ° C. to 550 ° C., and the oxygen partial pressure in the reaction chamber is set to 0.05 Torr to 0.5 Torr.
[0010]
As will be described later, the iridium thin film formed by the manufacturing method of the present invention is dense and flat and has a low resistivity. Therefore, when the manufacturing method of the present invention is applied to the formation of the electrode material (lower electrode or upper electrode) of the ferroelectric capacitor, good characteristics of the ferroelectric can be extracted. In addition, since the film is formed by the CVD method, the step coverage is good, which is very useful for forming a three-dimensional capacitor. In addition, the production method of the present invention uses oxygen instead of hydrogen as a reaction gas, and thus is suitable for a wide range of applications.
[0011]
In one embodiment of the method for producing an iridium thin film using the chemical vapor deposition method, a carrier gas containing the Ir (EtCp) (cod) iridium compound is generated by a bubbling method.
[0012]
Moreover, the manufacturing method of the iridium thin film using the chemical vapor deposition method of one Embodiment uses argon (Ar) as said carrier gas.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0014]
FIG. 1 shows the configuration of an MOCVD apparatus used in the method for producing an iridium thin film of the present invention. The MOCVD apparatus includes a reaction chamber 5 for accommodating a substrate 9 on which a film is to be formed, and a CVD material cylinder 3 for accommodating a liquid material Ir (EtCp) (cod) 4.
[0015]
The reaction chamber 5 is provided with a heater block 13 containing a substrate heater 7. A substrate 9 is placed horizontally on the heater block 13 via a substrate susceptor 8. A gas inlet 17 is formed in the ceiling wall of the reaction chamber 5. A gas shower head 6 is disposed between the gas inlet 17 and the substrate susceptor 8. The gas shower head 6 functions to supply the gas introduced through the gas introduction port 17 substantially uniformly to the substrate surface.
[0016]
Pipes 14A and 14B are attached to the CVD raw material cylinder 3 through the cylinder wall surface. In the cylinder 3, in order to perform the bubbling method, the end of the upstream pipe 14A is disposed in the liquid raw material 4, and the end of the downstream pipe 14B is disposed above the liquid surface of the liquid raw material 4. Yes. A carrier gas made of argon (Ar) flows through the upstream pipe 14A, and this Ar carrier gas passes through the liquid raw material 4 in the form of bubbles to become an Ar carrier gas containing the vapor of the liquid raw material 4 ( Bubbling method). The Ar carrier gas containing the vapor of the liquid raw material 4 is supplied into the reaction chamber 5 through the downstream pipe 14 </ b> B and the gas inlet 17. At the same time, oxygen (O 2 ) gas is supplied into the reaction chamber 5 through the pipe 15. The flow rates of these Ar carrier gas and O 2 gas are determined by an Ar carrier gas flow meter 2 and an O 2 gas flow meter 1 (both comprising a mass flow controller (MFC)) inserted in the pipes 14A and 15 respectively. Be controlled.
[0017]
A gas (such as unreacted gas) in the reaction chamber 5 is exhausted by a vacuum pump 12 through a gas exhaust pipe 16. The flow rate of this exhaust gas is controlled by a pressure control valve 11 inserted in the gas exhaust pipe 16. The pressure in the reaction chamber 5 is monitored by a pressure gauge 10.
[0018]
When an iridium thin film is formed using this apparatus, liquid source material Ir (EtCp) (cod) 4 is filled in a cylinder container 3, and vapor of the source gas is supplied into the reaction chamber by bubbling using Ar as a carrier gas. Carry to 5. On the other hand, O 2 gas is introduced into the reaction chamber 5 as a reaction gas for decomposing the raw material. At this time, it is appropriate to heat the cylinder container 3 to about 80 ° C. to 140 ° C. in order to increase the vapor pressure. The heating method may be anything such as immersing the cylinder container 3 in a constant temperature oil tank or heating the cylinder container 3 by winding a ribbon heater. Similarly, the pipe 14 </ b> B from the cylinder 3 to the reaction chamber 5 is preferably heated to a temperature equal to or higher than the heating temperature of the cylinder container 3 in order to prevent the raw materials from aggregating on the way. In general, the Ar carrier gas flow rate and the O 2 gas flow rate are each set in the range of about 0 sccm to 1000 sccm.
[0019]
The substrate 9 on which the film is formed may be any element such as an element such as a transistor, a silicon substrate on which an interlayer insulating film, a polysilicon plug, a metal wiring, or the like is formed. In the following example, a substrate in which SiO 2 is formed as a base film on a Si substrate (this is referred to as “SiO 2 / Si substrate”) is used.
[0020]
FIG. 2 shows that the pressure in the reaction chamber 5 (meaning the total pressure of the mixed gas of Ar carrier gas and O 2 gas in the reaction chamber 5; hereinafter referred to as “reaction chamber pressure”) is set to 5 Torr. 3 shows the result (scatter diagram) of evaluating the denseness of the surface of the iridium film at a ratio including gaps (this is referred to as “gap content ratio”). In the figure, a circle indicates a film with a gap content of less than 0.1%, a triangle indicates a film with a gap content of 0.1% to 1%, a square indicates a film with a gap content of 1% to 10%, The mark ◆ indicates a film having a gap content of 1% to 10%. From FIG. 2, the substrate temperature is 450 ° C. to 550 ° C., the oxygen partial pressure in the reaction chamber 5 (hereinafter, simply referred to as “oxygen partial pressure”) is 0.05 Torr to 0.5 Torr, and the gap content is 1% or less. It can be seen that a dense film is obtained. The same results were obtained when the reaction chamber pressure was in the range of 1 Torr to 10 Torr.
[0021]
As an example of the conditions in such a range, the iridium thin film is formed when the substrate temperature is set to 500 ° C., the reaction chamber pressure is set to 5 Torr, the oxygen partial pressure is set to 0.25 Torr, and the film is formed on the SiO 2 / Si substrate. A surface SEM photograph and a cross-sectional SEM photograph are shown in FIGS. 3A and 3B that this film is a dense and flat film. The resistivity of this film was 8.7 μΩcm, and the root mean square surface roughness was 3.0 nm. On the other hand, as an example of the condition for increasing the gap content, when the substrate temperature is set to 300 ° C., the reaction chamber pressure is set to 5 Torr, and the oxygen partial pressure is set to 1.5 Torr, the film is formed on the SiO 2 / Si substrate. FIGS. 4A and 4B show a surface SEM photograph and a cross-sectional SEM photograph of the iridium film, respectively. 4 (a) and 4 (b), it can be seen that this film is a sparse film with very many gaps. The resistivity of this film was 20.5 μΩcm, and the root mean square surface roughness was 7.7 nm.
[0022]
The reason why such a film quality difference occurs is explained as follows. That is, when the substrate temperature at the time of film formation is as low as about 300 ° C. as shown in FIGS. 4A and 4B, the decomposition of the raw material mainly contributes to the decomposition by oxygen, and the best possible film quality is obtained. Requires a relatively high oxygen partial pressure. However, carbon still tends to remain in the film, and when oxygen is introduced excessively, oxygen is taken into the film, which adversely affects the morphology. Therefore, there is little or no oxygen partial pressure range in which a good film quality of denseness and flatness can be obtained. On the other hand, when the substrate temperature at the time of film formation is as high as about 500 ° C. as shown in FIGS. 3A and 3B, both oxygen and heat contribute to the decomposition of the raw material. Conceivable. Therefore, even if the oxygen partial pressure is kept relatively low, carbon is unlikely to remain in the film, and an iridium film with good film quality can be obtained.
[0023]
【The invention's effect】
As is clear from the above, according to the method for producing an iridium thin film using the chemical vapor deposition method of the present invention, a dense and flat iridium thin film can be formed.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of an MOCVD apparatus used in a method for producing an iridium thin film according to the present invention.
FIG. 2 is a graph showing a gap content on a film surface of a film formed at each substrate temperature and oxygen partial pressure when an iridium thin film is formed by MOCVD.
3A is a surface SEM photograph in the case where an iridium thin film is formed on a SiO 2 / Si substrate at a substrate temperature of 500 ° C., a reaction chamber pressure of 5 Torr, and an oxygen partial pressure of 0.25 Torr. FIG. (B) is a cross-sectional SEM photograph when the substrate temperature is 500 ° C., the reaction chamber pressure is 5 Torr, and the oxygen partial pressure is 0.25 Torr, and an iridium thin film is formed on the SiO 2 / Si substrate.
4A is a surface SEM photograph in the case where an iridium thin film is formed on a SiO 2 / Si substrate at a substrate temperature of 300 ° C., a reaction chamber pressure of 5 Torr, and an oxygen partial pressure of 1.5 Torr. FIG. (B) is a cross-sectional SEM photograph in which the substrate temperature is 300 ° C., the reaction chamber pressure is 5 Torr, the oxygen partial pressure is 1.5 Torr, and an iridium thin film is formed on the SiO 2 / Si substrate.
[Explanation of symbols]
1 O 2 gas flow meter 2 Ar carrier gas flow meter 3 CVD raw material cylinder 4 Liquid raw material Ir (EtCp) (cod)
5 reaction chamber 6 gas shower head 7 heater for substrate heating 8 susceptor for substrate 9 substrate 10 pressure gauge 11 pressure control valve 12 vacuum pump

Claims (3)

反応室内に基板を収容し、上記基板を加熱した状態で上記反応室内にイリジウム化合物であるIr(EtCp)(cod)を含んだキャリアガスと酸素ガスとを導入して、上記基板上にイリジウム薄膜を形成する化学気相成長法を用いたイリジウム薄膜の製造方法において、
上記反応室内の圧力を1Torr乃至10Torrの範囲、上記基板の温度を450℃乃至550℃の範囲、上記反応室内の酸素分圧を0.05Torr乃至0.5Torrの範囲にそれぞれ設定することを特徴とする化学気相成長法を用いたイリジウム薄膜の製造方法。
A substrate is accommodated in the reaction chamber, and a carrier gas containing oxygen (Ir (EtCp) (cod) , which is an iridium compound, and oxygen gas are introduced into the reaction chamber while the substrate is heated, and an iridium thin film is formed on the substrate. In the method of manufacturing an iridium thin film using chemical vapor deposition to form
The pressure in the reaction chamber is set in the range of 1 Torr to 10 Torr, the temperature of the substrate is set in the range of 450 ° C. to 550 ° C., and the oxygen partial pressure in the reaction chamber is set in the range of 0.05 Torr to 0.5 Torr. A method for producing an iridium thin film using chemical vapor deposition.
請求項1に記載の化学気相成長法を用いたイリジウム薄膜の製造方法において、
上記Ir(EtCp)(cod)を含んだキャリアガスをバブリング法により生成することを特徴とする化学気相成長法を用いたイリジウム薄膜の製造方法。
In the manufacturing method of the iridium thin film using the chemical vapor deposition method of Claim 1,
A method for producing an iridium thin film using chemical vapor deposition, wherein a carrier gas containing Ir (EtCp) (cod) is generated by a bubbling method.
請求項1または2に記載の化学気相成長法を用いたイリジウム薄膜の製造方法において、
上記キャリアガスとしてアルゴン(Ar)を用いることを特徴とする化学気相成長法を用いたイリジウム薄膜の製造方法。
In the manufacturing method of the iridium thin film using the chemical vapor deposition method of Claim 1 or 2 ,
A method for producing an iridium thin film using chemical vapor deposition, wherein argon (Ar) is used as the carrier gas.
JP2002058542A 2002-03-05 2002-03-05 Method for producing iridium thin film using chemical vapor deposition Expired - Fee Related JP4055935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058542A JP4055935B2 (en) 2002-03-05 2002-03-05 Method for producing iridium thin film using chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058542A JP4055935B2 (en) 2002-03-05 2002-03-05 Method for producing iridium thin film using chemical vapor deposition

Publications (2)

Publication Number Publication Date
JP2003253443A JP2003253443A (en) 2003-09-10
JP4055935B2 true JP4055935B2 (en) 2008-03-05

Family

ID=28668485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058542A Expired - Fee Related JP4055935B2 (en) 2002-03-05 2002-03-05 Method for producing iridium thin film using chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP4055935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101869212B1 (en) 2014-08-21 2018-06-19 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 System and method based on low-pressure chemical vapor deposition for fabricating perovskite film
CN113235066A (en) * 2021-05-19 2021-08-10 重庆大学 Organic platinum group metal chemical vapor deposition device and method

Also Published As

Publication number Publication date
JP2003253443A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP3670628B2 (en) Film forming method, film forming apparatus, and semiconductor device manufacturing method
JP6222880B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, semiconductor device, and program
US9558937B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
US8927403B2 (en) Selective deposition of noble metal thin films
US11261528B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US9159608B2 (en) Method for forming TiSiN thin film layer by using atomic layer deposition
US20040025787A1 (en) System for depositing a film onto a substrate using a low pressure gas precursor
US20090197406A1 (en) Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
US20060231028A1 (en) Method for depositing metallic nitride series thin film
KR20150111302A (en) Tungsten film forming method, semiconductor device manufacturing method, and storage medium
JP2016058676A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
US7041546B2 (en) Film forming method for depositing a plurality of high-k dielectric films
US20070287248A1 (en) Method for manufacturing capacity element, method for manufacturing semiconductor device and semiconductor-manufacturing apparatus
US7524766B2 (en) Method for manufacturing semiconductor device and substrate processing apparatus
KR20040088110A (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
JP4055935B2 (en) Method for producing iridium thin film using chemical vapor deposition
JP3672115B2 (en) Thin film forming method and semiconductor device manufacturing method
US9331139B2 (en) Ruthenium film formation method and storage medium
KR20010085328A (en) Vapor growth method for metal oxide dielectric film and vapor growth device for metal oxide dielectric material
US7435678B2 (en) Method of depositing noble metal electrode using oxidation-reduction reaction
WO2019186637A1 (en) Method for producing semiconductor device, substrate processing apparatus, and program
US20040045503A1 (en) Method for treating a surface of a reaction chamber
JP2002208564A (en) Substrate processing equipment and method of manufacturing semiconductor device
KR101462154B1 (en) Method for depositing W thin film
JP4212013B2 (en) Dielectric film fabrication method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20020305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees