JP4051532B2 - Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound - Google Patents

Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound Download PDF

Info

Publication number
JP4051532B2
JP4051532B2 JP2002001226A JP2002001226A JP4051532B2 JP 4051532 B2 JP4051532 B2 JP 4051532B2 JP 2002001226 A JP2002001226 A JP 2002001226A JP 2002001226 A JP2002001226 A JP 2002001226A JP 4051532 B2 JP4051532 B2 JP 4051532B2
Authority
JP
Japan
Prior art keywords
ruthenium
compound
ruthenium compound
vapor deposition
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002001226A
Other languages
Japanese (ja)
Other versions
JP2003201564A (en
Inventor
英之 平社
石川  雅之
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002001226A priority Critical patent/JP4051532B2/en
Priority to CN 03805580 priority patent/CN1886412A/en
Priority to PCT/JP2003/000074 priority patent/WO2003057706A1/en
Priority to US10/499,822 priority patent/US7045645B2/en
Priority to KR10-2004-7010539A priority patent/KR20040072701A/en
Publication of JP2003201564A publication Critical patent/JP2003201564A/en
Application granted granted Critical
Publication of JP4051532B2 publication Critical patent/JP4051532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機金属化学蒸着法に適したルテニウム化合物の製造方法及び該方法により得られた有機金属化学蒸着法用ルテニウム化合物並びに該化合物により得られたルテニウム含有薄膜に関する。更に詳しくは、固体昇華法を用いた有機金属化学蒸着法に最適なルテニウム化合物の製造方法及び該方法により得られた有機金属化学蒸着法用ルテニウム化合物並びに該化合物により得られたルテニウム含有薄膜に関するものである。
【0002】
【従来の技術】
パーソナルコンピュータ、ワークステーションのメインメモリーとして使われるDRAM(Dynamic Random Access Memory)は高集積化の動きがめまぐるしく、高集積化に対応可能な誘電体材料や電極材料の技術開発が盛んである。
誘電体材料に所定の誘電特性を付与するためには、酸化雰囲気下での結晶化熱処理が必須である。誘電体と積層される電極の材質には、従来ポリシリコン、タングスチン、窒化チタン等が使われてきたが、酸素雰囲気で高温熱処理を行うと電極が酸化してしまうため、電極の耐熱性に問題があった。そこで高融点で酸素と反応しにくいPtや酸化しても電気伝導性を有するRu、RuO2、Ir、IrO2が注目されている。RuやRuO2を成膜する方法は、現在スパッタ法が広く用いられているが、今後更に進む高集積化に伴って要求される微細加工のために有機金属化学蒸着法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)が検討されている。
【0003】
Ruを用いたMOCVD材料としてはシクロペンタジエン系のビス(シクロペンタジエニル)ルテニウム(以下、Ru(Cp)2という。)錯体やビスエチルシクロペンタジエニルルテニウム(以下、Ru(EtCp)2という。)錯体、βジケトン系のトリス2,2,6,6テトラメチル3,5ヘプタジオナートルテニウム(以下、Ru(DPM)3という。)錯体等が用いられている。
このうちRu(DPM)3錯体はRu(Cp)2錯体やRu(EtCp)2錯体と比較すると蒸気圧が低いため、MOCVD原料として使用される頻度は低い。またRu(EtCp)2錯体は室温付近で液体として存在するため、従来の成膜装置を利用でき、また従来のマスフローコントローラによる流量制御が可能であるために、原料供給の安定化が図れるという利点がある。しかし、空気に対して不安定であり、その取扱いが難しい問題点があった。Ru(Cp)2錯体は、室温付近では固体として存在し、更に有機溶媒に殆ど溶解しないことから成膜室への供給を昇華法に頼らなければならないため、供給量の増加と安定性に問題があるが、空気に対して安定であり、取扱いが容易であるという有利な点を有している。
【0004】
Ru(Cp)2錯体を用いたMOCVD法による成膜についての研究は、Thin Solid Films 287(1996)P.74-79(P.C.Liaoら)、Jpn.J.Appl.Physics, 38(1999)2194-2199(青山ら)、第47回応用物理学会学術講演会講演予稿集 P515(門島ら)、特開2001−234347号公報(元ら)によってそれぞれ報告されている。これらによると固体昇華法を用いたMOCVD法により、RuやRuO2膜を成膜し、特性の優れた膜を得ている。
【0005】
【発明が解決しようとする課題】
しかし、前述したRu(Cp)2錯体を用いたMOCVD法による成膜についての研究報告は、成膜したRuやRuO2膜の特性及び成膜法を評価することに主眼を置いており、原料であるRu(Cp)2錯体の不純物含有量等が成膜に及ぼす影響についての記述はない。
【0006】
本発明の目的は、固体昇華法を用いたMOCVD法により適度な成膜速度が得られるMOCVD法用ルテニウム化合物の製造方法及び該方法により得られたMOCVD法用ルテニウム化合物を提供することにある。
本発明の別の目的は、段差塗布性及び表面モフォロジーに優れ、電気的特性の良好なルテニウム含有薄膜を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、エタノール、イソプロパノール又はメタノールからなる第1溶媒中に塩化ルテニウム水和物と塩化レニウムを溶解して溶解液を調製し、前記溶解液にシクロペンタジエンを添加し、更に金属亜鉛粉末を添加して反応させ、濾過により前記第1溶媒を取り除いた後、反応物をテトラヒドロフラン又はベンゼンからなる第2溶媒に溶解して抽出し、更に、抽出液から前記第2溶媒を除去して減圧で昇華することにより、レニウム成分を10〜100ppm含有させたRu ( Cp ) 2 錯体からなるルテニウム化合物を得ることを特徴とするMOCVD法用ルテニウム化合物の製造方法である。
請求項に係る発明は、請求項1記載の製造方法により得られたMOCVD法用ルテニウム化合物である。
請求項に係る発明では、上記数値範囲内のレニウム成分を含有させることにより、ルテニウム含有薄膜形成時において、レニウムが膜成長に必要な核を一定量形成するので、適度な成膜速度を実現できる。
【0008】
請求項に係る発明は、請求項記載のルテニウム化合物により成膜されたルテニウム含有薄膜である。
請求項に係る発明では、適度な成膜速度が得られるルテニウム化合物によりむらのない均一なルテニウム含有薄膜が得られる。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を説明する。
本発明者らは、MOCVD法用ルテニウム化合物において、この化合物に含まれる不純物が成膜に及ぼす影響に関して鋭意検討した結果、ルテニウム化合物に含まれる不純物のうち、レニウム成分の含有量を最適化することによって、適度な成膜速度を実現できることを確認した。
【0010】
本発明のMOCVD法用ルテニウム化合物は、Ru(Cp)2錯体からなるルテニウム化合物であって、この化合物にレニウム成分を10〜100ppm含有させることを特徴とする。上記数値範囲内のレニウム成分が含有したルテニウム化合物をMOCVD用原料として基体上に成膜を行うと、先ず、ルテニウム化合物よりも分解し易いレニウム化合物が分解して膜成長の核として基体上に蒸着する。次に、この核を中心としてルテニウム化合物が成長して薄膜が形成される。従って、レニウム成分の含有量を上記数値範囲に規定したルテニウム化合物を原料として基体上に成膜することにより、ルテニウム含有薄膜形成時には常に一定量のレニウムからなる核が基体上に形成されるため、適度な成膜速度を得られる。
【0011】
本発明のルテニウム化合物は、レニウム成分を10〜100ppm含有させる。好ましくは10〜85ppmである。より好ましくは19〜68ppmである。更に好ましくは19〜42ppmである。レニウム成分の含有量が10ppm未満では、ルテニウム含有薄膜形成時に必要なレニウムからなる核が十分に形成されないため、適度な成膜速度が得られず、100ppmを越えると、レニウム化合物の分解が進行し過ぎてしまい、レニウム分解物がRu(Cp)2錯体と気化し難い複合体を形成し、気化速度を低下させる。
【0012】
次に本発明のMOCVD法用ルテニウム化合物の製造方法を説明する。
先ず、第1溶媒中に塩化ルテニウム水和物RuCl3・nH2Oと塩化レニウムReCl3を溶解する。第1溶媒としては、エタノール、イソプロパノール、メタノール等のアルコールが挙げられる。塩化レニウムReCl3は得られるルテニウム化合物中のレニウム成分の含有量が10〜100ppmになるように調製する。次いで、この溶解液にシクロペンタジエンを添加し、更に金属亜鉛粉末を添加して反応させる。濾過により第1溶媒を取り除いた後、反応物を第2溶媒に溶解して抽出する。第2溶媒としては、テトラヒドロフラン、ベンゼンが挙げられる。更に、抽出液から第2溶媒を除去して減圧で昇華することにより、本発明のルテニウム化合物であるレニウム成分を10〜100ppm含有したRu(Cp)2錯体が得られる。
【0013】
図1に示すように、固体昇華法を用いたMOCVD装置は、成膜室10を備え、装置全体を加熱装置11により覆った構成となっている。成膜室10の内部にはヒータ12が設けられ、ヒータ12上には基板13が保持される。この成膜室10の内部は圧力計14及びニードルバルブ16を備える配管17により真空引きされる。加熱装置11は原料タンク18を備え、この原料タンク18には常温で固体のレニウムを10〜100ppm含有するRu(Cp)2錯体を貯蔵する。原料タンク18にはガス流量調節装置19を介してキャリアガス導入管21が接続され、また原料タンク18には供給管22が接続される。供給管22にはフィルタ23、ニードルバルブ24及びガス流量調節装置26がそれぞれ設けられ、供給管22は成膜室10に接続される。成膜室10にはニードルバルブ27、ガス流量調節装置28を介して酸素ガス導入管29が接続される。
【0014】
この装置では、加熱装置11により原料タンク18が約180℃に加熱されてタンク18内に貯蔵されたレニウム化合物とRu(Cp)2錯体が徐々に昇華する。キャリアガスが導入管21から原料タンク18内に導入され、原料タンク18内で昇華したRu(Cp)2錯体を供給管22により成膜室10に搬送する。キャリアガスとしては、アルゴン、ヘリウム、窒素等が挙げられる。また、酸素ガスが酸素ガス導入管29から成膜室10内に供給される。成膜室10内において、先ず、Ru(Cp)2錯体よりも分解しやすいレニウム化合物が分解して加熱された基板上に膜成長の核として蒸着し、次いでRu(Cp)2錯体の蒸気が酸素とともに熱分解され、生成したRu或いはRuO2が基板13上に堆積したレニウムからなる核を中心として堆積する。これにより均一なルテニウム含有薄膜が形成される。
【0015】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、レニウム成分を10ppm含有させたRu(Cp)2錯体を用意した。次に、図1に示す固体昇華法を用いたMOCVD装置に原料として供給して基板上に膜厚約200nmのルテニウム含有薄膜を成膜した。成膜条件は下記表1に示す通りである。
【0016】
【表1】

Figure 0004051532
【0017】
<実施例2>
レニウム成分を19ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
<実施例3>
レニウム成分を42ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
<実施例4>
レニウム成分を68ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
<実施例5>
レニウム成分を85ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
【0018】
<比較例1>
レニウム成分を7ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
<比較例2>
レニウム成分を103ppm含有させたRu(Cp)2錯体を用いた以外は実施例1と同様の条件で基板上にルテニウム含有薄膜を成膜した。
【0019】
<比較試験1>
実施例1〜5及び比較例1,2で得られたルテニウム含有薄膜の成膜速度をそれぞれ測定した。得られた薄膜の成膜速度を図2に示す。
【0020】
図2より明らかなように、レニウム成分の含有量の少ないルテニウム化合物を用いた比較例1では、膜成長において核となる箇所が少なく、その結果として成膜速度が小さくなったと考えられる。また、レニウム成分の含有量の多いルテニウム化合物を用いた比較例2では、気化させるための高温保存中にルテニウム化合物と比べて分解し易いレニウム化合物の分解が進行し過ぎ、この多くのレニウム分解物がルテニウム化合物と気化し難い複合体を生成したために、成膜速度が減少したと考えられる。これに対して本発明の数値範囲内にレニウム成分を含有させたルテニウム化合物を用いた実施例1〜5では、適度な成膜速度が得られていることが判る。
【0021】
<比較試験2>
実施例1〜5及び比較例1,2でそれぞれ用意したルテニウム化合物をアルゴン雰囲気下、180℃の条件で1週間加熱保存を行った。保存後のルテニウム化合物を熱重量分析装置(MAC-science社製)を用いて下記表2に示す熱分析測定条件によりルテニウム化合物の気化速度を測定した。実施例1〜5及び比較例1、2のルテニウム化合物の熱重量分析における気化速度を図3にそれぞれ示す。
【0022】
【表2】
Figure 0004051532
【0023】
図3より明らかなように、ルテニウム化合物に含まれるレニウム成分の含有量が増えるにつれて気化速度が遅くなる傾向にあることが判る。比較例1では、気化速度が速く、好ましい結果となったが、図2に示す結果からも明らかなように、膜成長に必要とされるレニウムからなる核の形成が少ないため、成膜速度は低下する。また、比較例2では、レニウムとルテニウム化合物からなる複合体が形成され、この複合体が気化速度を低下させた要因と考えられる。これに対して本発明の数値範囲内のレニウム成分を含有した実施例1〜5は、適度な気化速度が得られることが判る。
【0024】
【発明の効果】
以上述べたように、本発明によれば、Ru(Cp)2錯体からなるルテニウム化合物であって、この化合物にレニウム成分を10〜100ppm含有させることを特徴とする。上記数値範囲内のレニウムを含有させることにより、薄膜形成時に膜成長に必要な核が常に一定量形成されるため、成膜速度を制御することができる。従って、このルテニウム化合物を用いて成膜されたルテニウム含有薄膜は、段差塗布性及び表面モフォロジーに優れた、電気的特性の良好な薄膜となる。
【図面の簡単な説明】
【図1】 固体昇華法を用いたMOCVD装置の概略図。
【図2】 レニウム成分の含有量と成膜速度の関係を示す図。
【図3】 レニウム成分の含有量と気化速度の関係を示す図。
【符号の説明】
10 成膜室
11 加熱装置
12 ヒータ
13 基板
14 圧力計
16 ニードルバルブ
17 配管
18 原料タンク
19 ガス流量調節装置
21 キャリアガス導入管
22 供給管
23 フィルタ
24 ニードルバルブ
26 ガス流量調節装置
27 ニードルバルブ
28 ガス流量調節装置
29 酸素ガス導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ruthenium compound suitable for a metal organic chemical vapor deposition method, a ruthenium compound for metal organic chemical vapor deposition obtained by the method, and a ruthenium-containing thin film obtained by the compound. More particularly, the present invention relates to a method for producing a ruthenium compound optimal for a metal organic chemical vapor deposition method using a solid sublimation method, a ruthenium compound for metal organic chemical vapor deposition obtained by the method, and a ruthenium-containing thin film obtained by the compound. It is.
[0002]
[Prior art]
Dynamic Random Access Memory (DRAM) used as the main memory of personal computers and workstations is rapidly becoming highly integrated, and technological development of dielectric materials and electrode materials that can support high integration is thriving.
In order to impart predetermined dielectric properties to the dielectric material, a crystallization heat treatment in an oxidizing atmosphere is essential. Conventionally, polysilicon, tungsten, titanium nitride, etc. have been used as the material of the electrode laminated with the dielectric, but the electrode is oxidized when subjected to high-temperature heat treatment in an oxygen atmosphere, so there is a problem with the heat resistance of the electrode. was there. Therefore, attention is paid to Pt which has a high melting point and hardly reacts with oxygen, and Ru, RuO 2 , Ir, and IrO 2 that have electrical conductivity even when oxidized. A sputtering method is widely used as a method for forming Ru or RuO 2 , but metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition) is required for the fine processing required for further high integration. Hereinafter, it is referred to as MOCVD method).
[0003]
Examples of MOCVD materials using Ru include cyclopentadiene-based bis (cyclopentadienyl) ruthenium (hereinafter referred to as Ru (Cp) 2 ) complex and bisethylcyclopentadienyl ruthenium (hereinafter referred to as Ru (EtCp) 2 . ) Complexes, β-diketone tris 2,2,6,6 tetramethyl 3,5 heptadionate ruthenium (hereinafter referred to as Ru (DPM) 3 ) complex, and the like are used.
Of these, the Ru (DPM) 3 complex has a lower vapor pressure than the Ru (Cp) 2 complex and the Ru (EtCp) 2 complex, and is therefore less frequently used as a MOCVD raw material. In addition, since Ru (EtCp) 2 complex exists as a liquid near room temperature, a conventional film forming apparatus can be used, and the flow rate can be controlled by a conventional mass flow controller, so that the supply of raw materials can be stabilized. There is. However, there is a problem that it is unstable to air and difficult to handle. Since the Ru (Cp) 2 complex exists as a solid near room temperature and is hardly dissolved in an organic solvent, the supply to the film forming chamber must be relied on by a sublimation method. However, it has the advantages of being stable to air and easy to handle.
[0004]
Studies on film formation by MOCVD using Ru (Cp) 2 complex are described in Thin Solid Films 287 (1996) P.74-79 (PCLiao et al.), Jpn.J.Appl.Physics, 38 (1999) 2194- 2199 (Aoyama et al.), 47th JSAP Scientific Lecture Proceedings P515 (Kadoshima et al.) And JP-A-2001-234347 (former et al.), Respectively. According to these, a Ru or RuO 2 film is formed by MOCVD using a solid sublimation method to obtain a film having excellent characteristics.
[0005]
[Problems to be solved by the invention]
However, the research report on the film formation by the MOCVD method using the Ru (Cp) 2 complex described above focuses on evaluating the characteristics and film formation method of the formed Ru and RuO 2 films. There is no description of the influence of the impurity content of the Ru (Cp) 2 complex, which is, on the film formation.
[0006]
The objective of this invention is providing the ruthenium compound for MOCVD methods obtained by the manufacturing method of the ruthenium compound for MOCVD methods by which an appropriate film-forming speed | rate can be obtained by MOCVD method using a solid sublimation method, and this method .
Another object of the present invention is to provide a ruthenium-containing thin film having excellent step coating property and surface morphology and good electrical characteristics.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a solution is prepared by dissolving ruthenium chloride hydrate and rhenium chloride in a first solvent composed of ethanol, isopropanol, or methanol, and cyclopentadiene is added to the solution, and a metal is further added. After reacting by adding zinc powder and removing the first solvent by filtration, the reaction product is extracted by dissolving in a second solvent made of tetrahydrofuran or benzene, and the second solvent is removed from the extract. And a ruthenium compound comprising a Ru ( Cp ) 2 complex containing 10 to 100 ppm of a rhenium component by sublimation under reduced pressure to obtain a ruthenium compound for MOCVD.
The invention according to claim 2 is a ruthenium compound for MOCVD method obtained by the production method according to claim 1 .
In the invention according to claim 2 , by containing a rhenium component within the above numerical range, when forming a ruthenium-containing thin film, rhenium forms a certain amount of nuclei necessary for film growth, thereby realizing an appropriate film forming speed. it can.
[0008]
The invention according to claim 3 is a ruthenium-containing thin film formed by the ruthenium compound according to claim 2 .
In the invention according to claim 3 , a uniform ruthenium-containing thin film having no unevenness can be obtained by the ruthenium compound capable of obtaining an appropriate film formation rate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
As a result of intensive investigations on the influence of impurities contained in this compound on film formation in the ruthenium compound for MOCVD, the present inventors have optimized the content of the rhenium component among the impurities contained in the ruthenium compound. Thus, it was confirmed that an appropriate film formation rate can be realized.
[0010]
The ruthenium compound for MOCVD method of the present invention is a ruthenium compound comprising a Ru (Cp) 2 complex, and is characterized by containing 10 to 100 ppm of a rhenium component . When a ruthenium compound containing a rhenium component within the above numerical range is used as a raw material for MOCVD, a rhenium compound that is more easily decomposed than a ruthenium compound is first decomposed and deposited on the substrate as a nucleus for film growth. To do. Next, a ruthenium compound grows around this nucleus to form a thin film. Therefore, by forming a film on a substrate using a ruthenium compound whose rhenium component content is defined in the above numerical range, a nucleus composed of a certain amount of rhenium is always formed on the substrate when a ruthenium-containing thin film is formed. An appropriate film forming speed can be obtained.
[0011]
The ruthenium compound of the present invention contains 10 to 100 ppm of a rhenium component . Preferably it is 10-85 ppm. More preferably, it is 19-68 ppm. More preferably, it is 19-42 ppm. If the content of the rhenium component is less than 10 ppm, the core made of rhenium necessary for forming the ruthenium-containing thin film is not sufficiently formed, so that an appropriate film formation rate cannot be obtained. If the content exceeds 100 ppm, the decomposition of the rhenium compound proceeds. Thus, the rhenium decomposition product forms a complex that is difficult to vaporize with the Ru (Cp) 2 complex, and the vaporization rate is reduced.
[0012]
Next, the manufacturing method of the ruthenium compound for MOCVD method of this invention is demonstrated.
First, ruthenium chloride hydrate RuCl 3 .nH 2 O and rhenium chloride ReCl 3 are dissolved in a first solvent. Examples of the first solvent include alcohols such as ethanol, isopropanol, and methanol. Rhenium chloride ReCl 3 is prepared so that the content of the rhenium component in the obtained ruthenium compound is 10 to 100 ppm. Next, cyclopentadiene is added to the solution, and metal zinc powder is further added and reacted. After removing the first solvent by filtration, the reaction product is dissolved in a second solvent and extracted. Examples of the second solvent include tetrahydrofuran and benzene. Further, by removing the second solvent from the extract and sublimating under reduced pressure, a Ru (Cp) 2 complex containing 10 to 100 ppm of a rhenium component which is a ruthenium compound of the present invention is obtained.
[0013]
As shown in FIG. 1, the MOCVD apparatus using the solid sublimation method includes a film forming chamber 10 and the entire apparatus is covered with a heating device 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 having a pressure gauge 14 and a needle valve 16. The heating device 11 includes a raw material tank 18 in which a Ru (Cp) 2 complex containing 10 to 100 ppm of rhenium that is solid at room temperature is stored. A carrier gas introduction pipe 21 is connected to the raw material tank 18 via a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material tank 18. The supply pipe 22 is provided with a filter 23, a needle valve 24, and a gas flow rate adjusting device 26, and the supply pipe 22 is connected to the film forming chamber 10. An oxygen gas introduction pipe 29 is connected to the film forming chamber 10 via a needle valve 27 and a gas flow rate control device 28.
[0014]
In this apparatus, the raw material tank 18 is heated to about 180 ° C. by the heating apparatus 11, and the rhenium compound and the Ru (Cp) 2 complex stored in the tank 18 are gradually sublimated. The carrier gas is introduced into the raw material tank 18 from the introduction pipe 21, and the Ru (Cp) 2 complex sublimated in the raw material tank 18 is transferred to the film forming chamber 10 through the supply pipe 22. Examples of the carrier gas include argon, helium, nitrogen and the like. Further, oxygen gas is supplied from the oxygen gas introduction pipe 29 into the film forming chamber 10. In the film forming chamber 10, first, a rhenium compound that is more easily decomposed than the Ru (Cp) 2 complex is decomposed and deposited as a nucleus for film growth on the heated substrate, and then the vapor of the Ru (Cp) 2 complex is generated. Ru or RuO 2 generated by thermal decomposition with oxygen is deposited around a nucleus made of rhenium deposited on the substrate 13. Thereby, a uniform ruthenium-containing thin film is formed.
[0015]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, a Ru (Cp) 2 complex containing 10 ppm of a rhenium component was prepared. Next, the ruthenium-containing thin film having a film thickness of about 200 nm was formed on the substrate by supplying the raw material to the MOCVD apparatus using the solid sublimation method shown in FIG. The film forming conditions are as shown in Table 1 below.
[0016]
[Table 1]
Figure 0004051532
[0017]
<Example 2>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 19 ppm of a rhenium component was used.
<Example 3>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 42 ppm of a rhenium component was used.
<Example 4>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 68 ppm of a rhenium component was used.
<Example 5>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 85 ppm of a rhenium component was used.
[0018]
<Comparative Example 1>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 7 ppm of a rhenium component was used.
<Comparative example 2>
A ruthenium-containing thin film was formed on the substrate under the same conditions as in Example 1 except that a Ru (Cp) 2 complex containing 103 ppm of a rhenium component was used.
[0019]
<Comparison test 1>
The film formation rates of the ruthenium-containing thin films obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were measured. The deposition rate of the obtained thin film is shown in FIG.
[0020]
As is clear from FIG. 2, in Comparative Example 1 using a ruthenium compound having a low rhenium component content, it is considered that the number of nuclei in film growth is small, and as a result, the film formation rate is reduced. Further, in Comparative Example 2 using a ruthenium compound having a large content of rhenium component, decomposition of a rhenium compound which is easily decomposed compared with a ruthenium compound during high-temperature storage for vaporization proceeds excessively, and this many rhenium decomposition products However, it was considered that the film formation rate decreased because a complex that hardly vaporized with the ruthenium compound was produced. On the other hand, in Examples 1-5 using the ruthenium compound which contained the rhenium component in the numerical range of this invention, it turns out that a moderate film-forming speed | velocity is obtained.
[0021]
<Comparison test 2>
The ruthenium compounds prepared in Examples 1 to 5 and Comparative Examples 1 and 2, respectively, were heated and stored for 1 week under an argon atmosphere at 180 ° C. The ruthenium compound after storage was measured for the vaporization rate of the ruthenium compound using a thermogravimetric analyzer (manufactured by MAC-science) under the thermal analysis measurement conditions shown in Table 2 below. The vaporization rates in the thermogravimetric analysis of the ruthenium compounds of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in FIG.
[0022]
[Table 2]
Figure 0004051532
[0023]
As is apparent from FIG. 3, it can be seen that the vaporization rate tends to decrease as the content of the rhenium component contained in the ruthenium compound increases. In Comparative Example 1, the vaporization rate was high, and a favorable result was obtained. However, as is clear from the results shown in FIG. 2, the formation rate of the film is low because the formation of rhenium nuclei required for film growth is small. descend. Moreover, in Comparative Example 2, a complex composed of rhenium and a ruthenium compound was formed, and this complex is considered to be a factor that reduced the vaporization rate. On the other hand, it turns out that Examples 1-5 containing the rhenium component in the numerical range of this invention can obtain a moderate vaporization rate.
[0024]
【The invention's effect】
As described above, according to the present invention, it is a ruthenium compound composed of a Ru (Cp) 2 complex, and this compound is characterized by containing 10 to 100 ppm of a rhenium component . By containing rhenium within the above numerical range, a certain amount of nuclei necessary for film growth are always formed during the formation of the thin film, so that the film formation rate can be controlled. Therefore, a ruthenium-containing thin film formed using this ruthenium compound is a thin film having excellent electrical characteristics and excellent step coatability and surface morphology.
[Brief description of the drawings]
FIG. 1 is a schematic view of an MOCVD apparatus using a solid sublimation method.
FIG. 2 is a graph showing the relationship between the content of rhenium component and the film formation rate.
FIG. 3 is a graph showing the relationship between the rhenium component content and the vaporization rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Deposition chamber 11 Heating device 12 Heater 13 Substrate 14 Pressure gauge 16 Needle valve 17 Pipe 18 Raw material tank 19 Gas flow control device 21 Carrier gas introduction pipe 22 Supply pipe 23 Filter 24 Needle valve 26 Gas flow control device 27 Needle valve 28 Gas Flow control device 29 Oxygen gas introduction pipe

Claims (3)

エタノール、イソプロパノール又はメタノールからなる第1溶媒中に塩化ルテニウム水和物と塩化レニウムを溶解して溶解液を調製し、前記溶解液にシクロペンタジエンを添加し、更に金属亜鉛粉末を添加して反応させ、濾過により前記第1溶媒を取り除いた後、反応物をテトラヒドロフラン又はベンゼンからなる第2溶媒に溶解して抽出し、更に、抽出液から前記第2溶媒を除去して減圧で昇華することにより、レニウム成分を10〜100ppm含有させたビス(シクロペンタジエニル)ルテニウム錯体からなるルテニウム化合物を得ることを特徴とする有機金属化学蒸着法用ルテニウム化合物の製造方法。Dissolve ruthenium chloride hydrate and rhenium chloride in a first solvent consisting of ethanol, isopropanol, or methanol to prepare a solution, add cyclopentadiene to the solution, and then add metal zinc powder for reaction. After removing the first solvent by filtration, the reaction product is extracted by dissolving in a second solvent composed of tetrahydrofuran or benzene, and further sublimated under reduced pressure by removing the second solvent from the extract, A method for producing a ruthenium compound for metal organic chemical vapor deposition, comprising obtaining a ruthenium compound comprising a bis (cyclopentadienyl) ruthenium complex containing 10 to 100 ppm of a rhenium component. 請求項1記載の製造方法により得られた有機金属化学蒸着法用ルテニウム化合物。 A ruthenium compound for metal organic chemical vapor deposition obtained by the production method according to claim 1 . 請求項記載のルテニウム化合物により成膜されたルテニウム含有薄膜。A ruthenium-containing thin film formed from the ruthenium compound according to claim 2 .
JP2002001226A 2002-01-08 2002-01-08 Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound Expired - Fee Related JP4051532B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002001226A JP4051532B2 (en) 2002-01-08 2002-01-08 Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound
CN 03805580 CN1886412A (en) 2002-01-08 2003-01-08 Ruthenium compounds, process for their preparation, and ruthenium-containing thin films made by using the compounds
PCT/JP2003/000074 WO2003057706A1 (en) 2002-01-08 2003-01-08 Ruthenium compounds, process for their preparation, and ruthenium-containing thin films made by using the compounds
US10/499,822 US7045645B2 (en) 2002-01-08 2003-01-08 Ruthenium compounds, process for their preparation, and ruthenium-containing thin films made by using the compounds
KR10-2004-7010539A KR20040072701A (en) 2002-01-08 2003-01-08 Ruthenium compounds, process for their preparation, and ruthenium-containing thin films made by using the compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001226A JP4051532B2 (en) 2002-01-08 2002-01-08 Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound

Publications (2)

Publication Number Publication Date
JP2003201564A JP2003201564A (en) 2003-07-18
JP4051532B2 true JP4051532B2 (en) 2008-02-27

Family

ID=27641406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001226A Expired - Fee Related JP4051532B2 (en) 2002-01-08 2002-01-08 Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound

Country Status (2)

Country Link
JP (1) JP4051532B2 (en)
CN (1) CN1886412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140184B1 (en) * 2011-08-03 2013-02-06 田中貴金属工業株式会社 Organoruthenium compound for chemical vapor deposition raw material and method for producing the organoruthenium compound
JP5531120B1 (en) * 2013-01-21 2014-06-25 田中貴金属工業株式会社 Method for producing dodecacarbonyltriruthenium

Also Published As

Publication number Publication date
JP2003201564A (en) 2003-07-18
CN1886412A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US6162712A (en) Platinum source compositions for chemical vapor deposition of platinum
JP3576934B2 (en) Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers
US7906175B2 (en) Methods for forming a ruthenium-based film on a substrate
JP4681000B2 (en) Precursors for film formation and methods for forming ruthenium-containing films
JP2002285333A (en) Method for producing semiconductor device
WO2005081933A2 (en) Chemical vapor deposition of high conductivity, adherent thin films of ruthenium
JP3334605B2 (en) Electrode-forming CVD raw material, and capacitor electrode and wiring film formed using the same
Lee et al. Chemical vapor deposition of ruthenium oxide thin films from Ru (tmhd) 3 using direct liquid injection
JP4051532B2 (en) Method for producing ruthenium compound for metal organic chemical vapor deposition, ruthenium compound for metal organic chemical vapor deposition obtained by the method, and ruthenium-containing thin film obtained by the compound
JP3932874B2 (en) Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound
JPH09246214A (en) Thin film formation, semiconductor device and manufacture thereof
KR20210056576A (en) Metal precursor for forming thin film, thin film composition comprising the same and method for forming thin film thereof
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
JP2010215982A (en) Method for producing ruthenium-containing film using ruthenium complex organic solvent solution, and ruthenium-containing film
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
JP4438266B2 (en) Method for synthesizing bis (alkylcyclopentadienyl) ruthenium complex, method for purifying the spent complex, and method for reusing the complex
JP2004300152A (en) Method for producing organometallic compound and metal-containing thin film obtained from the compound
JP2004292332A (en) Method for producing ruthenium compound and ruthenium-containing thin film obtained from the compound
JP2005206874A (en) Iridium-containing film deposition material, and method for producing iridium-containing film
JP2004018466A (en) Ruthenium compound, its manufacturing method and ruthenium-containing thin film obtained from the same
KR102622013B1 (en) Precursor for film deposition, deposition method of film and semiconductor device of the same
JP2004018468A (en) Ruthenium compound, its manufacturing method and ruthenium-containing thin film obtained from the same
JPH04214867A (en) Method for growing thin film and apparatus therefor
JP2004026680A (en) Ruthenium compound and method for producing the same and ruthenium-containing thin film obtained from the compound
KR20230113111A (en) Metal precursor compound including cyclopentadienyl ligand and deposition method for preparing film using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees