JP3932680B2 - Radiation thermometer with optical loss compensation function and its temperature measurement method - Google Patents

Radiation thermometer with optical loss compensation function and its temperature measurement method

Info

Publication number
JP3932680B2
JP3932680B2 JP21216998A JP21216998A JP3932680B2 JP 3932680 B2 JP3932680 B2 JP 3932680B2 JP 21216998 A JP21216998 A JP 21216998A JP 21216998 A JP21216998 A JP 21216998A JP 3932680 B2 JP3932680 B2 JP 3932680B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical fiber
temperature
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21216998A
Other languages
Japanese (ja)
Other versions
JP2000046655A (en
Inventor
卓郎 中島
康祐 海老名
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP21216998A priority Critical patent/JP3932680B2/en
Publication of JP2000046655A publication Critical patent/JP2000046655A/en
Application granted granted Critical
Publication of JP3932680B2 publication Critical patent/JP3932680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伝送損失補償機能を有する放射温度計とその温度計測方法に関する。
【0002】
【従来の技術】
物体温度の変化に応じて放射光(輻射光)の光量が変化する現象を応用して、物体表面の温度を非接触で測定する放射温度計が従来から用いられている。例えば、ガスタービン等のタービンブレードの温度測定では、高温回転している多数のタービンブレードを非接触で1つのセンサで計測できる等の利点がある。
【0003】
更に、かかる放射温度計と光ファイバとを組み合わせ、光ファイバで放射光を伝送することにより、微小部分の温度を精密測定可能な装置が開発されている。光ファイバを用いたこの放射温度計は、図4に模式的に示すように、測定箇所1(例えばタービンブレード)の近傍に集光レンズ2を設置し、この集光レンズで集光した光を光ファイバ3を介して受光素子4に導き、その出力から温度を演算するようになっている。なお、この図で、5は受光回路、6は演算回路、7は出力装置である。
【0004】
【発明が解決しようとする課題】
光ファイバを用いた放射温度計では、温度変化、曲げ及び経時変化によって光ファイバの伝送損失が変化する。そのため、製作時に精密にキャリブレーション(更正)を行った放射温度計でも、温度変化、曲げ及び経時変化を受けた場合には、精密な計測ができず、再度、分解等してキャリブレーションしなおす必要があり、長時間の連続計測には適用できない問題点があった。
【0005】
本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、光ファイバの伝送損失を使用状態で補償することができ、これにより長時間の連続計測を可能にする伝送損失補償機能を有する放射温度計とその温度計測方法を提供することにある。
【0006】
【課題を解決するための手段】
予め集光レンズ(2)の裏面に部分反射コーティングを施し、放射温度計の使用時にコーティングで反射する波長の所定光量Pのパルス光を光ファイバを介して外部から入力して集光レンズに導くことにより、レンズの裏面で反射した光が光ファイバの往復分の伝送損失を受けて、通常の計測光に加算して計測される。従って、パルス光の有無による受光量の変化S1,S2 からパルス光の往復分の伝送損失を受けた反射光の光量ΔSが算出でき、これから光ファイバの透過率Trを算出し伝送損失を補償することができる。本発明は、かかる新規の原理に基づくものである。
【0007】
本発明によれば、裏面に部分反射コーティングが施され、かつ高温物体(1)からの放射光を集光する集光レンズ(2)と、集光された光を伝送する光ファイバ(3)と、伝送された光量を電気信号に変換しこれから高温物体の温度Tを演算する光電変換装置(10)とを備え、光電変換装置は、伝送された光を電流信号に変換する受光素子(4)と、該電流信号を電圧信号に変換する受光回路(5)と、前記部分反射コーティングで反射する波長の所定光量Pの光を発する発光素子(12)と、該発光素子をパルス状に発光させる駆動回路(13)と、発光素子と受光素子を光ファイバに結合する光結合素子(14)と、発光素子のON/OFFに同期して受光信号を取得するサンプリング回路(15)と、各タイミングにおける受光回路からの電圧信号S1,S2 から伝送損失を補償する演算回路(16)とを備え、前記部分反射コーティングは、特定の波長λ1を選択的に反射するコーティングであり、前記発光素子(12)の光は、波長λ1のパルス光であり、前記部分反射コーティングは、高温物体(1)からの放射光のうち該波長λ1の光のみを反射する、ことを特徴とする伝送損失補償機能を有する放射温度計が提供される。
【0009】
また、本発明によれば、高温物体(1)の近傍に集光レンズ(2)を有し、該集光レンズで集光した光を光ファイバ(3)を介して受光素子(4)に導き、その受光量から高温物体の温度Tを算出する温度計測方法において、集光レンズの裏面に部分反射コーティングを施し、該部分反射コーティングで反射する波長の所定光量Pのパルス光を集光レンズ(2)に導くように光ファイバに入射させ、パルス光の有無による受光量の変化S1,S2 から伝送損失を補償し、前記部分反射コーティングは、特定の波長λ1を選択的に反射するコーティングであり、前記パルス光は、波長λ1のパルス光であり、前記部分反射コーティングは、高温物体(1)からの放射光のうち該波長λ1の光のみを反射する、ことを特徴とする温度計測方法が提供される。
【0010】
上記本発明の装置及び方法により、発光素子(12)、駆動回路(13)及び光結合素子(14)により、放射温度計の使用時にコーティングで反射する波長の所定光量Pのパルス光を光ファイバを介して集光レンズ(2)の裏面に導き、光結合素子(14)、サンプリング回路(15)、受光素子(4)及び受光回路(5)により、レンズ裏面からの反射光を集光レンズの透過光量S2 に加算して計測し、パルス光の有無による受光量の変化S1,S2 から演算回路(16)により、パルス光の往復分の伝送損失ΔSが算出でき、これから光ファイバの透過率Trを算出し伝送損失を補償することができる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通の部材には同一の符号を付し重複した説明を省略する。
図1は、本発明による放射温度計の全体構成図である。この図に示すように、本発明の放射温度計は、集光レンズ2、光ファイバ3、及び伝送された光量を電気信号に変換しこれから高温物体の温度Tを演算する光電変換装置10から構成される。
集光レンズ2は、高温物体1(例えばタービンブレード)の近傍に設置され、高温物体1からの放射光を光ファイバ3の端面に集光するようになっている。この集光レンズ2は、この図では単一の凸レンズで示しているが、2枚以上のレンズからなる複合レンズであってもよい。また、この図では集光レンズ2の保護ガラスを示していないが、かかる保護ガラスを用いてもよい。
更に、本発明によれば、集光レンズ2の裏面(図で右側表面)に部分反射コーティング2aが施されている。この部分反射コーティング2aは、特定の波長λ1 を選択的に反射するのが好ましいが、本発明はこれに限定されず、広範囲の波長を反射するようになっていてもよい。
光ファイバ3は、集光レンズ2で集光された光を光電変換装置10まで伝送するようになっている。この光ファイバ3は、例えば、直径約0.4mm前後の極細のファイバ線を複数(例えば3本)束ねて構成したものであり、可撓性を有している。
【0012】
光電変換装置10は、図に示すように、受光素子4、受光回路5、発光素子12、駆動回路13、光結合素子14、サンプリング回路15及び演算回路16からなる。
受光素子4は、光ファイバ3で伝送された光を電流信号に変換する。受光回路5は、受光素子4で変換した電流信号を電圧信号に変換する。従って、受光素子4と受光回路5の組み合わせにより、光ファイバ3で伝送された光の受光量を電圧信号(電圧レベル)に変換することができ、この電圧信号を適当な演算回路で処理することにより、従来と同様に高温物体1の温度を算出することができる。
【0013】
発光素子12は、部分反射コーティング2aで反射する波長の所定光量Pの光を発する。この波長は、部分反射コーティング2aが、特定の波長λ1 を選択的に反射する場合には、これに併せて同一の波長λ1 とするのがよいが、部分反射コーティング2aが広範囲の波長を反射する場合には、狭い波長範囲である限りで任意の波長であってもよい。
駆動回路13は、発光素子12をパルス状に発光させる。更に、光結合素子14は、発光素子12と受光素子4を光ファイバ3に結合している。この構成により、発光素子12から光ファイバ3を介して集光レンズ2にパルス光を照射することができ、かつ同時にその反射光と透過光を併せて受光し、受光素子4により受光量を計測することができる。
【0014】
サンプリング回路15は、発光素子12のON/OFFに同期して受光素子4からの受光信号を取得する。更に、演算回路16は、発光素子12のON/OFFの各タイミングにおける受光回路からの電圧信号S1,S2 から伝送損失を補償するようになっている。
【0015】
図2は、本発明の原理図である。(A)において、高温物体1からの放射光の光量S0 に対して部分反射コーティング2aの透過率をTr2 とすると、光ファイバ3に入力する放射光の光量は、Tr2 ×S0 となる。更に光ファイバ3の透過率をTrとすると、受光素子4で計測される光量S2 は、Tr2 ×S0 ×Trであり、S0 =S2 /(Tr2 ×Tr)..(式1)が成り立つ。すなわち、部分反射コーティング2aの透過率Tr2 は、製造時の測定により既知であるから、光ファイバ3の透過率Trがわかれば放射光の光量S0 が算出でき、伝送損失を補償することができることがわかる。
【0016】
図2(B)において、上述した放射温度計(発光素子12、駆動回路13、光結合素子14)により、部分反射コーティング2aで反射する波長の所定光量Pのパルス光を集光レンズ2に導くと、光ファイバ3の透過率Trを乗じたP×Trの光量が部分反射コーティング2aに入射し、部分反射コーティング2aの反射率をFrとすると、P×Tr×Frの光量が反射し、更に光ファイバ3の透過率Trを乗じたP×Tr2 ×Fr=ΔS..(式2)の光量が(A)の透過光量S2 に加算され、受光素子4で光量S1 として計測される。従って、S2 +ΔS=S1 ..(式3)の関係が成り立。ここで、S2 、S1 、Pはそれぞれ既知又は計測可能であり、部分反射コーティング2aの反射率Frも製造時の測定により既知であるから、式2から光ファイバ3の透過率Trを実測することができる。
【0017】
上述した図2及び(式1)〜(式3)を用いることにより、所定光量Pのパルス光を集光レンズ2に導くように光ファイバに入射させ、パルス光の有無による受光量の変化S1,S2 から伝送損失を補償することができる。すなわち、発光素子12、駆動回路13及び光結合素子14により、放射温度計の使用時にコーティングで反射する波長の所定光量Pのパルス光を光ファイバを介して集光レンズ2の裏面に導き、光結合素子14、サンプリング回路15、受光素子4及び受光回路5により、レンズ裏面からの反射光を集光レンズの透過光量S2 に加算して計測し、パルス光の有無による受光量の変化S1,S2 から演算回路16により、パルス光の往復分の伝送損失ΔSが算出でき(式3)、これから光ファイバの透過率Trを算出し(式2)、伝送損失を補償する(式1)ことができ、これを出力装置7でCRT等に表示し、或いは他の制御装置等に出力することができる。
【0018】
図3は、本発明の放射温度計における入力波長と強度(光量)との関係図である。この図において、(A)は、部分反射コーティング2aが、特定の波長λ1 を選択的に反射するのコーティングであり、発光部分素子12が波長λ1 の所定光量Pの光を発する場合を示している。
この場合に、高温物体1からの放射光の光量S0 は、通常例えば波長750nmから1550nmまでの広範囲にわたり分布しているが、コーティング2aにより特定の波長λ1 (例えば、約1300nm前後)の光が反射され損失となる。しかし、全体の波長領域に比べてコーティング2aによる損失領域は非常に狭いため、放射温度計への影響はほとんどなく、全体の波長領域における損失が少ないため高精度な温度計測ができる。また、コーティング2aが特定の波長λ1 のみに影響するため、その他の波長(例えばλ2 )を別の用途に用いる場合、或いは波長λ1 以外の波長部分で特に高精度が要求される場合に、コーティング2aの影響を皆無又はほとんど無視できるレベルに低減することができる。
【0019】
図3(B)は、部分反射コーティング2aが、広範囲の波長を均一に反射するのコーティングであり、発光部分素子12が波長λ1 の所定光量Pの光を発する場合を示している。
この場合に、高温物体1からの放射光の光量S0 は、コーティング2aにより広範囲の波長(例えば波長750nmから1550nm)の光が反射され損失となる。しかし、コーティング2aの反射率(透過率Tr)を予め計測しておけば、上述した方法により同様に温度計測ができる。
また、上述の説明では、受光素子4及び発光素子12の光電変換における変換ゲインηを無視して(100%として)いるが、実際の装置では、かかる変換ゲインηは既知でありこれを含めた式を適用するのがよい。
【0020】
なお本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、本発明はガスタービン・ブレード以外にも一般の高温物体の表面温度計測にも適用することができる。
【0021】
【発明の効果】
上述したように、本発明の伝送損失補償機能を有する放射温度計とその温度計測方法は、レンズ表面の付着物による伝送損失を補償することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による放射温度計の全体構成図である。
【図2】本発明の原理図である。
【図3】本発明の放射温度計における入力波長と強度(光量)との関係図である。
【図4】光ファイバを用いた従来の放射温度計の模式図である。
【符号の説明】
1 高温物体
2 集光レンズ
2a 部分反射コーティング
3 光ファイバ
4 受光素子
5 受光回路
6 演算回路
7 出力装置
10 光電変換装置
12 発光素子
13 駆動回路
14 光結合素子
15 サンプリング回路
16 演算回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation thermometer having a transmission loss compensation function and a temperature measuring method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, radiation thermometers that measure the temperature of an object surface in a non-contact manner using a phenomenon in which the amount of radiated light (radiant light) changes in accordance with changes in the object temperature have been used. For example, in the temperature measurement of a turbine blade such as a gas turbine, there is an advantage that a large number of turbine blades rotating at a high temperature can be measured by a single sensor without contact.
[0003]
Furthermore, an apparatus capable of precisely measuring the temperature of a minute part has been developed by combining such a radiation thermometer and an optical fiber and transmitting the radiation light through the optical fiber. In this radiation thermometer using an optical fiber, as schematically shown in FIG. 4, a condenser lens 2 is installed in the vicinity of a measurement location 1 (for example, a turbine blade), and the light condensed by the condenser lens is collected. The temperature is guided to the light receiving element 4 through the optical fiber 3 and the temperature is calculated from the output. In this figure, 5 is a light receiving circuit, 6 is an arithmetic circuit, and 7 is an output device.
[0004]
[Problems to be solved by the invention]
In a radiation thermometer using an optical fiber, the transmission loss of the optical fiber changes due to temperature change, bending, and aging. Therefore, even with a thermometer that has been calibrated (corrected) precisely at the time of manufacture, if it is subject to temperature changes, bending, or changes over time, it cannot be measured accurately, and it must be reassembled and recalibrated. There is a problem that is not applicable to long-term continuous measurement.
[0005]
The present invention has been developed to solve such problems. That is, an object of the present invention is to provide a radiation thermometer having a transmission loss compensation function capable of compensating for transmission loss of an optical fiber in use, thereby enabling continuous measurement for a long time, and a method for measuring the temperature. There is to do.
[0006]
[Means for Solving the Problems]
A partial reflection coating is applied to the back surface of the condenser lens (2) in advance, and pulse light having a predetermined light quantity P having a wavelength reflected by the coating when the radiation thermometer is used is input from the outside through an optical fiber and guided to the condenser lens. As a result, the light reflected by the back surface of the lens receives a transmission loss for the round trip of the optical fiber, and is added to the normal measurement light for measurement. Accordingly, it is possible to calculate the light quantity ΔS of the reflected light that has received the transmission loss for the round trip of the pulsed light from the changes S1 and S2 of the received light amount due to the presence or absence of the pulsed light, and from this, calculate the transmittance Tr of the optical fiber to compensate the transmission loss. be able to. The present invention is based on such a novel principle.
[0007]
According to the present invention, a condensing lens (2) for condensing radiated light from a high-temperature object (1) having a partially reflective coating on the back surface, and an optical fiber (3) for transmitting the collected light And a photoelectric conversion device (10) that converts the transmitted light amount into an electrical signal and calculates the temperature T of the high-temperature object therefrom, and the photoelectric conversion device is a light receiving element (4) that converts the transmitted light into a current signal. ), A light receiving circuit (5) that converts the current signal into a voltage signal, a light emitting element (12) that emits light of a predetermined light amount P having a wavelength reflected by the partial reflection coating, and light emitting the light emitting element in a pulsed manner A driving circuit (13) to be coupled, an optical coupling element (14) for coupling the light emitting element and the light receiving element to an optical fiber, a sampling circuit (15) for acquiring a received light signal in synchronization with ON / OFF of the light emitting element, Light receiving circuit in timing And an arithmetic circuit (16) to compensate for transmission losses et voltage signals S1, S2, wherein the partially reflective coating is selectively reflective coating specific wavelengths .lambda.1, light of the light emitting element (12) Is a pulsed light with a wavelength λ1, and the partial reflection coating reflects only the light with the wavelength λ1 among the radiated light from the high temperature object (1), and the radiation temperature having a transmission loss compensation function, A total is provided.
[0009]
Moreover, according to this invention, it has a condensing lens (2) in the vicinity of a high temperature object (1), and the light condensed with this condensing lens is made into a light receiving element (4) via an optical fiber (3). In the temperature measurement method for calculating the temperature T of the high-temperature object from the received light amount, a partial reflection coating is applied to the back surface of the condensing lens, and pulse light having a predetermined light amount P having a wavelength reflected by the partial reflection coating is applied to the condensing lens. As shown in (2), it is made incident on the optical fiber, the transmission loss is compensated from the change S1 and S2 in the amount of received light depending on the presence or absence of pulsed light, and the partial reflection coating is a coating that selectively reflects a specific wavelength λ1. And the pulsed light is pulsed light having a wavelength λ1, and the partial reflection coating reflects only the light having the wavelength λ1 among the radiated light from the high-temperature object (1). Provided by It is.
[0010]
According to the apparatus and method of the present invention, the light emitting element (12), the drive circuit (13), and the optical coupling element (14) are used to transmit pulsed light having a predetermined light amount P having a wavelength reflected by the coating when the radiation thermometer is used. Is led to the back surface of the condenser lens (2), and the reflected light from the lens back surface is collected by the optical coupling element (14), the sampling circuit (15), the light receiving element (4) and the light receiving circuit (5). The transmission loss ΔS for the round trip of the pulsed light can be calculated by the arithmetic circuit (16) from the change S1, S2 of the received light amount due to the presence or absence of the pulsed light. Tr can be calculated to compensate for transmission loss.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to a common member and the overlapping description is abbreviate | omitted.
FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention. As shown in this figure, the radiation thermometer of the present invention comprises a condenser lens 2, an optical fiber 3, and a photoelectric conversion device 10 that converts a transmitted light amount into an electrical signal and calculates a temperature T of a high-temperature object therefrom. Is done.
The condenser lens 2 is installed in the vicinity of the high temperature object 1 (for example, a turbine blade), and condenses the radiated light from the high temperature object 1 on the end face of the optical fiber 3. The condensing lens 2 is shown as a single convex lens in this figure, but may be a compound lens composed of two or more lenses. Moreover, although the protective glass of the condensing lens 2 is not shown in this figure, such protective glass may be used.
Furthermore, according to the present invention, the partial reflection coating 2a is applied to the back surface (right side surface in the figure) of the condenser lens 2. The partial reflection coating 2a preferably selectively reflects a specific wavelength λ1, but the present invention is not limited to this, and may reflect a wide range of wavelengths.
The optical fiber 3 transmits light collected by the condenser lens 2 to the photoelectric conversion device 10. The optical fiber 3 is formed by bundling a plurality of (for example, three) ultrafine fiber wires having a diameter of about 0.4 mm, for example, and has flexibility.
[0012]
The photoelectric conversion device 10 includes a light receiving element 4, a light receiving circuit 5, a light emitting element 12, a drive circuit 13, an optical coupling element 14, a sampling circuit 15, and an arithmetic circuit 16, as shown in the figure.
The light receiving element 4 converts the light transmitted through the optical fiber 3 into a current signal. The light receiving circuit 5 converts the current signal converted by the light receiving element 4 into a voltage signal. Therefore, the light receiving amount of light transmitted through the optical fiber 3 can be converted into a voltage signal (voltage level) by the combination of the light receiving element 4 and the light receiving circuit 5, and this voltage signal is processed by an appropriate arithmetic circuit. Thus, the temperature of the high-temperature object 1 can be calculated as in the conventional case.
[0013]
The light emitting element 12 emits light having a predetermined light amount P having a wavelength reflected by the partial reflection coating 2a. When the partial reflection coating 2a selectively reflects a specific wavelength λ1, this wavelength may be set to the same wavelength λ1, but the partial reflection coating 2a reflects a wide range of wavelengths. In this case, any wavelength may be used as long as it is in a narrow wavelength range.
The drive circuit 13 causes the light emitting element 12 to emit light in pulses. Further, the optical coupling element 14 couples the light emitting element 12 and the light receiving element 4 to the optical fiber 3. With this configuration, it is possible to irradiate the condenser lens 2 with pulsed light from the light emitting element 12 through the optical fiber 3, and simultaneously receive the reflected light and transmitted light and measure the amount of light received by the light receiving element 4. can do.
[0014]
The sampling circuit 15 acquires a light reception signal from the light receiving element 4 in synchronization with ON / OFF of the light emitting element 12. Further, the arithmetic circuit 16 compensates for transmission loss from the voltage signals S1, S2 from the light receiving circuit at each ON / OFF timing of the light emitting element 12.
[0015]
FIG. 2 is a principle diagram of the present invention. In (A), if the transmittance of the partial reflection coating 2a is Tr2 with respect to the light amount S0 of the radiated light from the high temperature object 1, the light amount of the radiated light input to the optical fiber 3 is Tr2 × S0. Further, assuming that the transmittance of the optical fiber 3 is Tr, the light quantity S2 measured by the light receiving element 4 is Tr2 * S0 * Tr, and S0 = S2 / (Tr2 * Tr). . (Equation 1) holds. That is, since the transmittance Tr2 of the partial reflection coating 2a is known from the measurement at the time of manufacture, if the transmittance Tr of the optical fiber 3 is known, the amount of emitted light S0 can be calculated and the transmission loss can be compensated. Recognize.
[0016]
In FIG. 2 (B), the above-mentioned radiation thermometer (light emitting element 12, drive circuit 13, optical coupling element 14) guides the pulsed light of a predetermined light amount P having a wavelength reflected by the partial reflection coating 2a to the condenser lens 2. Then, the light quantity P × Tr multiplied by the transmittance Tr of the optical fiber 3 is incident on the partial reflection coating 2a. If the reflectance of the partial reflection coating 2a is Fr, the light quantity P × Tr × Fr is reflected. P × Tr 2 × Fr = ΔS. Multiplied by the transmittance Tr of the optical fiber 3. . The light quantity of (Expression 2) is added to the transmitted light quantity S2 of (A), and is measured by the light receiving element 4 as the light quantity S1. Therefore, S2 + .DELTA.S = S1. . The relationship of (Formula 3) is established. Here, since S2, S1, and P are known or measurable, and the reflectance Fr of the partially reflective coating 2a is also known from the measurement at the time of manufacture, the transmittance Tr of the optical fiber 3 is actually measured from Equation 2. Can do.
[0017]
By using FIG. 2 and (Equation 1) to (Equation 3) described above, the pulsed light of the predetermined light quantity P is incident on the optical fiber so as to be guided to the condenser lens 2, and the change S1 in the amount of received light due to the presence or absence of the pulsed light. , S2 can compensate for transmission loss. That is, the light emitting element 12, the drive circuit 13, and the optical coupling element 14 guide the pulsed light having a predetermined light quantity P having a wavelength reflected by the coating when the radiation thermometer is used to the back surface of the condenser lens 2 through the optical fiber. The coupling element 14, the sampling circuit 15, the light receiving element 4 and the light receiving circuit 5 add and measure the reflected light from the back surface of the lens to the transmitted light amount S2 of the condenser lens, and change in the received light amount S1, S2 depending on the presence or absence of pulsed light. From the calculation circuit 16, the transmission loss ΔS for the round trip of the pulsed light can be calculated (Equation 3). From this, the optical fiber transmittance Tr can be calculated (Equation 2), and the transmission loss can be compensated (Equation 1). This can be displayed on a CRT or the like by the output device 7 or output to another control device or the like.
[0018]
FIG. 3 is a relationship diagram between the input wavelength and the intensity (light quantity) in the radiation thermometer of the present invention. In this figure, (A) is a coating in which the partial reflection coating 2a selectively reflects a specific wavelength λ1, and the light emitting subelement 12 emits light of a predetermined light quantity P of wavelength λ1. .
In this case, the light quantity S0 of the radiated light from the high-temperature object 1 is normally distributed over a wide range from, for example, a wavelength of 750 nm to 1550 nm, but the light having a specific wavelength λ1 (for example, around 1300 nm) is reflected by the coating 2a. Loss. However, since the loss region due to the coating 2a is very narrow compared to the entire wavelength region, there is almost no influence on the radiation thermometer, and since there is little loss in the entire wavelength region, highly accurate temperature measurement can be performed. In addition, since the coating 2a affects only the specific wavelength λ1, the coating 2a is used when other wavelengths (for example, λ2) are used for other purposes or when particularly high accuracy is required in a wavelength portion other than the wavelength λ1. Can be reduced to a level where there is little or almost no influence.
[0019]
FIG. 3B shows a case where the partial reflection coating 2a is a coating that uniformly reflects a wide range of wavelengths, and the light-emitting subelement 12 emits light of a predetermined light quantity P having a wavelength λ1.
In this case, the light amount S0 of the radiated light from the high-temperature object 1 is lost due to reflection of light in a wide range of wavelengths (for example, wavelengths from 750 nm to 1550 nm) by the coating 2a. However, if the reflectance (transmittance Tr) of the coating 2a is measured in advance, the temperature can be similarly measured by the method described above.
In the above description, the conversion gain η in the photoelectric conversion of the light receiving element 4 and the light emitting element 12 is ignored (100%). However, in an actual apparatus, the conversion gain η is known and included. The formula should be applied.
[0020]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, the present invention can be applied to the measurement of the surface temperature of a general high-temperature object in addition to the gas turbine blade.
[0021]
【The invention's effect】
As described above, the radiation thermometer having the transmission loss compensation function and the temperature measurement method of the present invention have excellent effects such as being able to compensate for transmission loss due to deposits on the lens surface.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention.
FIG. 2 is a principle diagram of the present invention.
FIG. 3 is a relationship diagram between an input wavelength and intensity (light quantity) in the radiation thermometer of the present invention.
FIG. 4 is a schematic view of a conventional radiation thermometer using an optical fiber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature object 2 Condensing lens 2a Partial reflection coating 3 Optical fiber 4 Light receiving element 5 Light receiving circuit 6 Arithmetic circuit 7 Output device 10 Photoelectric conversion device 12 Light emitting element 13 Drive circuit 14 Optical coupling element 15 Sampling circuit 16 Arithmetic circuit

Claims (2)

裏面に部分反射コーティングが施され、かつ高温物体(1)からの放射光を集光する集光レンズ(2)と、集光された光を伝送する光ファイバ(3)と、伝送された光量を電気信号に変換しこれから高温物体の温度Tを演算する光電変換装置(10)とを備え、
光電変換装置は、伝送された光を電流信号に変換する受光素子(4)と、該電流信号を電圧信号に変換する受光回路(5)と、前記部分反射コーティングで反射する波長の所定光量Pの光を発する発光素子(12)と、該発光素子をパルス状に発光させる駆動回路(13)と、発光素子と受光素子を光ファイバに結合する光結合素子(14)と、発光素子のON/OFFに同期して受光信号を取得するサンプリング回路(15)と、各タイミングにおける受光回路からの電圧信号S1,S2 から伝送損失を補償する演算回路(16)とを備え
前記部分反射コーティングは、特定の波長λ1を選択的に反射するコーティングであり、前記発光素子(12)の光は、波長λ1のパルス光であり、
前記部分反射コーティングは、高温物体(1)からの放射光のうち該波長λ1の光のみを反射する、ことを特徴とする伝送損失補償機能を有する放射温度計。
A condensing lens (2) for condensing the radiated light from the high-temperature object (1), an optical fiber (3) for transmitting the collected light, and a transmitted light amount. And a photoelectric conversion device (10) for converting the temperature into an electric signal and calculating the temperature T of the high-temperature object therefrom,
The photoelectric conversion device includes a light receiving element (4) that converts transmitted light into a current signal, a light receiving circuit (5) that converts the current signal into a voltage signal, and a predetermined light amount P having a wavelength reflected by the partial reflection coating. A light emitting element (12) that emits light, a drive circuit (13) that emits the light emitting element in pulses, an optical coupling element (14) that couples the light emitting element and the light receiving element to an optical fiber, and ON of the light emitting element A sampling circuit (15) that acquires a light reception signal in synchronization with / OFF, and an arithmetic circuit (16) that compensates for transmission loss from the voltage signals S1 and S2 from the light reception circuit at each timing ,
The partially reflective coating is a coating that selectively reflects a specific wavelength λ1, and the light of the light emitting element (12) is pulsed light having a wavelength λ1.
The radiation thermometer having a transmission loss compensation function, wherein the partial reflection coating reflects only light having the wavelength λ1 among radiation emitted from the high temperature object (1) .
高温物体(1)の近傍に集光レンズ(2)を有し、該集光レンズで集光した光を光ファイバ(3)を介して受光素子(4)に導き、その受光量から高温物体の温度Tを算出する温度計測方法において、
集光レンズの裏面に部分反射コーティングを施し、該部分反射コーティングで反射する波長の所定光量Pのパルス光を集光レンズ(2)に導くように光ファイバに入射させ、パルス光の有無による受光量の変化S1,S2 から伝送損失を補償し、
前記部分反射コーティングは、特定の波長λ1を選択的に反射するコーティングであり、前記パルス光は、波長λ1のパルス光であり、
前記部分反射コーティングは、高温物体(1)からの放射光のうち該波長λ1の光のみを反射する、ことを特徴とする温度計測方法。
A condensing lens (2) is provided in the vicinity of the high temperature object (1), and the light condensed by the condensing lens is guided to the light receiving element (4) through the optical fiber (3). In the temperature measurement method for calculating the temperature T of
A partial reflection coating is applied to the back surface of the condensing lens, and pulsed light of a predetermined light amount P having a wavelength reflected by the partial reflection coating is incident on the optical fiber so as to be guided to the condensing lens (2). Compensate for transmission loss from the amount change S1, S2 ,
The partially reflective coating is a coating that selectively reflects a specific wavelength λ1, and the pulsed light is pulsed light having a wavelength λ1.
The temperature measurement method according to claim 1, wherein the partial reflection coating reflects only the light having the wavelength λ1 in the radiated light from the high temperature object (1) .
JP21216998A 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method Expired - Fee Related JP3932680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21216998A JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21216998A JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Publications (2)

Publication Number Publication Date
JP2000046655A JP2000046655A (en) 2000-02-18
JP3932680B2 true JP3932680B2 (en) 2007-06-20

Family

ID=16618058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21216998A Expired - Fee Related JP3932680B2 (en) 1998-07-28 1998-07-28 Radiation thermometer with optical loss compensation function and its temperature measurement method

Country Status (1)

Country Link
JP (1) JP3932680B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307148A (en) * 2007-06-13 2008-12-25 Hoya Corp Endoscopic instrument
CN107255558B (en) * 2017-06-30 2019-06-21 电子科技大学 A method of acquisition three wave band radiation information of turbo blade

Also Published As

Publication number Publication date
JP2000046655A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US9810556B2 (en) Apparatus for measuring optical signals from multiple optical fiber sensors
US4790669A (en) Spectroscopic method and apparatus for optically measuring temperature
US7881567B2 (en) Optical device for monitoring a rotatable shaft with an oriented axis
EP1203211B1 (en) Method and device for fibre-optical measuring systems
CN108731841B (en) Frequency modulation continuous wave laser interference optical fiber temperature sensor
CN109612601B (en) Power equipment temperature and partial discharge integrated detection system and method
JP3932680B2 (en) Radiation thermometer with optical loss compensation function and its temperature measurement method
JP2008089554A (en) Optical fiber sensor
CN108398144A (en) Aerospace fiber grating sensing system and method
JP2000046656A (en) Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor
JPS586431A (en) Temperature measuring method using optical fiber
JP2006071549A (en) Temperature sensor
JPS6217621A (en) Optical power meter
JPH0550710B2 (en)
JPS57157124A (en) Optical rod fabry-perot thermometer
KR100275654B1 (en) Grating strain sensor system using inclined fiber bragg grating demodulator
JPH08159882A (en) Temperature distribution measuring method and apparatus
JP5489455B2 (en) Optical distance measurement system
JP2003130734A (en) Temperature sensor and temperature measurement method
JPS63121722A (en) Temperature distribution detector
WO1996036276A1 (en) Optical fibre filter sensor
JPH06137965A (en) Optical fiber thermometer
JPH07218354A (en) Sensor for detecting distribution of physical quantity using optical fiber
AU713988B2 (en) Optical fibre filter sensor
CN117872137A (en) Battery optical fiber sensing demodulation device and optical fiber communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees