JP2000046656A - Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor - Google Patents
Radiation thermometer having light receiving loss compensation function and temperature measuring method thereforInfo
- Publication number
- JP2000046656A JP2000046656A JP10212173A JP21217398A JP2000046656A JP 2000046656 A JP2000046656 A JP 2000046656A JP 10212173 A JP10212173 A JP 10212173A JP 21217398 A JP21217398 A JP 21217398A JP 2000046656 A JP2000046656 A JP 2000046656A
- Authority
- JP
- Japan
- Prior art keywords
- light
- temperature
- light receiving
- optical fiber
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、受光損失補償機能
を有する放射温度計とその温度計測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer having a light-receiving loss compensation function and a method for measuring the temperature.
【0002】[0002]
【従来の技術】物体温度の変化に応じて放射光(輻射
光)の光量が変化する現象を応用して、物体表面の温度
を非接触で測定する放射温度計が従来から用いられてい
る。例えば、ガスタービン等のタービンブレードの温度
測定では、高温回転している多数のタービンブレードを
非接触で1つのセンサで計測できる等の利点がある。2. Description of the Related Art Radiation thermometers that measure the temperature of the surface of an object in a non-contact manner by using the phenomenon that the amount of radiation light (radiation light) changes in accordance with a change in the temperature of the object have been used. For example, in temperature measurement of a turbine blade such as a gas turbine, there is an advantage that a large number of turbine blades rotating at a high temperature can be measured by one sensor in a non-contact manner.
【0003】更に、かかる放射温度計と光ファイバとを
組み合わせ、光ファイバで放射光を伝送することによ
り、微小部分の温度を精密測定可能な装置が開発されて
いる。光ファイバを用いたこの放射温度計は、図3に模
式的に示すように、測定箇所1(例えばタービンブレー
ド)の近傍に集光レンズ2を設置し、この集光レンズで
集光した光を光ファイバ3を介して受光素子4に導き、
その出力から温度を演算するようになっている。なお、
この図で、5は受光回路、6は演算回路、7は出力装置
である。Further, there has been developed an apparatus capable of precisely measuring the temperature of a minute portion by combining such a radiation thermometer with an optical fiber and transmitting the emitted light through the optical fiber. In this radiation thermometer using an optical fiber, as schematically shown in FIG. 3, a condenser lens 2 is installed near a measurement point 1 (for example, a turbine blade), and light collected by the condenser lens is collected. It is led to the light receiving element 4 via the optical fiber 3,
The temperature is calculated from the output. In addition,
In this figure, 5 is a light receiving circuit, 6 is an arithmetic circuit, and 7 is an output device.
【0004】[0004]
【発明が解決しようとする課題】集光レンズ2の表面に
は、通常パージエア等が供給され、異物の付着を防止し
ている。しかし、タービンブレード1に供給される燃焼
ガスやパージエアには不純物が含まれているため、使用
中にそれらの不純物が集光レンズの表面に付着し、光の
透過率が徐々に低下する問題点がある。この場合、放射
光の受光量が低下するため実際の温度より低く計測温度
が表示される。そのため、測定箇所(タービンブレー
ド)が許容温度以上に過熱されている場合でも、それを
低く表示するため、計測温度を制御パラメータとする場
合に、ブレード等の寿命を短縮し、ガスタービンを早期
に損傷させるおそれがある問題点があった。言い換えれ
ば、レンズ表面の粒子付着状態が未知であることは大き
な問題点となっていた。Purging air or the like is usually supplied to the surface of the condenser lens 2 to prevent foreign matter from adhering. However, since the combustion gas and purge air supplied to the turbine blade 1 contain impurities, the impurities adhere to the surface of the condenser lens during use, and the light transmittance gradually decreases. There is. In this case, the measured temperature is displayed lower than the actual temperature because the amount of radiation light received decreases. Therefore, even if the measurement location (turbine blade) is overheated to a temperature higher than the allowable temperature, it is displayed low. There was a problem that could cause damage. In other words, it is a major problem that the adhesion state of the particles on the lens surface is unknown.
【0005】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、レ
ンズ表面の付着物による受光損失を補償することができ
る受光損失補償機能を有する放射温度計とその温度計測
方法を提供することにある。The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a radiation thermometer having a light-receiving loss compensation function capable of compensating for a light-receiving loss due to a deposit on a lens surface, and a method of measuring the temperature.
【0006】[0006]
【課題を解決するための手段】所定光量Pのパルス光を
光ファイバを介して集光レンズ(2)に導くことによ
り、その表面の付着物による反射光量ΔSが集光レンズ
の透過光量S2 に加算されて計測されるので、パルス光
の有無による受光量の変化S1,S2 から反射光量ΔSが
算出でき、これから付着物の反射率Rfを算出できる。
更に、レンズ表面の反射率と透過率はほぼ一定の関係を
有するので、この関係からレンズ表面の透過率Trを求
めることにより受光損失を補償することができる。本発
明は、かかる新規の原理に基づくものである。By guiding a pulse light of a predetermined light amount P to a condenser lens (2) via an optical fiber, the amount of light reflected by the substance adhering to the surface thereof becomes equal to the transmitted light amount S2 of the condenser lens. Since the addition is measured, the amount of reflected light ΔS can be calculated from the changes S1 and S2 in the amount of received light depending on the presence or absence of the pulsed light, and the reflectance Rf of the attached matter can be calculated therefrom.
Further, since the reflectance and the transmittance on the lens surface have a substantially constant relationship, the light receiving loss can be compensated by obtaining the transmittance Tr on the lens surface from this relationship. The present invention is based on such a new principle.
【0007】本発明によれば、高温物体(1)からの放
射光を集光する集光レンズ(2)と、集光された光を伝
送する光ファイバ(3)と、伝送された光量を電気信号
に変換しこれから高温物体の温度Tを演算する光電変換
装置(10)とを備え、光電変換装置は、伝送された光
を電流信号に変換する受光素子(4)と、該電流信号を
電圧信号に変換する受光回路(5)と、波長λ1 の所定
光量Pの光を発する発光素子(12)と、該発光素子を
パルス状に発光させる駆動回路(13)と、発光素子と
受光素子を光ファイバに結合する光結合素子(14)
と、発光素子のON/OFFに同期して受光信号を取得
するサンプリング回路(15)と、各タイミングにおけ
る受光回路からの電圧信号S1,S2 から受光損失を補償
する演算回路(16)とを備えたことを特徴とする受光
損失補償機能を有する放射温度計が提供される。According to the present invention, a condensing lens (2) for condensing light emitted from a high-temperature object (1), an optical fiber (3) for transmitting condensed light, and a light amount for transmitted light A photoelectric conversion device (10) for converting the transmitted light into a current signal; and a photoelectric conversion device (10) for converting the transmitted light into a current signal. A light receiving circuit (5) for converting to a voltage signal, a light emitting element (12) for emitting a predetermined amount of light P having a wavelength λ1, a driving circuit (13) for causing the light emitting element to emit light in pulses, a light emitting element and a light receiving element Optical coupling element (14) for coupling optical fiber to optical fiber
And a sampling circuit (15) for acquiring a light receiving signal in synchronization with ON / OFF of the light emitting element, and an arithmetic circuit (16) for compensating light receiving loss from the voltage signals S1, S2 from the light receiving circuit at each timing. A radiation thermometer having a light reception loss compensation function is provided.
【0008】また、本発明によれば、高温物体(1)の
近傍に集光レンズ(2)を有し、該集光レンズで集光し
た光を光ファイバ(3)を介して受光素子(4)に導
き、その受光量から高温物体の温度Tを算出する温度計
測方法において、所定光量Pのパルス光を集光レンズ
(2)に導くように光ファイバに入射させ、パルス光の
有無による受光量の変化S1,S2 から受光損失を補償す
る、ことを特徴とする温度計測方法が提供される。According to the present invention, a condenser lens (2) is provided in the vicinity of the high-temperature object (1), and light condensed by the condenser lens is received by a light-receiving element (3) via an optical fiber (3). In the temperature measurement method for calculating the temperature T of the high-temperature object from the received light amount according to 4), a pulse light of a predetermined light amount P is incident on an optical fiber so as to be guided to the condenser lens (2), and the presence or absence of the pulse light is determined. A temperature measuring method is provided, wherein light receiving loss is compensated from changes in received light amount S1, S2.
【0009】上記本発明の装置及び方法により、発光素
子(12)、駆動回路(13)及び光結合素子(14)
により、所定光量Pのパルス光を光ファイバを介して集
光レンズ(2)に導き、光結合素子(14)、サンプリ
ング回路(15)、受光素子(4)及び受光回路(5)
により、レンズ表面の付着物による反射光量ΔSを集光
レンズの透過光量S2 に加算して計測し、演算回路(1
6)により、パルス光の有無による受光量の変化S1,S
2 から反射光量ΔSを算出し、これから付着物の反射率
Rfを算出し、更に、レンズ表面の反射率と透過率の関
係からレンズ表面の透過率Trを求めることにより受光
損失を補償することができる。According to the apparatus and method of the present invention, the light emitting element (12), the driving circuit (13) and the optical coupling element (14).
As a result, the pulse light of the predetermined light amount P is guided to the condenser lens (2) via the optical fiber, and the optical coupling element (14), the sampling circuit (15), the light receiving element (4), and the light receiving circuit (5)
, The amount of reflection .DELTA.S reflected by the substance adhering to the lens surface is added to the amount of transmission S2 of the condenser lens and measured.
6), the change in the amount of received light S1, S depending on the presence or absence of the pulse light
2 to calculate the amount of reflected light ΔS, calculate the reflectance Rf of the attached matter from this, and obtain the transmittance Tr of the lens surface from the relationship between the reflectance and the transmittance of the lens surface to compensate for the light reception loss. it can.
【0010】[0010]
【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通の
部材には同一の符号を付し重複した説明を省略する。図
1は、本発明による放射温度計の全体構成図である。こ
の図に示すように、本発明の放射温度計は、集光レンズ
2、光ファイバ3、及び伝送された光量を電気信号に変
換しこれから高温物体の温度Tを演算する光電変換装置
10から構成される。集光レンズ2は、高温物体1(例
えばタービンブレード)の近傍に設置され、高温物体1
からの放射光を光ファイバ3の端面に集光するようにな
っている。この集光レンズ2は、この図では単一の凸レ
ンズで示しているが、2枚以上のレンズからなる複合レ
ンズであってもよい。また、この図では集光レンズ2の
保護ガラスを示していないが、かかる保護ガラスを用い
てもよい。光ファイバ3は、集光レンズ2で集光された
光を光電変換装置10まで伝送するようになっている。
この光ファイバ3は、例えば、直径約0.4mm前後の
極細のファイバ線を複数(例えば3本)束ねて構成した
ものであり、可撓性を有しかつ低い伝送損失を備えてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common members are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention. As shown in the figure, the radiation thermometer of the present invention comprises a condenser lens 2, an optical fiber 3, and a photoelectric conversion device 10 that converts a transmitted light amount into an electric signal and calculates a temperature T of a high-temperature object from the electric signal. Is done. The condenser lens 2 is installed near the hot object 1 (for example, a turbine blade).
The light emitted from the optical fiber 3 is focused on the end face of the optical fiber 3. Although the condensing lens 2 is shown as a single convex lens in this figure, it may be a compound lens composed of two or more lenses. Further, although the protective glass of the condenser lens 2 is not shown in this figure, such a protective glass may be used. The optical fiber 3 transmits the light condensed by the condenser lens 2 to the photoelectric conversion device 10.
The optical fiber 3 is formed by bundling a plurality of (for example, three) ultrafine fiber wires having a diameter of about 0.4 mm, and has flexibility and low transmission loss.
【0011】光電変換装置10は、図に示すように、受
光素子4、受光回路5、発光素子12、駆動回路13、
光結合素子14、サンプリング回路15及び演算回路1
6からなる。受光素子4は、光ファイバ3で伝送された
光を電流信号に変換する。受光回路5は、受光素子4で
変換した電流信号を電圧信号に変換する。従って、受光
素子4と受光回路5の組み合わせにより、光ファイバ3
で伝送された光の受光量を電圧信号(電圧レベル)に変
換することができ、この電圧信号を適当な演算回路で処
理することにより、従来と同様に高温物体1の温度を算
出することができる。As shown in the figure, the photoelectric conversion device 10 includes a light receiving element 4, a light receiving circuit 5, a light emitting element 12, a driving circuit 13,
Optical coupling element 14, sampling circuit 15, and arithmetic circuit 1
Consists of six. The light receiving element 4 converts the light transmitted through the optical fiber 3 into a current signal. The light receiving circuit 5 converts the current signal converted by the light receiving element 4 into a voltage signal. Therefore, the combination of the light receiving element 4 and the light receiving circuit 5 allows the optical fiber 3
Can be converted into a voltage signal (voltage level), and the voltage signal is processed by an appropriate arithmetic circuit to calculate the temperature of the high-temperature object 1 as in the related art. it can.
【0012】発光素子12は、波長λ1 の所定光量Pの
光を発する。駆動回路13は、発光素子12をパルス状
に発光させる。更に、光結合素子14は、発光素子12
と受光素子4を光ファイバ3に結合している。この構成
により、発光素子12から光ファイバ3を介して集光レ
ンズ2にパルス光を照射することができ、かつ同時にそ
の反射光と透過光を併せて受光し、受光素子4により受
光量を計測することができる。The light emitting element 12 emits light having a predetermined light amount P having a wavelength λ1. The drive circuit 13 causes the light emitting element 12 to emit light in a pulse shape. Further, the optical coupling element 14 is
And the light receiving element 4 are coupled to the optical fiber 3. With this configuration, it is possible to irradiate the condenser lens 2 with pulsed light from the light emitting element 12 via the optical fiber 3 and simultaneously receive the reflected light and the transmitted light together, and measure the amount of light received by the light receiving element 4 can do.
【0013】サンプリング回路15は、発光素子12の
ON/OFFに同期して受光素子4からの受光信号を取
得する。更に、演算回路16は、発光素子12のON/
OFFの各タイミングにおける受光回路からの電圧信号
S1,S2 から受光損失を補償するようになっている。The sampling circuit 15 acquires a light receiving signal from the light receiving element 4 in synchronization with ON / OFF of the light emitting element 12. Further, the arithmetic circuit 16 determines whether the light emitting element 12 is ON / OFF.
The light receiving loss is compensated from the voltage signals S1 and S2 from the light receiving circuit at each OFF timing.
【0014】図2は、本発明の原理図である。(A)は
透過率Trの定義を示している。この図に示すように、
高温物体1からの放射光の光量S0 に対して集光レンズ
2の透過光の光量をS2 とすると、Tr=S2 /S0
..(式1)で透過率Trが定義される。レンズ表面
に付着物がない場合には、S2 =S0 、Tr=1.0で
あり、付着物が多くなるほど、(D)に例示するように
透過率Trは低下する。また、透過光の光量S2 は、上
述した放射温度計(受光素子4、受光回路5)で計測で
きるので、透過率Trがわかれば放射光の光量S0 が算
出でき、受光損失を補償することができることがわか
る。FIG. 2 shows the principle of the present invention. (A) shows the definition of the transmittance Tr. As shown in this figure,
Assuming that the amount of light transmitted through the condenser lens 2 is S2 with respect to the amount S0 of light emitted from the high-temperature object 1, Tr = S2 / S0
. . (Equation 1) defines the transmittance Tr. When there is no attached matter on the lens surface, S2 = S0 and Tr = 1.0, and as the amount of attached matter increases, the transmittance Tr decreases as exemplified in (D). Further, since the light quantity S2 of the transmitted light can be measured by the above-mentioned radiation thermometer (the light receiving element 4 and the light receiving circuit 5), if the transmittance Tr is known, the light quantity S0 of the emitted light can be calculated, and the light receiving loss can be compensated. We can see that we can do it.
【0015】図2(B)は反射率Rfの定義を示してい
る。上述した放射温度計(発光素子12、駆動回路1
3、光結合素子14)により、所定光量Pのパルス光を
集光レンズ2に導くと、その一部ΔSが反射される。こ
の場合、受光素子4により(A)の透過光量S2 と反射
光量ΔSが加算された光量S1 が計測される。従って、
S2 +ΔS=S1 ..(式2)の関係が成り立ち、反射
率RfをΔS/Pと定義すると、Rf=(S1 −S2 )
/P..(式3)が成り立つ。ここで、S2 、S1 、P
はそれぞれ既知又は計測可能なため、式3から反射率R
fを実測することができる。FIG. 2B shows the definition of the reflectance Rf. The above-mentioned radiation thermometer (light emitting element 12, driving circuit 1
3. When the predetermined amount of pulse light P is guided to the condenser lens 2 by the optical coupling element 14), a part ΔS thereof is reflected. In this case, the light receiving element 4 measures the light amount S1 obtained by adding the transmitted light amount S2 and the reflected light amount ΔS of (A). Therefore,
S2 + ΔS = S1. . If the relationship of (Equation 2) is satisfied and the reflectance Rf is defined as ΔS / P, Rf = (S1−S2)
/ P. . (Equation 3) holds. Where S2, S1, P
Since each is known or measurable, the reflectance R
f can be measured.
【0016】図2(C)(D)は透過率Trと反射率R
fの関係を示す図である。(C)に示すように、付着物
に入射する光は、透過、反射又は吸収され、かつ吸収光
量は通常小さいので、これを反射光に含めて考えると、
Tr+k・Rf=1..(式4)が成り立つ。ここでk
は、補正係数であり、ほぼ一定とみなすことができる
(式6)が、厳密には、反射率Rfの関数(式7)とし
て予め計測しておくのがよい。なお、式5は、式4を変
形したものである。FIGS. 2C and 2D show transmittance Tr and reflectance R.
It is a figure showing relation of f. As shown in (C), the light incident on the attached matter is transmitted, reflected or absorbed, and the amount of absorbed light is usually small.
Tr + k · Rf = 1. . (Equation 4) holds. Where k
Is a correction coefficient, which can be regarded as substantially constant (Equation 6), but strictly, it is better to measure in advance as a function of the reflectance Rf (Equation 7). Equation 5 is a modification of equation 4.
【0017】上述した図2及び(式1)〜(式7)を用
いることにより、所定光量Pのパルス光を集光レンズ2
に導くように光ファイバに入射させ、パルス光の有無に
よる受光量の変化S1,S2 から受光損失を補償すること
ができる。すなわち、発光素子12、駆動回路13及び
光結合素子14により、所定光量Pのパルス光を光ファ
イバを介して集光レンズ2に導き、光結合素子14、サ
ンプリング回路15、受光素子4及び受光回路5によ
り、レンズ表面の付着物による反射光量ΔSを集光レン
ズの透過光量S2 に加算して計測し、演算回路16によ
り、パルス光の有無による受光量の変化S1,S2 から反
射光量ΔSを算出し(式2)、これから付着物の反射率
Rfを算出し(式3)、更に、レンズ表面の反射率Rf
と透過率Trの関係(式4,5)からレンズ表面の透過
率Trを求めることにより、式1を用いて受光損失を補
償することができ、これを出力装置7でCRT等に表示
し、或いは他の制御装置等に出力することができる。By using the above-described FIG. 2 and (Equation 1) to (Equation 7), the pulse light of a predetermined light amount P is
And the light reception loss can be compensated from the changes S1 and S2 in the amount of received light depending on the presence or absence of pulsed light. That is, the light emitting element 12, the driving circuit 13, and the optical coupling element 14 guide the pulse light of a predetermined light amount P to the condenser lens 2 via the optical fiber, and the optical coupling element 14, the sampling circuit 15, the light receiving element 4, and the light receiving circuit 5, the amount of reflected light ΔS due to the adhering substance on the lens surface is added to the amount of transmitted light S2 of the condenser lens and measured. (Equation 2), the reflectance Rf of the attached matter is calculated from this (Equation 3), and the reflectance Rf of the lens surface is further calculated.
By calculating the transmissivity Tr of the lens surface from the relationship between (Equation 4 and 5) and the transmissivity Tr (Equations 4 and 5), the light receiving loss can be compensated using Equation 1, and this is displayed on a CRT or the like by the output device 7, Alternatively, it can be output to another control device or the like.
【0018】なお、発光素子12により、波長λ1 の所
定光量Pの光を発するのがよい。この波長λ1 は、例え
ば光ファイバの伝送損失の十分小さいものを使用するこ
とにより、その影響を無視できるレベルに抑制すること
ができる。また、他の波長λ2 をその他の用途に用いる
場合に相互に影響をなくすことができる。また、上述の
説明では、受光素子4及び発光素子12の光電変換にお
ける変換ゲインηを無視して(100%として)いる
が、実際の装置では、かかる変換ゲインηは既知であり
これを含めた式を適用するのがよい。It is preferable that the light emitting element 12 emits light having a predetermined light amount P having a wavelength λ1. The influence of the wavelength λ1 can be suppressed to a negligible level by using, for example, one having sufficiently small transmission loss of the optical fiber. Further, when another wavelength λ2 is used for other purposes, mutual influence can be eliminated. In the above description, the conversion gain η in the photoelectric conversion of the light receiving element 4 and the light emitting element 12 is ignored (assumed to be 100%). However, in an actual apparatus, such a conversion gain η is known and included. It is good to apply an expression.
【0019】なお本発明は、上述した実施形態に限定さ
れるものではなく、本発明の要旨を逸脱しない範囲で種
々の変更が可能である。例えば、本発明はガスタービン
・ブレード以外にも一般の高温物体の表面温度計測にも
適用することができる。The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the present invention can be applied to surface temperature measurement of general high-temperature objects other than gas turbine blades.
【0020】[0020]
【発明の効果】上述したように、本発明の受光損失補償
機能を有する放射温度計とその温度計測方法は、レンズ
表面の付着物による受光損失を補償することができる、
等の優れた効果を有する。As described above, the radiation thermometer having the light-receiving loss compensation function of the present invention and the temperature measuring method thereof can compensate for the light-receiving loss due to the attachment on the lens surface.
And so on.
【図1】本発明による放射温度計の全体構成図である。FIG. 1 is an overall configuration diagram of a radiation thermometer according to the present invention.
【図2】本発明の原理図である。FIG. 2 is a principle diagram of the present invention.
【図3】光ファイバを用いた従来の放射温度計の模式図
である。FIG. 3 is a schematic diagram of a conventional radiation thermometer using an optical fiber.
1 高温物体 2 集光レンズ 3 光ファイバ 4 受光素子 5 受光回路 6 演算回路 7 出力装置 10 光電変換装置 12 発光素子 13 駆動回路 14 光結合素子 15 サンプリング回路 16 演算回路 DESCRIPTION OF SYMBOLS 1 Hot object 2 Condensing lens 3 Optical fiber 4 Light receiving element 5 Light receiving circuit 6 Arithmetic circuit 7 Output device 10 Photoelectric converter 12 Light emitting element 13 Drive circuit 14 Optical coupling element 15 Sampling circuit 16 Arithmetic circuit
Claims (2)
集光レンズ(2)と、集光された光を伝送する光ファイ
バ(3)と、伝送された光量を電気信号に変換しこれか
ら高温物体の温度Tを演算する光電変換装置(10)と
を備え、 光電変換装置は、伝送された光を電流信号に変換する受
光素子(4)と、該電流信号を電圧信号に変換する受光
回路(5)と、波長λ1 の所定光量Pの光を発する発光
素子(12)と、該発光素子をパルス状に発光させる駆
動回路(13)と、発光素子と受光素子を光ファイバに
結合する光結合素子(14)と、発光素子のON/OF
Fに同期して受光信号を取得するサンプリング回路(1
5)と、各タイミングにおける受光回路からの電圧信号
S1,S2 から受光損失を補償する演算回路(16)とを
備えたことを特徴とする受光損失補償機能を有する放射
温度計。A condenser lens for condensing light emitted from a high-temperature object, an optical fiber for transmitting condensed light, and converting the transmitted light amount into an electric signal. And a photoelectric conversion device (10) for calculating the temperature T of the high-temperature object, wherein the photoelectric conversion device converts the transmitted light into a current signal, and converts the current signal into a voltage signal. Light emitting circuit (5), a light emitting element (12) for emitting light of a predetermined light amount P of wavelength λ1, a driving circuit (13) for emitting the light emitting element in a pulse shape, and an optical fiber connecting the light emitting element and the light receiving element. Optical coupling element (14) for coupling and ON / OF of light emitting element
Sampling circuit (1
5) and a radiation thermometer having a light-receiving loss compensation function, comprising: an arithmetic circuit (16) for compensating for light-receiving loss from the voltage signals S1, S2 from the light-receiving circuit at each timing.
(2)を有し、該集光レンズで集光した光を光ファイバ
(3)を介して受光素子(4)に導き、その受光量から
高温物体の温度Tを算出する温度計測方法において、 所定光量Pのパルス光を集光レンズ(2)に導くように
光ファイバに入射させ、パルス光の有無による受光量の
変化S1,S2 から受光損失を補償する、ことを特徴とす
る温度計測方法。2. A condensing lens (2) near a high-temperature object (1), and the light condensed by the condensing lens is guided to a light receiving element (4) via an optical fiber (3). In a temperature measurement method for calculating a temperature T of a high-temperature object from a received light amount, a pulse light of a predetermined light amount P is incident on an optical fiber so as to be guided to a condenser lens (2), and a change S1, A method for measuring temperature, wherein light receiving loss is compensated from S2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10212173A JP2000046656A (en) | 1998-07-28 | 1998-07-28 | Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10212173A JP2000046656A (en) | 1998-07-28 | 1998-07-28 | Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000046656A true JP2000046656A (en) | 2000-02-18 |
Family
ID=16618123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10212173A Pending JP2000046656A (en) | 1998-07-28 | 1998-07-28 | Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000046656A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249638A (en) * | 2007-03-30 | 2008-10-16 | Toyota Motor Corp | Device and method for detecting measurement abnormality of infrared radiation thermometer |
-
1998
- 1998-07-28 JP JP10212173A patent/JP2000046656A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249638A (en) * | 2007-03-30 | 2008-10-16 | Toyota Motor Corp | Device and method for detecting measurement abnormality of infrared radiation thermometer |
WO2008123487A1 (en) * | 2007-03-30 | 2008-10-16 | Toyota Jidosha Kabushiki Kaisha | Abnormal measurement detection device and method for infrared radiation thermometer |
JP4668229B2 (en) * | 2007-03-30 | 2011-04-13 | トヨタ自動車株式会社 | Measurement abnormality detection device and measurement abnormality detection method for infrared radiation thermometer |
US8445847B2 (en) | 2007-03-30 | 2013-05-21 | Toyota Jidosha Kabushiki Kaisha | Abnormal measurement detection device and method for infrared radiation thermometer |
US9163992B2 (en) | 2007-03-30 | 2015-10-20 | Toyota Jidosha Kabushiki Kaisha | Abnormal measurement detection device and method for infrared radiation thermometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5154512A (en) | Non-contact techniques for measuring temperature or radiation-heated objects | |
US5183338A (en) | Temperature measurement with combined photo-luminescent and black body sensing techniques | |
US5112137A (en) | Temperature measurement with combined photo-luminescent and black body sensing techniques | |
US9500537B2 (en) | Temperature measurement apparatus and method | |
JPH02503031A (en) | radiation thermometer | |
US4459986A (en) | Surgical laser system | |
US9518894B2 (en) | Device for measuring vibration amplitudes of the blade tips in a turbomachine | |
JP4365979B2 (en) | Optical fiber strain sensor and manufacturing method thereof | |
CN111175253B (en) | Mixed sapphire crystal double-Fabry-Perot cavity optical fiber refractive index sensor and measuring method | |
CN102235968A (en) | Heterodyne interference-based optical fiber hydrogen sensing device and method | |
JP4862594B2 (en) | Optical fiber sensor | |
JP2000046656A (en) | Radiation thermometer having light receiving loss compensation function and temperature measuring method therefor | |
JP2010164365A (en) | Method and instrument for measuring concentration of gas | |
JP3932680B2 (en) | Radiation thermometer with optical loss compensation function and its temperature measurement method | |
JPH08159882A (en) | Temperature distribution measuring method and apparatus | |
JPS61270683A (en) | Light applied measuring instrument | |
JPH03287050A (en) | Optical refractive index measuring instrument | |
JP2003130734A (en) | Temperature sensor and temperature measurement method | |
KR100191209B1 (en) | Radiation-type light temperature sensor system using substance changing wavelength | |
JPS586431A (en) | Temperature measuring method using optical fiber | |
JP3110139B2 (en) | Optical fiber temperature sensor | |
JP2003106970A (en) | Density sensor | |
JPS6035234A (en) | Pressure measuring device | |
JPH0115005B2 (en) | ||
JPH06137965A (en) | Optical fiber thermometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070227 |