JPH07218354A - Sensor for detecting distribution of physical quantity using optical fiber - Google Patents

Sensor for detecting distribution of physical quantity using optical fiber

Info

Publication number
JPH07218354A
JPH07218354A JP6015283A JP1528394A JPH07218354A JP H07218354 A JPH07218354 A JP H07218354A JP 6015283 A JP6015283 A JP 6015283A JP 1528394 A JP1528394 A JP 1528394A JP H07218354 A JPH07218354 A JP H07218354A
Authority
JP
Japan
Prior art keywords
optical fiber
physical quantity
transmission loss
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6015283A
Other languages
Japanese (ja)
Inventor
Masato Asakawa
正人 浅川
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP6015283A priority Critical patent/JPH07218354A/en
Publication of JPH07218354A publication Critical patent/JPH07218354A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a measurement error due to transmission loss change and to detect the distribution of physical quantity with less measurement error by optically connecting a same side by providing two optical fibers and then obtaining transmission loss based on the ratio of rear scattered light measurement result at two locations. CONSTITUTION:Two optical fibers 10 connected to a detection device 20 are provided and are subjected to fusing connection at the remote edges. The near edges of the optical fibers 10 are connected to detectors and are inserted into a soaking case 40 which is constituted so that the internal temperature becomes constant. One out of the optical fibers 10 connected to the burnt case is connected to an OTDR measurement circuit 30 and a temperature sensor 50 is provided at the case 40. Then, the temperature distribution information from the circuit 30 and temperature information of the sensor 50 are input to a temperature distribution operation circuit 80 and a transmission loss (An) and a temperature (Tn) between sampling sections of the optical fiber 10 are obtained, thus eliminating a measurement error caused by the difference in the amount of transmission loss change at two wavelengths due to the influence of the surrounding environment, a measurement error due to the transmission loss change at the wavelength of a light source, and a measurement error in distance direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を利用して物理量を
検知する物理量検知センサに係り、特に光ファイバ自体
をセンサとして、光ファイバに沿った物理量の分布を測
定する物理量分布検知センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a physical quantity detection sensor for detecting a physical quantity using light, and more particularly to a physical quantity distribution detection sensor for measuring a distribution of a physical quantity along an optical fiber by using the optical fiber itself as a sensor. It is a thing.

【0002】[0002]

【従来の技術】光ファイバを用いた物理量検知センサと
しては、一般に光ファイバに沿った温度分布を測定する
温度分布検知センサが知られている。この温度分布検知
センサでは、図2に示すように光ファイバ4の一端から
光源1で発生した光パルスを光カプラや光分波器等の光
分岐・分波手段3を介して光ファイバ4に入射させる。
そして、この光ファイバに入射した光パルスが光ファイ
バ中を進行するに従い光ファイバの各位置で発生する散
乱光のうち光入射端に戻ってくる後方散乱光を光分岐・
分波手段3により、測定したい第一の散乱光の波長と第
二の散乱光の波長とを分離して取出し、それぞれO/E
変換器5s、5aにより電気信号に変換し、これを時間
間隔tsでサンプリングして、第一及び第二の散乱光の
時間関数g1 (t)、及び、g2 (t)を測定する。光
ファイバ中で発生する散乱光量は、微弱であり、時間関
数g1 (t)、g2 (t)のSN比が悪いため、これを
改善するために前記光パルスの入射からサンプリングま
での操作を多数回繰り返し、時間関数g1 (t)、g2
(t)の平均化処理を行ってSN比を改善したG
1(t)、G2 (t)をそれぞれ得る。ここで、光ファ
イバ中での光速vが既知であれば、時間の関数として測
定したG1 (t)、G2 (t)をサンプリング距離間隔
xsのサンプリング点毎に定義される光ファイバに沿っ
た距離の関数G1 (x)、G2 (x)に置き換えること
が可能である。このようにして得られた距離の関数G1
(x)、G2 (x)は,それぞれ第一、及び、第二の波
長の後方散乱光強度を光ファイバの一端で測定したもの
であるため、xm地点で発生した散乱光に発生確率R1
(x)、R2 (x)との間には、それぞれ、数1、2に
示す(1)、(2)式に示す関係がある。
2. Description of the Related Art As a physical quantity detection sensor using an optical fiber, a temperature distribution detection sensor for measuring a temperature distribution along the optical fiber is generally known. In this temperature distribution detecting sensor, as shown in FIG. 2, an optical pulse generated from the light source 1 from one end of the optical fiber 4 is sent to the optical fiber 4 via an optical branching / demultiplexing means 3 such as an optical coupler or an optical demultiplexer. Make it incident.
Then, as the light pulse incident on this optical fiber travels in the optical fiber, the backscattered light returning to the light incident end among the scattered light generated at each position of the optical fiber is branched off.
The wavelength of the first scattered light and the wavelength of the second scattered light which are desired to be measured are separated and taken out by the demultiplexing means 3, and the O / E is obtained respectively.
The electric signals are converted by the converters 5s and 5a, sampled at time intervals ts, and the time functions g 1 (t) and g 2 (t) of the first and second scattered lights are measured. Since the amount of scattered light generated in the optical fiber is weak and the SN ratio of the time functions g 1 (t) and g 2 (t) is poor, in order to improve this, the operation from the incidence of the optical pulse to the sampling is improved. Is repeated many times, and time functions g 1 (t), g 2
G in which the SN ratio is improved by performing the averaging process of (t)
1 (t) and G 2 (t) are obtained, respectively. Here, if the speed of light v in the optical fiber is known, G 1 (t) and G 2 (t) measured as a function of time are measured along the optical fiber defined for each sampling point of the sampling distance interval xs. The distance functions G 1 (x) and G 2 (x) can be replaced. The distance function G 1 thus obtained
Since (x) and G 2 (x) are the backscattered light intensities of the first and second wavelengths, respectively, measured at one end of the optical fiber, the probability R of occurrence of scattered light at the point xm is R. 1
The relations (x) and R 2 (x) have the relationships shown in the equations (1) and (2) shown in the equations 1 and 2, respectively.

【0003】[0003]

【数1】 [Equation 1]

【0004】[0004]

【数2】 [Equation 2]

【0005】ここに、P0 ;光ファイバ入射光強度 α0 ;入射光波長の光ファイバ伝送損失dB/m γ;後方散乱係数 α1 、α2 ;第一、第二の波長の光ファイバ伝送損失 M1 ,M2 ;第一、第二の波長のO/E変換効率 従って、xm地点の第一、第二の散乱光の発生確率は、
それぞれ数3、4に示す(3)、(4)式で表され、K
1 、K2 が分かれば測定値G1 (x)、G2 (x)を用
いて求めることができる。
Where P 0 : optical fiber incident light intensity α 0 ; incident light wavelength optical fiber transmission loss dB / m γ; backscattering coefficient α 1 , α 2 ; first and second wavelength optical fiber transmission Loss M 1 , M 2 ; O / E conversion efficiency of the first and second wavelengths Therefore, the probability of occurrence of the first and second scattered light at the xm point is
Expressions (3) and (4) shown in Equations 3 and 4 respectively represent K
If 1 and K 2 are known, it can be determined using the measured values G 1 (x) and G 2 (x).

【0006】[0006]

【数3】 [Equation 3]

【0007】[0007]

【数4】 [Equation 4]

【0008】一方、光ファイバ中で発生する第一、第二
の波長の散乱光の発生確率R1、R2と温度Tとの間に
数5に示す式(5)で示すような関係があり、距離xで
の温度T(X)は、数6に示す式(6)を用いて求める
ことができる。
On the other hand, there is a relationship between the occurrence probabilities R1 and R2 of the scattered light of the first and second wavelengths generated in the optical fiber and the temperature T as shown in the equation (5). The temperature T (X) at the distance x can be obtained by using the equation (6) shown in Equation 6.

【0009】[0009]

【数5】 [Equation 5]

【0010】[0010]

【数6】 [Equation 6]

【0011】このようにして、光ファイバに沿った温度
分布T(X)を求めることができる。これらの関係を詳
細に示すと、以下のようになる。即ち、第一の波長の散
乱光としてはラマン散乱光のスト−クス光を、第二の波
長の散乱光としてはラマン散乱光のアンチスト−クス光
を用いる。これらの散乱光の発生確率Rs、Rasと温
度Tとの間には、数7に示す式(7)に示す関係があ
る。従って、距離xにおける温度は数8に示す式(8)
で表される。
In this way, the temperature distribution T (X) along the optical fiber can be obtained. The details of these relationships are as follows. That is, the Stokes light of Raman scattered light is used as the scattered light of the first wavelength, and the anti-stock light of Raman scattered light is used as the scattered light of the second wavelength. The occurrence probabilities Rs and Ras of these scattered lights and the temperature T have the relationship shown in the equation (7) shown in the equation 7. Therefore, the temperature at the distance x is expressed by the equation (8)
It is represented by.

【0012】[0012]

【数7】 [Equation 7]

【0013】ここに、k1 、k2 は使用する光源及び、
光ファイバにより決まる定数である。
Where k 1 and k 2 are the light sources used and
It is a constant determined by the optical fiber.

【0014】[0014]

【数8】 [Equation 8]

【0015】定数Kは、光ファイバの特定点xrの温度
T(xr)が分かれば求めることができ、また、スト−
クス光、及び、アンチスト−クス光波長での光ファイバ
の伝送損失α1 、α2 は予め測定することができる。従
って、スト−クス光、及び、アンチスト−クス光波長で
の後方散乱光強度分布G1 (x)、G2 (x)を測定す
ることにより、光ファイバに沿った温度分布を求めるこ
とができる。
The constant K can be determined by knowing the temperature T (xr) of the specific point xr of the optical fiber, and the constant
The transmission loss α 1 and α 2 of the optical fiber at the wavelengths of the cox light and the anti-stock light can be measured in advance. Therefore, the temperature distribution along the optical fiber can be obtained by measuring the backscattered light intensity distributions G 1 (x) and G 2 (x) at the wavelengths of the stokes light and the anti-stokes light. .

【0016】また、式(8)から分かるように、光ファ
イバの伝送損失α1 、α2 が光ファイバに対する外圧に
より生じたマイクロベンド損等によりΔαづつ変化して
も、この変化分は相殺され、温度分布T(X)はこの影
響を受けずに求めることができる。
Further, as can be seen from the equation (8), even if the transmission losses α 1 and α 2 of the optical fiber are changed by Δα due to the microbend loss or the like caused by the external pressure on the optical fiber, this change is offset. , The temperature distribution T (X) can be obtained without being affected by this.

【0017】しかし、式(8)は、伝送損失α1 、α2
の項を含んでおり、これらの値が上記予め測定された値
と異なる時、或いはこれらのΔαが波長によって異なる
時、温度分布T(X)の正確な測定ができない。
However, the equation (8) gives the transmission losses α 1 , α 2
When these values are different from the previously measured values, or when these Δα are different depending on the wavelength, the temperature distribution T (X) cannot be accurately measured.

【0018】このような問題を解決する方法としては、
特開昭62−110160号公報が発明されている。こ
の特許によれば、光ファイバからの後方散乱光のうちの
単一或いは隣接した波長のものを、光ファイバの両端か
ら測定し、この両端からの測定結果を用いることによ
り、光ファイバの伝送損失の影響を受けずに光ファイバ
に沿った物理量分布が求められるとしている。これは、
光ファイバの両端から後方散乱光を測定すると、例えば
光ファイバの1点Xからの後方散乱光強度を光ファイバ
の片端Aから測定した結果GA (X)は数9に示す式
(9)で表され、また、これを他端Bから測定した結果
B (X)は数10に示す式(10)となり、式
(9)、(10)の両辺を掛け合わせた数11に示す式
(11)を物理量が既知であるXr点で測定した場合の
式(11)に対応する数12に示す式(12)で割るこ
とにより、式(13)、(14)のように、X地点での
散乱光発生確率を光ファイバの伝送損失の影響がない形
に変形することができることに基づくものである。
As a method for solving such a problem,
JP-A-62-110160 is invented. According to this patent, the backscattered light from the optical fiber having a single wavelength or adjacent wavelengths is measured from both ends of the optical fiber, and the transmission loss of the optical fiber is measured by using the measurement results from the both ends. It is said that the physical quantity distribution along the optical fiber can be obtained without being affected by. this is,
When the backscattered light is measured from both ends of the optical fiber, for example, the result G A (X) of the backscattered light intensity from one point X of the optical fiber measured from one end A of the optical fiber is given by the formula (9) shown in Formula 9. Also, the result G B (X) obtained from the other end B is the formula (10) shown in Formula 10, and the formula (10) obtained by multiplying both sides of Formulas (9) and (10) ( (11) is divided by the equation (12) shown in the equation 12 corresponding to the equation (11) when the physical quantity is known at the Xr point, and thus, at the X point as in the equations (13) and (14). It is based on the fact that the scattered light generation probability can be transformed into a form that is not affected by the transmission loss of the optical fiber.

【0019】[0019]

【数9】 [Equation 9]

【0020】[0020]

【数10】 [Equation 10]

【0021】[0021]

【数11】 [Equation 11]

【0022】[0022]

【数12】 [Equation 12]

【0023】[0023]

【数13】 [Equation 13]

【0024】[0024]

【数14】 [Equation 14]

【0025】ここで、a(x)=α0 (x)+α
1 (x) R(x);光ファイバのX地点での散乱光発生確率 L;光ファイバ長 KA 、KB ;定数(式(3)、(4)のK1 、K2 に相
当)
Here, a (x) = α 0 (x) + α
1 (x) R (x); Probability of scattered light generation at point X of optical fiber L; Optical fiber length K A , K B ; Constant (corresponding to K 1 and K 2 in equations (3) and (4))

【0026】[0026]

【発明が解決しようとする課題】しかしながら、単一波
長の後方散乱光測定結果には、現実的には、被測定波長
の信号の他に、光源の波長の信号も若干含まれてしま
う。散乱光発生地点から測定端間での伝送損失はその伝
送距離により異なり、また、光源の波長と被測定光波長
は異なり、その伝送損失も異なるため、同じ点で発生し
た散乱光を光ファイバのA端で測定した場合と光ファイ
バのB端で測定した場合とでは、被測定光に含まれる光
源の波長の光の割合が異なる。従って、光ファイバの両
端から測定した信号から求めた物理量分布には、誤差が
含まれることになる。この誤差を補正するには光源の波
長の伝送損失を求める必要があるが、放射線等の周囲環
境の影響下ではこの伝送損失が変化するので、補正を行
うことが不可能であり、測定誤差の発生は避けられない
という欠点がある。
However, in reality, the measurement result of the backscattered light of a single wavelength slightly includes the signal of the wavelength of the light source in addition to the signal of the wavelength to be measured. The transmission loss from the scattered light generation point to the measurement end differs depending on the transmission distance, and since the wavelength of the light source and the wavelength of the measured light are different and the transmission loss is also different, the scattered light generated at the same point is not The ratio of the light of the wavelength of the light source included in the measured light differs between the case of measuring at the A end and the case of measuring at the B end of the optical fiber. Therefore, the physical quantity distribution obtained from the signals measured from both ends of the optical fiber contains an error. To correct this error, it is necessary to obtain the transmission loss of the wavelength of the light source, but this transmission loss changes under the influence of the ambient environment such as radiation, so it is impossible to correct it, and the measurement error It has the drawback that it cannot be avoided.

【0027】また、光ファイバからの後方散乱光強度の
距離分布を求めるOTDR手法では、測定系で発生する
ノイズがある程度測定結果に混入することが避けられ
ず、このノイズの影響は測定結果の距離方向で異なって
おり、これは物理量の距離分布を測定した結果には距離
方向で異なった大きさの測定誤差として現れる。従来の
この方式では、この問題を避けることができない。
Further, in the OTDR method for obtaining the distance distribution of the backscattered light intensity from the optical fiber, it is inevitable that noise generated in the measurement system is mixed into the measurement result to some extent, and the influence of this noise is the distance of the measurement result. They differ in the direction, and this appears as a measurement error of different magnitude in the distance direction in the result of measuring the distance distribution of the physical quantity. With this conventional method, this problem cannot be avoided.

【0028】そこで、本発明の目的は、前記した従来の
欠点、即ち、光ファイバの周囲環境の影響による2波長
での伝送損失変化量の違いからくる測定誤差、光源の波
長での伝送損失変化による測定誤差、及びOTDR測定
により発生する距離方向での測定誤差を完全に克服する
か或いは一部改善して、測定誤差の少ない物理量分布検
知センサを提供することにある。
Therefore, an object of the present invention is to provide the above-mentioned conventional drawbacks, that is, a measurement error caused by a difference in transmission loss change amount at two wavelengths due to the influence of the surrounding environment of the optical fiber, and a transmission loss change at the wavelength of the light source. It is an object of the present invention to provide a physical quantity distribution detection sensor with a small measurement error by completely overcoming or partially improving the measurement error in the distance direction caused by the OTDR measurement and the measurement error.

【0029】[0029]

【課題を解決するための手段】上記課題を解決するため
に本発明は、第一に、光ファイバが2本併設され、それ
ぞれの光ファイバの同じ側の一端が互いに光学的に接続
されている。
In order to solve the above-mentioned problems, according to the present invention, first, two optical fibers are provided side by side, and one end on the same side of each optical fiber is optically connected to each other. .

【0030】第二に、併設された2本の光ファイバの互
いに接続された一端とは反対の端がそれぞれ検出装置に
接続されている。
Secondly, the ends of the two optical fibers installed side by side, which are opposite to the ends connected to each other, are connected to the detection device, respectively.

【0031】第三に、光ファイバの中で発生する2波長
以上の散乱光を測定し、光ファイバに沿った物理量の分
布情報を検知するようにした。
Thirdly, the scattered light of two or more wavelengths generated in the optical fiber is measured and the distribution information of the physical quantity along the optical fiber is detected.

【0032】第四に、併設された2本の光ファイバの一
部分の物理量を別の物理量検知センサで測定し、この測
定結果と光ファイバ中で発生した散乱光の測定結果とを
用いて、光ファイバに沿った物理量分布を測定するよう
にした。
Fourth, the physical quantity of a part of the two optical fibers provided side by side is measured by another physical quantity detection sensor, and the optical quantity is measured by using this measurement result and the measurement result of scattered light generated in the optical fiber. The physical quantity distribution along the fiber was measured.

【0033】第五に、検出装置に接続された併設の2本
の光ファイバの内の一端からのみ光を入射し、光ファイ
バからの散乱光としては、この同じ端からの後方散乱の
みを測定するようにした。
Fifth, the light is incident only from one end of the two optical fibers provided side by side connected to the detector, and only the backscatter from this same end is measured as the scattered light from the optical fiber. I decided to do it.

【0034】第六に、光ファイバからの後方散乱光強度
測定結果から光ファイバ各部の伝送損失を求め、この結
果と後方散乱光強度測定結果とから、光ファイバに沿っ
た物理量分布を測定するようにした。
Sixth, the transmission loss of each part of the optical fiber is obtained from the measurement result of the backscattered light intensity from the optical fiber, and the physical quantity distribution along the optical fiber is measured from this result and the backscattered light intensity measurement result. I chose

【0035】第七に、物理量の検知に、併設された2本
の光ファイバの検出装置に接続された2つの端からの後
方散乱光測定結果から求めた光ファイバ各部の伝送損失
と、検出装置に接続された一方の光ファイバのみで測定
した後方散乱光測定結果とを用いるようにした。
Seventh, in detecting the physical quantity, the transmission loss of each part of the optical fiber obtained from the measurement result of the backscattered light from the two ends connected to the detecting device for the two optical fibers provided side by side, and the detecting device. The backscattered light measurement result obtained by measuring only one optical fiber connected to is used.

【0036】[0036]

【作用】上記構成により、2本の併設された光ファイバ
にあっては、その併設されたある部分について温度が互
いに等しく、且つ、周囲環境や敷設状態により発生する
伝送損失が等しい。そこで、まず、その部分での2本の
併設された光ファイバにおける後方散乱光測定結果を求
める。この2箇所の後方散乱光測定結果の比をもとに、
ここでの伝送損失を求めることができる。このようにし
て、各部の光ファイバ伝送損失が求められるので、次
に、これら各部の光ファイバ伝送損失や、その変化の影
響を取除いて光ファイバに沿った物理量分布を検知する
ことができる。即ち、測定誤差の少ない物理量分布検知
が達成される。
With the above construction, in the two optical fibers installed side by side, the temperatures of the parts installed side by side are equal to each other, and the transmission losses caused by the surrounding environment and the installed state are equal. Therefore, first, the backscattered light measurement result in the two optical fibers provided side by side at that portion is obtained. Based on the ratio of the backscattered light measurement results at these two locations,
The transmission loss here can be calculated. In this way, the optical fiber transmission loss of each part is obtained, and then the optical fiber transmission loss of each part and the physical quantity distribution along the optical fiber can be detected by removing the influence of the change. That is, physical quantity distribution detection with less measurement error is achieved.

【0037】また、こうして求めた各部の光ファイバ伝
送損失の変化から放射線等の周囲環境の変化を検知する
ことができる。
Further, it is possible to detect a change in the ambient environment such as radiation from the change in the optical fiber transmission loss of each part thus obtained.

【0038】[0038]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0039】図1に示すように、検出装置20に接続さ
れた温度分布の検知を行うための2本併設された光ファ
イバ10が、その遠端11で融着接続されている。この
遠端11は、コネクタ接続、反射鏡等で互いに光学的に
接続してもよいし、同一の光ファイバを折返して曲げ部
で構成してもよい。光ファイバ10の2個の近端は、そ
れぞれ検出装置20に接続されており、検出装置20内
に設けられその内部温度が均一になるように構成された
均熱ケ−ス40に挿通されている。均熱ケ−ス40に挿
通された2本の光ファイバ10の内、一方がOTDR計
測回路30に接続されている。均熱ケ−ス40には、白
金抵抗体、熱電対、サ−ミスタ等の温度センサ50が設
けられている。温度センサ50からの均熱ケ−ス40内
温度情報は、OTDR計測回路30からの温度分布情報
と共に温度分布演算回路80に送られるよう構成されて
いる。温度分布演算回路80は、これら均熱ケ−ス40
内温度情報と光ファイバ10の温度分布情報とから、光
ファイバ10の各サンプリング区間毎の光ファイバ伝送
損失A(n)を求め、これを用いて各サンプリング点の
温度T(n)を求めるものである。
As shown in FIG. 1, two optical fibers 10 connected to a detection device 20 for detecting the temperature distribution are provided at the far end 11 by fusion splicing. The far ends 11 may be optically connected to each other by a connector connection, a reflecting mirror, or the like, or the same optical fiber may be folded and configured by a bent portion. The two near ends of the optical fiber 10 are connected to the detection device 20, respectively, and are inserted into a soaking case 40 that is provided in the detection device 20 and that is configured to have a uniform internal temperature. There is. One of the two optical fibers 10 inserted into the soaking case 40 is connected to the OTDR measurement circuit 30. The soaking case 40 is provided with a temperature sensor 50 such as a platinum resistor, a thermocouple, and a thermistor. The temperature information in the soaking case 40 from the temperature sensor 50 is configured to be sent to the temperature distribution calculation circuit 80 together with the temperature distribution information from the OTDR measurement circuit 30. The temperature distribution calculation circuit 80 is provided with the soaking case 40.
An optical fiber transmission loss A (n) for each sampling section of the optical fiber 10 is obtained from the internal temperature information and the temperature distribution information of the optical fiber 10, and the temperature T (n) at each sampling point is obtained using this. Is.

【0040】次に、実施例の作用を説明する。Next, the operation of the embodiment will be described.

【0041】まず、温度分布演算回路80の演算内容に
ついて述べる。OTDR計測回路30で測定されたn番
目のサンプリング点での光ファイバ10からの特定波長
の後方散乱光強度は、数15に示す式(15)で表され
る。
First, the calculation contents of the temperature distribution calculation circuit 80 will be described. The backscattered light intensity of the specific wavelength from the optical fiber 10 at the n-th sampling point measured by the OTDR measurement circuit 30 is expressed by Expression (15) shown in Expression 15.

【0042】[0042]

【数15】 [Equation 15]

【0043】K=定数 一方、検出装置20内部も含めた光ファイバ10の、O
TDR計測回路30に最も近いサンプリング点を1番
地、最も遠いサンプリング点を2N番地とし、遠端11
のサンプリング点がN番地となるようにサンプリング点
を設けるとき、一方の光ファイバ10にあるn番地に最
も近い他方の光ファイバ10にあるサンプリング点の番
地は、(2N−n)となる。
K = constant On the other hand, O of the optical fiber 10 including the inside of the detection device 20
The sampling point closest to the TDR measurement circuit 30 is designated as No. 1 and the farthest sampling point is designated as 2N, and the far end 11
When the sampling point is provided such that the sampling point of No. 1 is the address N, the address of the sampling point in the other optical fiber 10 closest to the address n in one optical fiber 10 is (2N-n).

【0044】ここで、対応するn番地の後方散乱光強度
と(2N−n)番地の後方散乱光強度との比U(n)を
とると、n番地の温度と(2N−n)番地の温度とは相
等しいと考えられるので、数16に示す式(16)のよ
うになる。さらに式(16)を変形すると、n番地から
(2N−n)番地までの区間の光源の波長と被測定光の
波長での伝送損失の和が数17に示す式(17)のよう
に求められる。
Here, when the ratio U (n) of the backscattered light intensity of the corresponding address n and the backscattered light intensity of the address (2N-n) is taken, the temperature of the address n and that of the address (2N-n) are calculated. Since the temperature and the temperature are considered to be equal to each other, the expression (16) shown in Expression 16 is obtained. Further, by transforming the equation (16), the sum of the transmission loss at the wavelength of the light source and the wavelength of the measured light in the section from the address n to the address (2N-n) is calculated as the equation (17). To be

【0045】同様のことを、対応する(n−1)番地と
{2N−(n−1)}番地について行うと、(n−1)
番地から{2N−(n−1)}番地までの区間の光源の
波長と被測定光の波長での伝送損失の和が数18に示す
式(18)のように求められる。さらに、式(17)と
式(18)との差をとると、(n−1)番地からn番地
までの区間と、{2N−(n−1)}番地から(2N−
n)番地までの区間との光源の波長と被測定光の波長で
の伝送損失の和が数19に示す式(19)のように求め
られる。
When the same operation is performed for the corresponding addresses (n-1) and {2N- (n-1)}, (n-1)
The sum of the transmission loss at the wavelength of the light source and the wavelength of the light under measurement in the section from the address to the address {2N- (n-1)} is obtained as in Expression (18). Further, taking the difference between the equations (17) and (18), the section from the address (n-1) to the address n and from the address {2N- (n-1)} to (2N-
The sum of the transmission loss at the wavelength of the light source and the wavelength of the light under measurement in the section up to the address n) is obtained as in Expression (19).

【0046】(n−1)番地からn番地までの区間の光
ファイバ10と、{2N−(n−1)}番地から(2N
−n)番地までの区間の光ファイバ10とは併設されて
おり、放射線等の周囲環境から受ける伝送損失変化の影
響は同じであると考えられるので、(n−1)番地から
n番地までの区間と、{2N−(n−1)}番地から
(2N−n)番地までの区間との光源の波長と被測定光
の波長での伝送損失の和A(n)は、数20に示す式
(20)で表されることになる。
The optical fiber 10 in the section from the (n-1) th address to the nth address and from the (2N- (n-1)) th address to (2N)
Since the optical fiber 10 in the section up to -n) address is co-located with the optical fiber 10 and it is considered that the influence of the change in transmission loss caused by the ambient environment such as radiation is the same, the addresses from (n-1) to n The sum A (n) of the transmission loss at the wavelength of the light source and the wavelength of the measured light in the section and the section from the address {2N- (n-1)} to the address (2N-n) is shown in Formula 20. It will be represented by equation (20).

【0047】[0047]

【数16】 [Equation 16]

【0048】[0048]

【数17】 [Equation 17]

【0049】[0049]

【数18】 [Equation 18]

【0050】[0050]

【数19】 [Formula 19]

【0051】[0051]

【数20】 [Equation 20]

【0052】このようにして、光ファイバ10のサンプ
リング点間の全ての伝送損失即ち、光源の波長と被測定
光の波長での伝送損失の和、を求めることができる。
In this way, all transmission losses between the sampling points of the optical fiber 10, that is, the sum of the transmission loss at the wavelength of the light source and the wavelength of the light under measurement can be obtained.

【0053】次に、この結果を用いて各サンプリング点
の温度を求める方法について説明する。
Next, a method for obtaining the temperature at each sampling point using this result will be described.

【0054】光ファイバ10からの後方散乱光として、
ラマン散乱光のスト−クス光及び、アンチスト−クス光
の測定を行い、式(20)を用いて、各サンプリング点
間の光源の波長とスト−クス光の波長での伝送損失の和
As(n)と、光源の波長とアンチスト−クス光の波長
での伝送損失の和Aas(n)とを求める。式(14)
を用いると、数21、22に示すように、
As the backscattered light from the optical fiber 10,
The Stokes light of the Raman scattered light and the anti-Stocks light are measured, and the sum of the transmission loss at the wavelength of the light source between the sampling points and the wavelength of the Stokes light As ( n) and the sum of transmission loss Aas (n) at the wavelength of the light source and the wavelength of the anti-stalk light. Formula (14)
Using, as shown in equations 21 and 22,

【0055】[0055]

【数21】 [Equation 21]

【0056】となり、And

【0057】[0057]

【数22】 [Equation 22]

【0058】αs ;単位長あたりのスト−クス光の波長
での伝送損失 αas;単位長あたりのアンチスト−クス光の波長での伝
送損失 Δx;サンプリング点間距離 であるので、これとスト−クス光、アンチスト−クス光
の後方散乱光強度分布測定結果Gs(n)とGas
(n)とを用いて式(8)より温度分布T(x)を求め
ることができる。
Α s : Transmission loss at wavelength of stock light per unit length α as ; Transmission loss at wavelength of anti-stock light per unit length Δx; Distance between sampling points. -Measurement result of backscattered light intensity distribution Gs (n) and Gas
The temperature distribution T (x) can be obtained from the equation (8) using (n).

【0059】本実施例では、光源の波長の短波長側のス
ト−クス光と長波長側のアンチスト−クス光を測定する
ため、これらの波長の中間波長である光源の波長(レ−
リ散乱光)の各区間の伝送損失は、As(n)とAas
(n)との平均をとることにより精度よく求めることが
できる。従って、前述した特開昭62−110160号
公報で問題であった、光源の波長の光の混入による測定
誤差は、このような方法で求めた光源の波長の各区間の
伝送損失を用いることにより、例えば出願人が先に提案
した特願平3−59027号に記載された方法を用いる
ことにより容易に取り除くことができ、この問題を解決
できる。
In this embodiment, since the short-wavelength side stokes light and the long-wavelength side anti-stocks light of the wavelength of the light source are measured, the wavelength of the light source which is an intermediate wavelength of these wavelengths (laser light) is measured.
The transmission loss of each section of (re-scattered light) is As (n) and As
By taking the average with (n), it can be obtained with high accuracy. Therefore, the measurement error due to the mixing of the light of the wavelength of the light source, which was a problem in the above-mentioned JP-A-62-110160, is caused by using the transmission loss of each section of the wavelength of the light source obtained by such a method. For example, the problem can be solved by using the method described in Japanese Patent Application No. 3-59027 previously proposed by the applicant, and the problem can be solved.

【0060】また、本実施例では、スト−クス光とアン
チスト−クス光との2波長の後方散乱光強度分布を求
め、これらの比を取ることにより温度分布を求めるた
め、前記特開昭62−110160号公報で問題であっ
た、OTDR計測回路内で発生するノイズに起因する距
離方向の誤差を小さくすることができる。即ち、距離方
向の誤差はスト−クス光の後方散乱光強度の距離分布と
アンチスト−クス光の後方散乱光強度の距離分布とに、
同じ距離依存性で含まれるため、スト−クス光とアンチ
スト−クス光との比を取ることによりノイズ成分が相殺
される特徴を有するからである。
Further, in this embodiment, the backscattered light intensity distributions of two wavelengths of the stokes light and the anti-stocks light are obtained, and the temperature distribution is obtained by taking the ratio of these, so that the above-mentioned JP-A-62-62 is used. It is possible to reduce the error in the distance direction due to the noise generated in the OTDR measurement circuit, which is a problem in Japanese Patent Laid-Open No. 110160. That is, the error in the distance direction is the distance distribution of the backscattered light intensity of the stock light and the distance distribution of the backscattered light intensity of the anti-stock light,
This is because they are included with the same distance dependence, so that the noise component is canceled by taking the ratio of the stokes light and the anti-stocks light.

【0061】以上説明したように、光ファイバの周囲環
境の影響による2波長での伝送損失変化量の違いからく
る測定誤差、光源の波長での伝送損失変化による測定誤
差、及びOTDR測定により発生する距離方向での測定
誤差を取り除くことができる。即ち、本発明に係る物理
量分布検知センサにあっては、測定誤差の少ない物理量
分布検知が達成される。
As described above, the measurement error occurs due to the difference in the transmission loss change amount at the two wavelengths due to the influence of the surrounding environment of the optical fiber, the measurement error due to the transmission loss change at the wavelength of the light source, and the OTDR measurement. Measurement error in the distance direction can be eliminated. That is, in the physical quantity distribution detection sensor according to the present invention, physical quantity distribution detection with less measurement error is achieved.

【0062】また、時刻t1で求めたAs(n)、Aa
s(n)と、時刻t2で求めたAs(n)、Aas
(n)との比較を行うことにより、時刻t1〜t2間の
各区間での放射線量を求めることができる。
As (n) and Aa obtained at time t1
s (n) and As (n) and Aas obtained at time t2
By comparing with (n), the radiation dose in each section from time t1 to t2 can be obtained.

【0063】光ファイバの両端から測定した後方散乱光
強度分布測定結果からも、各区間の伝送損失を求めるこ
とができる。光ファイバの両端の内のA端から光ファイ
バのX地点の後方散乱光強度を示す式(9)及び、光フ
ァイバの両端から測定した後方散乱光強度測定結果より
求めた、X地点の散乱光発生確率の式(14)を、サン
プリング点間の式に変形すると、数23、24に示す式
(23)、(24)となる。
The transmission loss of each section can also be obtained from the measurement result of the backscattered light intensity distribution measured from both ends of the optical fiber. Scattered light at the X point obtained from the equation (9) indicating the backscattered light intensity from the A end of the both ends of the optical fiber to the X point of the optical fiber and the backscattered light intensity measurement result measured from both ends of the optical fiber. When the equation (14) of occurrence probability is transformed into an equation between sampling points, equations (23) and (24) shown in equations 23 and 24 are obtained.

【0064】[0064]

【数23】 [Equation 23]

【0065】[0065]

【数24】 [Equation 24]

【0066】式(23)を変形し、式(24)を代入す
ると、数25に示すように、
Substituting equation (24) by transforming equation (23), as shown in equation 25,

【0067】[0067]

【数25】 [Equation 25]

【0068】式(25)を(nX−1)番地までの伝送
損失を考えたものにすると、数26に示すように、
When the equation (25) is taken into consideration the transmission loss up to the address (nX-1), as shown in the equation 26,

【0069】[0069]

【数26】 [Equation 26]

【0070】式(25)の両辺を式(26)で割ると、
数27、28に示すように、
When dividing both sides of the equation (25) by the equation (26),
As shown in equations 27 and 28,

【0071】[0071]

【数27】 [Equation 27]

【0072】[0072]

【数28】 [Equation 28]

【0073】このようにして、両側からの測定結果を用
いても、各区間の伝送損失を求めることができるが、こ
の方式は、併設された2本の光ファイバの対応する区間
[(n−1)〜n]と[{2N−(n−1)}〜(2N
−n)]との伝送損失が等しくなくとも求めることがで
きる。
In this way, the transmission loss of each section can be obtained by using the measurement results from both sides. In this method, the corresponding section [(n- 1) to n] and [{2N- (n-1)} to (2N
-N)] is not equal to the transmission loss.

【0074】式(28)の結果を用いて、実施例で示し
たのと同様にして光ファイバに沿った温度分布を求める
ことができる。しかし、この方式では、両端からの測定
を行うために、OTDR計測系内での光路の切替えを行
うか、或いは光源を2組用意するかしなくてはならず、
光路の切替えを行うために使用するスイッチの寿命を考
慮する必要がが生じるか、或いは、光源を2組用意する
ために高価でしかも装置が大きくなってしまう。
Using the result of equation (28), the temperature distribution along the optical fiber can be obtained in the same manner as shown in the embodiment. However, in this method, in order to perform measurement from both ends, it is necessary to switch the optical path in the OTDR measurement system or prepare two sets of light sources.
It becomes necessary to consider the life of the switch used for switching the optical path, or two sets of light sources are prepared, which is expensive and the device becomes large.

【0075】この問題を解決するための光スイッチを用
いた両端からの測定と片端からの測定とを組み合わせる
方式について以下説明する。
A method for combining the measurement from both ends and the measurement from one end using an optical switch for solving this problem will be described below.

【0076】まず、始めに両端からの計測を行い、各区
間の伝送損失を求め、これをA0 (n)とする。次に、
片端からのみの測定を行い、両端測定によって求めた各
区間の伝送損失、或いは片端からのみの測定によって求
めた各区間の伝送損失のいずれか一方或いはこれらを平
均したもの等を用いて、温度分布を求める。また、温度
分布を求めると同時に、片端からのみの測定によって求
めた各区間の伝送損失A(n)と先に求めた両端測定に
よって求めた各区間の伝送損失A0 (n)との比較を行
い、A(n)とA0 (n)との差が予め定めた範囲を越
えていた場合、両端からの測定を再度行い、この結果よ
り求めた各区間の伝送損失を改めて伝送損失A0 (n)
とする。このような温度分布を求めることと、伝送損失
の比較とを繰り返して行う。このような方式とすること
により、精度の高い両端からの測定をもとに求めた各区
間の伝送損失を用いながら、光スイッチの切替え動作回
数を減らすことができる。
First, measurement from both ends is first performed to obtain the transmission loss in each section, which is designated as A 0 (n). next,
Using only one of the transmission loss of each section obtained by measuring both ends, or the transmission loss of each section obtained by measuring only from one end, or by averaging these, Ask for. At the same time that the temperature distribution is obtained, the transmission loss A (n) of each section obtained by the measurement from only one end is compared with the transmission loss A 0 (n) of each section obtained by the both-end measurement obtained previously. performed, a if the difference (n) and a 0 and (n) is out of range a predetermined, was measured from both ends again, again the transmission loss a 0 the transmission loss of each was determined from the results section (N)
And Obtaining such a temperature distribution and comparing the transmission loss are repeated. By adopting such a method, it is possible to reduce the number of switching operations of the optical switch while using the transmission loss of each section obtained based on the measurement from both ends with high accuracy.

【0077】この方式を多少変えたものとして、A
(n)とA0 (n)との比較を行う代わりに、一定回数
或いは一定期間、片端からの測定を行った後、両端から
の測定を行い、定期的にA0 (n)を更新することも可
能である。
As a slight modification of this method,
Instead of comparing (n) with A 0 (n), after performing measurement from one end for a certain number of times or for a certain period, measurement from both ends is performed and A 0 (n) is updated periodically. It is also possible.

【0078】また、これらの両方の組み合わせも可能で
ある。
A combination of both of these is also possible.

【0079】以上述べた、両端測定と片端測定との組み
合わせによる測定方法は、1波長のみの測定の場合で
も、複数波長の測定の場合でも適用可能なことはいうま
でもない。
It goes without saying that the above-mentioned measuring method by the combination of both-ends measurement and one-ends measurement can be applied to the measurement of only one wavelength or the measurement of a plurality of wavelengths.

【0080】2本併設する光ファイバとしては、併設区
間の温度及び、周囲環境からの影響、敷設時の張力等が
併設された2本の光ファイバに均等に影響させるため
に、金属管中に2本以上の光ファイバを収納したケ−ブ
ルを設けて、この内2本の光ファイバを用いるとか、テ
−プ状に複数の光ファイバを並べた構造、或いはスペ−
サ型の光ファイバケ−ブル等の2本以上の光ファイバを
共通のシ−スで覆ったタイプの光ファイバを使用するこ
とが望ましい。
As the two optical fibers to be installed side by side, in order to influence the temperature and the surrounding environment of the side-by-side section, the tension at the time of installation, etc. equally on the two optical fibers installed side by side A cable accommodating two or more optical fibers is provided, and two of these optical fibers are used, a structure in which a plurality of optical fibers are arranged in a tape shape, or a space.
It is desirable to use an optical fiber of a type in which two or more optical fibers such as a saw-type optical fiber cable are covered with a common sheath.

【0081】[0081]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0082】(1)放射線等の特殊影響下での物理量の
分布検知が可能となる。
(1) It becomes possible to detect the distribution of physical quantities under the special influence of radiation or the like.

【0083】(2)マイクロベンド等の波長依存性の小
さい損失発生要因からの伝送損失を除くことにより、高
精度の物理量分布検知が可能である。
(2) It is possible to detect the physical quantity distribution with high accuracy by removing the transmission loss from a loss generation factor having a small wavelength dependency such as a microbend.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の温度分布測定センサの構成図である。FIG. 2 is a configuration diagram of a conventional temperature distribution measuring sensor.

【符号の説明】[Explanation of symbols]

10 光ファイバ 11 光ファイバ遠端(融着接続部) 20 検出装置 50 温度センサ 10 optical fiber 11 optical fiber far end (fusion connection part) 20 detection device 50 temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/02 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G02B 6/02 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの中で発生する散乱光の距離
分布を測定し、光ファイバに沿った物理量の分布情報を
検知するセンサにおいて、該光ファイバが2本併設さ
れ、それぞれの光ファイバの同じ側の一端が互いに光学
的に接続されていることを特徴とする光ファイバを用い
た物理量分布検知センサ。
1. A sensor for measuring a distance distribution of scattered light generated in an optical fiber and detecting distribution information of a physical quantity along the optical fiber, wherein two optical fibers are provided side by side and each of the optical fibers A physical quantity distribution detection sensor using an optical fiber, wherein one ends on the same side are optically connected to each other.
【請求項2】 併設された2本の光ファイバの互いに接
続された一端とは反対の端がそれぞれ検出装置に接続さ
れていることを特徴とする請求項1記載の光ファイバを
用いた物理量分布検知センサ。
2. A physical quantity distribution using an optical fiber according to claim 1, wherein two ends of the two optical fibers installed side by side are connected to a detecting device at ends opposite to one end connected to each other. Detection sensor.
【請求項3】 光ファイバの中で発生する2波長以上の
散乱光を測定し、光ファイバに沿った物理量の分布情報
を検知する請求項1、2いずれか記載の光ファイバを用
いた物理量分布検知センサ。
3. A physical quantity distribution using the optical fiber according to claim 1, wherein scattered light of two or more wavelengths generated in the optical fiber is measured to detect distribution information of the physical quantity along the optical fiber. Detection sensor.
【請求項4】 併設された2本の光ファイバの一部分の
物理量を別の物理量検知センサで測定し、この測定結果
と光ファイバ中で発生した散乱光の測定結果とを用い
て、光ファイバに沿った物理量分布を測定することを特
徴とする請求項1〜3いずれか記載の光ファイバを用い
た物理量分布検知センサ。
4. A physical quantity of a part of two optical fibers installed side by side is measured by another physical quantity detection sensor, and the measurement result and the measurement result of scattered light generated in the optical fiber are used to measure the physical quantity in the optical fiber. The physical quantity distribution detection sensor using the optical fiber according to claim 1, wherein a physical quantity distribution along the physical quantity is measured.
【請求項5】 検出装置に接続された併設の2本の光フ
ァイバの内の一端からのみ光を入射し、光ファイバから
の散乱光としては、この同じ端からの後方散乱のみを測
定して、光ファイバに沿った物理量分布を測定すること
を特徴とする請求項1〜4いずれか記載の光ファイバを
用いた物理量分布検知センサ。
5. The light is incident only from one end of the two optical fibers provided side by side connected to the detection device, and as the scattered light from the optical fiber, only the backscatter from this same end is measured. The physical quantity distribution detection sensor using the optical fiber according to any one of claims 1 to 4, wherein the physical quantity distribution along the optical fiber is measured.
【請求項6】 光ファイバからの後方散乱光強度測定結
果から光ファイバ各部の伝送損失を求め、この結果と後
方散乱光強度測定結果とから、光ファイバに沿った物理
量分布を測定することを特徴とする請求項1〜5いずれ
か記載の光ファイバを用いた物理量分布検知センサ。
6. The transmission loss of each part of the optical fiber is obtained from the measurement result of the backscattered light intensity from the optical fiber, and the physical quantity distribution along the optical fiber is measured from this result and the backscattered light intensity measurement result. A physical quantity distribution detection sensor using the optical fiber according to claim 1.
【請求項7】 物理量の検知に、併設された2本の光フ
ァイバの検出装置に接続された2つの端からの後方散乱
光測定結果から求めた光ファイバ各部の伝送損失と、検
出装置に接続された一方の光ファイバのみで測定した後
方散乱光測定結果とを用いることを特徴とする請求項1
〜4、及び、6のいずれか記載の光ファイバを用いた物
理量分布検知センサ。
7. To detect a physical quantity, the transmission loss of each part of the optical fiber obtained from the measurement result of the backscattered light from the two ends connected to the detection device for the two optical fibers provided side by side, and the connection to the detection device The backscattered light measurement result obtained by measuring only one of the optical fibers that has been measured is used.
A physical quantity distribution detection sensor using the optical fiber according to any one of 4 to 6 above.
JP6015283A 1994-02-09 1994-02-09 Sensor for detecting distribution of physical quantity using optical fiber Pending JPH07218354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015283A JPH07218354A (en) 1994-02-09 1994-02-09 Sensor for detecting distribution of physical quantity using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015283A JPH07218354A (en) 1994-02-09 1994-02-09 Sensor for detecting distribution of physical quantity using optical fiber

Publications (1)

Publication Number Publication Date
JPH07218354A true JPH07218354A (en) 1995-08-18

Family

ID=11884538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015283A Pending JPH07218354A (en) 1994-02-09 1994-02-09 Sensor for detecting distribution of physical quantity using optical fiber

Country Status (1)

Country Link
JP (1) JPH07218354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304739A (en) * 1998-04-16 1999-11-05 Kasen Joho Center Measuring method for distribution of wetting degree
US10247622B2 (en) 2015-10-05 2019-04-02 Fujitsu Limited Temperature measurement device and temperature measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304739A (en) * 1998-04-16 1999-11-05 Kasen Joho Center Measuring method for distribution of wetting degree
US10247622B2 (en) 2015-10-05 2019-04-02 Fujitsu Limited Temperature measurement device and temperature measurement method

Similar Documents

Publication Publication Date Title
US8496376B2 (en) Dual source auto-correction in distributed temperature systems
US7418171B2 (en) Fibre Bragg grating sensors
JP5232982B2 (en) OPTICAL FIBER SENSOR HAVING OPTICAL MARKING PART FOR LOCATION OF OPTICAL FIBER, MEASURING METHOD OF OPTICAL FIBER SENSOR, AND OPTICAL FIBER SENSOR DEVICE
JPH04279832A (en) Physical quantity measurement device
JP2004069685A (en) Measuring and calibrating method for measured value using optical fiber dispersion type sensor
JP5150445B2 (en) Optical fiber sensor device, temperature and strain measurement method, and optical fiber sensor
CN110440838B (en) Multi-parameter optical fiber sensing instrument and sensing method based on multi-core optical fiber
US5557400A (en) Multiplexed sensing using optical coherence reflectrometry
CN210089716U (en) Multi-parameter synchronous sensing acquisition instrument based on multi-core optical fiber sensing
US20070091297A1 (en) Optical time domain reflectometry system at different wavelengths
KR102228641B1 (en) Measuring system using fbg sensor
CN109029770B (en) Distributed optical fiber Raman temperature and strain demodulation method based on loop demodulation
KR101465788B1 (en) optical sening system having dual core
JP4308868B2 (en) Fiber sensing system
US6822218B2 (en) Method of and apparatus for wavelength detection
JP2008268542A (en) Optical wavelength filter module and optical fiber temperature measuring apparatus
Kvasnik et al. Distributed chemical sensing utilising evanescent wave interactions
CN110440837B (en) Multi-parameter optical fiber synchronous sensing acquisition instrument and sensing acquisition method
Westbrook et al. Improving distributed sensing with continuous gratings in single and multi-core fibers
JPH07218354A (en) Sensor for detecting distribution of physical quantity using optical fiber
JP3063063B2 (en) Optical fiber temperature distribution measurement system
Valente et al. Time and wavelength multiplexing of fiber Bragg grating sensors using a commercial OTDR
JP2006343333A (en) Detection of various spectral components of light signal by light shutter
EP3715807B1 (en) A method and an optical sensor for optically sensing a parameter of the group of temperature, humidity or mechanical stress
Neves et al. Optimising the design, cost, and performance of a distributed humidity and temperature fibre sensor