JP3932549B2 - Electrolyte membrane for fuel cell - Google Patents

Electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP3932549B2
JP3932549B2 JP2002201005A JP2002201005A JP3932549B2 JP 3932549 B2 JP3932549 B2 JP 3932549B2 JP 2002201005 A JP2002201005 A JP 2002201005A JP 2002201005 A JP2002201005 A JP 2002201005A JP 3932549 B2 JP3932549 B2 JP 3932549B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
hole
anode
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002201005A
Other languages
Japanese (ja)
Other versions
JP2004047206A (en
Inventor
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002201005A priority Critical patent/JP3932549B2/en
Publication of JP2004047206A publication Critical patent/JP2004047206A/en
Application granted granted Critical
Publication of JP3932549B2 publication Critical patent/JP3932549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
エネルギー発生効率が高いことで最近特に注目を浴びている燃料電池の内部で使用される。
【0002】
【従来の技術】
燃料電池は使用される電解質の種類により4種類に分類される。この4種類の中で低温領域より中温領域で使用されるものとして分類されるのが固体酸化物形燃料電池(SOFC)と固体高分子形燃料電池(PEFC)とである。また、これらは電解質の固定が容易であることから移動体への適用も可能であり、最近、最も関心を集め、かつ適用範囲の拡大が検討されている。
【0003】
PEFCの場合、低温での出力が大きいことを利用して小型の家庭電源、ポータブル電源、移動体用電源としての用途が開発されつつあるが、その一方で耐熱性が高く水分管理が不要なイオン選択性高分子電解質膜の開発が求められている。また、メタノール燃料を電池内で直接改質し水素を得るタイプのものは小型化が容易であるため、携帯機器用電源としての期待が高まっているが、メタノールに対する耐久性が高く、イオン選択性の高い高分子電解質膜の開発が求められている。
【0004】
ところで、燃料電池は基本的にはアノード極(燃料極)、カソード極(空気極)、電解質膜から構成されている。図1にPEFCを例に燃料電池の構造と動作原理を特許庁技術調査課による「燃料電池に関する技術動向調査」より引用して示した。アノードは水素から電子を奪いプロトンを形成する触媒と燃料である水素のガス拡散層と集電体としてのセパレーターが積層されて構成されている。また、カソードはプロトンと酸素との反応を行わせる触媒と空気の拡散層とセパレーターとが積層されて構成されている。電解質膜は一般にスルホン酸系のプロトン伝導性の高分子電解質膜が用いられている。各電極での反応は以下のようになる。
【0005】
アノード反応
2 → 2H++2e-
カソード反応
2+4H++4e- → 2H2
PEFC用の高分子電解質膜として良く知られたものにパーフルオロスルホン酸(商品名:Nafion DuPont社製)などのプロトン伝導性固体高分子膜等がある。こうした膜には、その内壁に遊離のOH-基が設けられた直径100nm程度の貫通孔が多数設けられており、このOH-基によりプロトンをアノード側よりカソード側に透過させることを特徴としている。しかし、こうした膜はプロトンのみでなく、原料である水素分子やメタノール等をもカソード側に透過させてしまうことが知られている。このようなことが起きると供給された燃料と酸化剤とがカソード側で直接反応してしまって、エネルギーを電力として出力することができない。したがって、安定した出力を得ることができないという問題が生じる。
【0006】
こうした問題点を解決するものとして特開2002−110200に開示されたプロトン伝導性膜(電解質膜)がある。このプロトン伝導性膜はプロトン伝導性を維持しつつ、メタノールが該膜を透過するのを抑制することを目的とするものである。
【0007】
具体的には、プロトン伝導性ポリマーと特定の重合体との複合体、あるいは、プロトン伝導性ポリマーと特定の重合体とTi、Zr、Al、B、Mo、W、Ru、Ir、GeまたはVの群のいずれかの酸化物との共重合体の複合体であることを特徴とする。
【0008】
この提案された電解質膜は、確かにプロトン選択性が改善されているものの、前記ナフィオンと同様に材料が高分子、あるいは高分子主体であることから100℃以上の高温にできないという欠点がある。このため、効率アップのために水蒸気の仕様が検討されている家庭用定置型には適用できなものとなっている。なお、この場合、使用温度は150〜250℃と考えられている。
【0009】
【発明が解決しようとする課題】
本発明は上記状況に鑑みてなされたものであり、その目的とするところは、水素あるいはメタノールを燃料として用いる燃料電池用電解質膜でプロトン選択性が高く、かつ100℃以上の温度で使用可能な燃料電池用電解質膜の提供である。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明は、金属膜またはケイ素膜を陽極酸化することにより設けられた直径0.01〜150μm貫通孔を有し、該貫通孔の内壁にプロトン伝導性の官能基を修飾したことを特徴とするものである。
【0011】
また、本発明の官能基としてはOH基が好ましい。
【0012】
本発明の金属膜材質として用いうるものは陽極酸化により貫通孔を形成しうるものである。より好ましくはアルミニウム、チタン、亜鉛、インジウムやこれらを主成分とする合金である。
【0013】
【発明の実施の形態】
本発明は、金属を陽極酸化することにより設けられた直径0.01〜150μm貫通孔を有し、該貫通孔の内壁にプロトン伝導性の官能基を修飾した燃料電池用電解質膜である。こうすることにより、プロトン選択性を高く維持すると共に、耐熱性を向上させ、100℃以上、具体的には水蒸気を使用しうる電解質膜とすることが可能となる。
【0014】
本発明の電解質膜を用いるものは、従来の分類で言うと、PEFCとSOFCの中間型となる。従来、PEFCでは水分の共存が必須であり、そのため、燃料電池では使用温度に限界があった。しかし、本発明では、電解質膜の官能基の種類と密集度を選定することにより水の共存が必須とならなくなり、きわめて現実的な燃料電池となる。
【0015】
また、本発明の電解質膜を用いれば、100℃以上の高温まで使用が可能な燃料電池が作成できるため、車載用や家庭での定置型燃料電池としても使用可能となる。
【0016】
本発明で、電解質膜を金属膜やケイ素膜の陽極酸化により作成するのは、膜の耐熱性向上のためである。金属膜として用いうるものは陽極酸化により直径0.01〜150μmの貫通孔が形成できるものでなければならない。取り扱い安さ、経済性等より、金属膜材料としてはアルミニウム、チタン、亜鉛、インジウムやこれらを主成分とする合金を用いることが好ましい。こうした金属膜やケイ素膜に電解酸化により貫通孔を設けるが、貫通孔の直径は電圧、電極間隔、時間、酸種等の陽極酸化条件を調整することにより可能である。
【0017】
なお、陽極酸化とは金属膜やケイ素膜を陽極として水、あるいは電解液中で直流電圧を印加するものである。このとき、陽極では通常酸素が発生すると共に電圧や酸種、時間等に応じて所望径の貫通孔が数10〜100nm程度の間隔で整然と自己整列する。
【0018】
ところで、貫通孔の直径が小さすぎるとプロトン選択性は向上するものの通過抵抗が大きくなり、電池としての機能が低下する。また、反対に大きくなるとプロトンの通過抵抗は減少するものの、原料となる水素やメタノールも通過することになるので電池特性は低下する。こうしたことから、電解質膜にはフィルターとしての機能も要求されることになる。即ち、原料により貫通孔の直径を決定することが望まれる。よって、分子サイズの大きな原料を使用する場合は、150nm付近の径でもよいが、分子サイズの小さな原料の場合は、数十nm以下が必要となってくる。水素を原料として使用する場合は0.01〜1nmとする必要ことが望ましい。
【0019】
貫通孔内壁面にプロトン伝導性の官能基を修飾する。官能基としては、OH基を選択することが簡便でよい。また、OH基の間隔は密にできるので、プロトンの伝達を良好にすることが可能である。
【0020】
官能基のつけ方としては、例えば電解質膜材料としてアルミニウムを選んだ場合、電解酸化により貫通孔内壁面を含む表面はアルミナ膜に覆われる。アルミナ膜の場合、pH=略9を境にしてアニオンやカチオンを修飾することが可能である。というのは、pHが略9以上では、アルミナ膜表面はAlO2-に帯電し、pHが略9を下回る場合にはAl3+に帯電する。よって、pHを9未満としてアルミナ表面にOH基を供給する。
【0021】
具体的には、まず電解酸化後のアルミニウム膜をイオン交換水に浸漬し、イオン交換水中に硝酸を添加してpHを4程度まで下げる。その後、イオン交換水中にアンモニア水を滴下し、pHを7まで戻し、イオン交換水を取り替え洗浄する。
【0022】
なお、アルミナ表面が乾燥している場合には、該表面にスチームを当て、加湿した上で上記操作を試みると良好な結果が得られる。
【0023】
また、貫通孔内壁面にOH基のみでなく、触媒層を塗布すると、大きな分子を通さないのみならず、電解質膜貫通孔内部で原料をプロトンまで分解することが可能である。
【0024】
【実施例】
次に実施例を用いて本発明をさらに説明する。
(実施例1)
試料1−基材をアルミニウムとして得たアルミナ製電解質膜1の作成
幅50mm、長さ50mm、厚さ15μmのアルミニウム箔を陽極とし、白金を陰極とし、電解液として濃度0.3mol/lのシュウ酸溶液を用い、電圧40ボルトで定電圧電解してアルミニウムを電解酸化した。
【0025】
通電開始数秒後には、電流値は50mAでほぼ一定となったが、約60分後には実質的に0mAとなった。その後陽極を引き上げ水洗し、膜を剥離して混酸(6wt%硫酸+1.8wt%塩酸)に数十秒ほど浸し即座に水洗いをした。得られた貫通孔の直径は約70nmであった。
【0026】
その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0027】
試料2−基材をアルミニウムとして得たアルミナ製電解質膜2の作成
幅50mm、長さ50mm、厚さ15μmのアルミニウム箔を陽極とし、白金を陰極とし、電解液として濃度0.3mol/lのシュウ酸溶液を用い、電圧50ボルトで定電圧電解してアルミニウムを電解酸化した。
【0028】
通電開始数秒後には、電流値は約60mAでほぼ一定となったが、約60分後に実質的に0mAとなった。その後陽極を引き上げ水洗し、膜を剥離して混酸(6wt%硫酸+1.8wt%塩酸)に数十秒ほど浸し即座に水洗いをした。得られた貫通孔の直径は50nmであった。
【0029】
その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0030】
試料3−基材をアルミニウムとして得たアルミナ製電解質膜3の作成
幅50mm、長さ50mm、厚さ15μmのアルミニウム箔を陽極とし、白金を陰極とし、電解液として濃度0.3mol/lのシュウ酸溶液を用い、電圧40ボルトで定電圧電解してアルミニウムを電解酸化した。
【0031】
通電開始数秒後には、電流値は50mAでほぼ一定となったが、約60分後には実質的に0mAとなった。その後陽極を引き上げ水洗し、膜を剥離して混酸(6wt%硫酸+1.8wt%塩酸)に数秒ほど浸し即座に水洗いをした。得られた貫通孔の直径は約1nmであった。
【0032】
その後陽極を引き上げイオン交換水で洗浄した。その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0033】
試料4−基材をアルミニウムとして得たアルミナ製電解質膜4の作成
幅50mm、長さ50mm、厚さ15μmのアルミニウム箔を陽極とし、白金を陰極とし、電解液として濃度0.3モル/lのシュウ酸溶液を用い、電圧40Vで定電圧電解してアルミニウムを電解酸化した(資料1と同じ)。
【0034】
最終的に得られた膜を、混酸(6wt%硫酸+1.8wt%塩酸)に1秒ほど浸し即座に水洗いをした。その結果、細孔の最終端に微細な孔があき、TEMにて計測したところ、得られた貫通孔の直径は約0.5nmであった。
【0035】
その後陽極を引き上げイオン交換水で洗浄した。その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0036】
試料5−基材をチタニウム得た酸化チタン製電解質膜の作成
幅 50mm、長さ 50mm、厚さ15μmのチタニウム箔を陽極とし、白金を陰極とし、電解液として濃度 0.5モル/lのシュウ酸溶液を用い、電圧 60ボルトで定電圧電解してチタニウム箔を電解酸化した。得られた貫通孔の直径は約50nmであった。
【0037】
通電開始数秒後電流値は 45mAを示したが、65分後に実質的に0となった。その後陽極を引き上げイオン交換水で洗浄した。その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0038】
試料6−基材を亜鉛として得た酸化亜鉛製電解質膜の作成
幅 50mm、長さ 50mm、厚さ15μmの亜鉛箔を陽極とし、白金を陰極とし、電解液として濃度 0.5モル/lのシュウ酸溶液を用い、電圧 50ボルトで定電圧電解して亜鉛泊電解酸化した。得られた貫通孔の直径は約45nmであった。
【0039】
通電開始数秒後電流値は 50mAを示したが、 50分後に実質的に0となった。その後陽極を引き上げイオン交換水で洗浄した。その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0040】
試料7−基材をインジウムとして得た酸化インジウム製電解質膜の作成
幅 50mm、長さ 50mm、厚さ15μmのインジウム箔を陽極とし、白金を陰極とし、電解液として濃度 0.5モル/lのシュウ酸溶液を用い、電圧 45Vで定電圧電解してインジウム箔を電解酸化した。得られた貫通孔の直径は50nmであった。
【0041】
通電開始数秒後に 50mAを示したが、約60分後に実質的に0となった。その後陽極を引き上げイオン交換水で洗浄した。その後、貫通孔を埋めない程度に、陽極表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0042】
試料8−基材をシリコンとして得た酸化ケイ素製電解質膜の作成
銅箔電極上に幅 50mm、長さ 50mm、厚さ 100μmで設けられたシリコン箔を陽極とし、白金を陰極とし、電解液として濃度約 0.3モル/lの フッ酸溶液を用い、電圧 40ボルトで定電圧電解してシリコン箔を電解酸化した。得られた貫通孔の直径は5nmであった。
【0043】
通電開始後電流値は 50mAを示したが、 約2時間後に実質的に0となった。その後陽極を引き上げイオン交換水で洗浄した。その後、銅箔を除去し、酸化ケイ素製電解質膜を分離し、貫通孔を埋めない程度に、該電解質膜表面をPtで蒸着した。その後、上記の方法に従い貫通孔内壁面にOH基を修飾した。
【0044】
(実施例2)
実施例1において得られた各種電解質膜を用いて燃料電池を構成し、電流の発生の有無と空気極側へのメタンガスの透過性を測定した。
【0045】
燃料極側に、メタンガスを入れ、空気極側にメタンガスが透過してくるかどうかを質量分析器により調べたが、測定開始後 約1時間経過しても検知器の性能範囲で、有意な検知はできなかった。
【0046】
しかし、電流測定をしたら、通電後、数秒後には、電流が計測できた。メタンガスの分解が起き、発生したプロトンが電解質膜を経て空気極に透過していることは明らかである。よって、いずれの電解質膜も高いイオン選択性を有していることがわかった。なお、発生した電流はそれぞれ以下のようになった。
外部に1キロオームの抵抗をつなぎ電流を測定した。
【0047】
試料1 0.57mA
試料2 0.78mA
試料3 0.76mA
試料4 0.79mA
試料5 0.63mA
試料6 0.65mA
試料7 0.58mA
試料8 0.60mA
(比較例2)
ナフィオン117、1135、1035を用いて燃料電池を構成し、電流の発生の有無と空気極側へのメタンガスの透過性を測定した。
【0048】
燃料極側に、メタンガスを入れ、空気極側にメタンガスが透過してくるかどうかを質量分析器により調べた。測定開始後 10秒程、経過したところでメタンが検知されるようになり、以後継続的に検知された。また、ナフィオンの場合、水を使用しなければ、電流は流れなかった。
【0049】
水にメタンガスを通し、親水性にして計測した場合、電流は発生しており、発生した電流はそれぞれ以下のようになった。
【0050】
ナフィオン117 0.5mA
ナフィオン1135 0.45mA
ナフィオン1035 0.55mA
【0051】
【発明の効果】
以上述べたように、本発明は、金属を陽極酸化することにより設けられた直径0.01〜150μm貫通孔を有し、該貫通孔の内壁にプロトン伝導性の官能基を修飾した燃料電池用電解質膜である。こうすることにより、プロトン選択性を高く維持すると共に、耐熱性を向上させ、100℃以上、で水が無い場合でも発電ができ、また、水蒸気の環境下でも使用できる電解質膜とすることが可能となる。また、本発明では、電解質膜の官能基の種類と密集度を選定することにより水の共存が必須とならなくなり、きわめて現実的な燃料電池となる。
【図面の簡単な説明】
【図1】 PEFC型燃料電池の構造と動作原理を示した図である。
[0001]
BACKGROUND OF THE INVENTION
It is used inside a fuel cell that has recently attracted particular attention due to its high energy generation efficiency.
[0002]
[Prior art]
Fuel cells are classified into four types according to the type of electrolyte used. Among these four types, solid oxide fuel cells (SOFCs) and polymer electrolyte fuel cells (PEFCs) are classified as being used in the intermediate temperature region rather than the low temperature region. In addition, these can be applied to a moving body because the electrolyte can be easily fixed. Recently, the most interest and the expansion of the application range have been studied.
[0003]
In the case of PEFC, applications such as small household power supplies, portable power supplies, and mobile power supplies are being developed by taking advantage of the high output at low temperatures. On the other hand, ions that have high heat resistance and do not require moisture management. There is a demand for the development of a selective polymer electrolyte membrane. In addition, the type that obtains hydrogen by reforming methanol fuel directly in the battery is easy to downsize, so it is expected to be a power source for portable devices, but it has high durability against methanol and ion selectivity. Development of high polymer electrolyte membranes is demanded.
[0004]
By the way, a fuel cell is basically composed of an anode electrode (fuel electrode), a cathode electrode (air electrode), and an electrolyte membrane. Fig. 1 shows the structure and operation principle of a fuel cell, taking PEFC as an example, from "Technical trend survey on fuel cells" by the Japan Patent Office Technical Research Section. The anode is formed by stacking a catalyst that takes electrons from hydrogen to form protons, a gas diffusion layer of hydrogen as a fuel, and a separator as a current collector. The cathode is formed by laminating a catalyst for causing a reaction between protons and oxygen, an air diffusion layer, and a separator. As the electrolyte membrane, a sulfonic acid proton conductive polymer electrolyte membrane is generally used. The reaction at each electrode is as follows.
[0005]
Anode reaction H 2 → 2H + + 2e
Cathode reaction O 2 + 4H + + 4e → 2H 2 O
Well-known polymer electrolyte membranes for PEFC include proton conductive solid polymer membranes such as perfluorosulfonic acid (trade name: manufactured by Nafion DuPont). Such a membrane is provided with a large number of through-holes having a diameter of about 100 nm and having free OH groups on the inner wall, and this OH group allows protons to permeate from the anode side to the cathode side. . However, it is known that such a membrane allows not only protons but also hydrogen molecules, methanol and the like as raw materials to permeate the cathode side. When this occurs, the supplied fuel and oxidant react directly on the cathode side, and energy cannot be output as electric power. Therefore, there arises a problem that a stable output cannot be obtained.
[0006]
As a solution to these problems, there is a proton conductive membrane (electrolyte membrane) disclosed in JP-A-2002-110200. This proton conductive membrane is intended to suppress the permeation of methanol through the membrane while maintaining proton conductivity.
[0007]
Specifically, a composite of a proton conductive polymer and a specific polymer, or a proton conductive polymer and a specific polymer and Ti, Zr, Al, B, Mo, W, Ru, Ir, Ge, or V It is a composite of a copolymer with any oxide of the group.
[0008]
Although this proposed electrolyte membrane certainly has improved proton selectivity, it has a drawback that it cannot be heated to a temperature of 100 ° C. or higher because the material is a polymer or a polymer mainly like Nafion. For this reason, it cannot be applied to a stationary type for home use in which the specification of water vapor is being studied in order to increase efficiency. In this case, the use temperature is considered to be 150 to 250 ° C.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object of the present invention is an electrolyte membrane for fuel cells using hydrogen or methanol as a fuel, which has high proton selectivity and can be used at a temperature of 100 ° C. or higher. An electrolyte membrane for a fuel cell is provided.
[0010]
[Means for Solving the Problems]
The present invention for solving the above problems has a through hole having a diameter of 0.01 to 150 μm provided by anodizing a metal film or a silicon film, and a proton conductive functional group is modified on the inner wall of the through hole. It is characterized by this.
[0011]
The functional group of the present invention is preferably an OH group.
[0012]
What can be used as the metal film material of the present invention can form through holes by anodic oxidation. More preferred are aluminum, titanium, zinc, indium and alloys containing these as main components.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an electrolyte membrane for a fuel cell which has a through hole having a diameter of 0.01 to 150 μm provided by anodizing a metal, and a proton conductive functional group is modified on the inner wall of the through hole. By doing so, it is possible to maintain a high proton selectivity and to improve the heat resistance, and to make an electrolyte membrane that can use 100 ° C. or higher, specifically, water vapor.
[0014]
Those using the electrolyte membrane of the present invention are an intermediate type between PEFC and SOFC in terms of conventional classification. Conventionally, coexistence of moisture is indispensable in PEFC, so that there is a limit to the operating temperature in fuel cells. However, in the present invention, the coexistence of water becomes indispensable by selecting the type and density of the functional group of the electrolyte membrane, and a very realistic fuel cell is obtained.
[0015]
In addition, if the electrolyte membrane of the present invention is used, a fuel cell that can be used up to a high temperature of 100 ° C. or higher can be produced, so that it can be used as a stationary fuel cell for in-vehicle use or at home.
[0016]
In the present invention, the electrolyte membrane is prepared by anodizing a metal film or a silicon film in order to improve the heat resistance of the film. What can be used as a metal film must be capable of forming a through hole having a diameter of 0.01 to 150 μm by anodization. From the viewpoint of ease of handling, economy, etc., it is preferable to use aluminum, titanium, zinc, indium or an alloy containing these as a main component as the metal film material. A through-hole is provided in such a metal film or silicon film by electrolytic oxidation, and the diameter of the through-hole can be adjusted by adjusting anodizing conditions such as voltage, electrode interval, time, and acid type.
[0017]
The anodic oxidation is a method in which a direct current voltage is applied in water or an electrolytic solution using a metal film or a silicon film as an anode. At this time, oxygen is usually generated at the anode, and through holes having a desired diameter are self-aligned in an orderly manner at intervals of several tens to 100 nm according to voltage, acid type, time, and the like.
[0018]
By the way, if the diameter of the through hole is too small, the proton selectivity is improved, but the passage resistance is increased, and the function as a battery is lowered. On the other hand, if it increases, the passage resistance of protons decreases, but hydrogen and methanol as raw materials also pass through, so the battery characteristics deteriorate. For these reasons, the electrolyte membrane is also required to function as a filter. That is, it is desirable to determine the diameter of the through hole depending on the raw material. Therefore, when a raw material having a large molecular size is used, the diameter may be around 150 nm. However, in the case of a raw material having a small molecular size, several tens of nm or less is required. When hydrogen is used as a raw material, it is desirable that the thickness be 0.01 to 1 nm.
[0019]
A proton conductive functional group is modified on the inner wall surface of the through hole. As the functional group, it is convenient to select an OH group. In addition, since the OH groups can be spaced closely, proton transmission can be improved.
[0020]
For example, when aluminum is selected as the electrolyte membrane material, the surface including the inner wall surface of the through hole is covered with the alumina membrane by electrolytic oxidation. In the case of an alumina membrane, anions and cations can be modified with pH = approximately 9 as a boundary. This is because when the pH is about 9 or more, the surface of the alumina film is charged to AlO 2− , and when the pH is below about 9, it is charged to Al 3+ . Therefore, OH groups are supplied to the alumina surface with a pH of less than 9.
[0021]
Specifically, the aluminum film after electrolytic oxidation is first immersed in ion exchange water, and nitric acid is added to the ion exchange water to lower the pH to about 4. Thereafter, ammonia water is dropped into ion-exchanged water, the pH is returned to 7, and the ion-exchanged water is replaced and washed.
[0022]
In addition, when the alumina surface is dry, a good result is obtained when the above operation is attempted after applying steam to the surface and humidifying the surface.
[0023]
Further, when not only OH groups but also a catalyst layer is applied to the inner wall surface of the through hole, not only large molecules do not pass through, but also the raw material can be decomposed into protons inside the electrolyte membrane through hole.
[0024]
【Example】
Next, the present invention will be further described using examples.
Example 1
Sample 1—Alumina Electrolyte Membrane 1 Obtained Using Aluminum as the Base Material 50 mm wide, 50 mm long, 15 μm thick aluminum foil as the anode, platinum as the cathode, and 0.3 mol / l concentration of the electrolyte as the electrolyte Aluminum was electrolytically oxidized by performing constant voltage electrolysis at a voltage of 40 volts using an acid solution.
[0025]
A few seconds after the start of energization, the current value became substantially constant at 50 mA, but it became substantially 0 mA after about 60 minutes. Thereafter, the anode was pulled up, washed with water, the film was peeled off, and immersed in a mixed acid (6 wt% sulfuric acid + 1.8 wt% hydrochloric acid) for several tens of seconds, and immediately washed with water. The diameter of the obtained through hole was about 70 nm.
[0026]
Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0027]
Sample 2-Preparation of an alumina electrolyte membrane 2 obtained by using aluminum as a base material An aluminum foil having a width of 50 mm, a length of 50 mm, and a thickness of 15 μm is used as an anode, platinum is used as a cathode, and a concentration of 0.3 mol / l is used as an electrolyte. Using an acid solution, aluminum was electrolytically oxidized by constant voltage electrolysis at a voltage of 50 volts.
[0028]
A few seconds after the start of energization, the current value became substantially constant at about 60 mA, but became substantially 0 mA after about 60 minutes. Thereafter, the anode was pulled up, washed with water, the film was peeled off, and immersed in a mixed acid (6 wt% sulfuric acid + 1.8 wt% hydrochloric acid) for several tens of seconds, and immediately washed with water. The diameter of the obtained through hole was 50 nm.
[0029]
Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0030]
Sample 3-Preparation of alumina electrolyte membrane 3 obtained by using aluminum as the base material Aluminum foil having a width of 50 mm, a length of 50 mm, and a thickness of 15 μm is used as an anode, platinum is used as a cathode, and a concentration of 0.3 mol / l is used as an electrolyte. Aluminum was electrolytically oxidized by performing constant voltage electrolysis at a voltage of 40 volts using an acid solution.
[0031]
A few seconds after the start of energization, the current value became substantially constant at 50 mA, but it became substantially 0 mA after about 60 minutes. Thereafter, the anode was pulled up, washed with water, the film was peeled off, and immersed in a mixed acid (6 wt% sulfuric acid + 1.8 wt% hydrochloric acid) for several seconds, and immediately washed with water. The diameter of the obtained through hole was about 1 nm.
[0032]
Thereafter, the anode was pulled up and washed with ion exchange water. Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0033]
Sample 4-Preparation of Alumina Electrolyte Membrane 4 Obtained Using Aluminum as Base Material Aluminum Oxide with a Width of 50 mm, Length of 50 mm, and Thickness of 15 μm as an Anode, Platinum as a Cathode, and 0.3 mol / l Oxalic Acid as an Electrolyte The solution was electrolyzed at a constant voltage of 40 V to electrolytically oxidize aluminum (same as document 1).
[0034]
The finally obtained membrane was immersed in a mixed acid (6 wt% sulfuric acid + 1.8 wt% hydrochloric acid) for about 1 second and immediately washed with water. As a result, a fine hole was formed at the end of the fine hole, and the diameter of the obtained through hole was about 0.5 nm when measured by TEM.
[0035]
Thereafter, the anode was pulled up and washed with ion exchange water. Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0036]
Sample 5—Preparation of Titanium Oxide Electrolyte Membrane Obtained from Titanium as Base Material Titanium foil having a width of 50 mm, a length of 50 mm, and a thickness of 15 μm as an anode, platinum as a cathode, and an oxalic acid solution having a concentration of 0.5 mol / l as an electrolyte The titanium foil was electrolytically oxidized by constant voltage electrolysis at a voltage of 60 volts. The diameter of the obtained through hole was about 50 nm.
[0037]
The current value was 45 mA several seconds after the start of energization, but it became substantially 0 after 65 minutes. Thereafter, the anode was pulled up and washed with ion exchange water. Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0038]
Sample 6—Preparation of Zinc Oxide Electrolyte Membrane Obtained Using Zinc as Base Material Zinc Foil with a Width of 50 mm, Length of 50 mm, and Thickness of 15 μm as an Anode, Platinum as a Cathode, and Oxalic Acid at a Concentration of 0.5 Mol / L as an Electrolyte The solution was used, and electrolysis was performed at a constant voltage of 50 volts, followed by zinc oxidation. The diameter of the obtained through hole was about 45 nm.
[0039]
A few seconds after the start of energization, the current value was 50 mA, but it was substantially zero after 50 minutes. Thereafter, the anode was pulled up and washed with ion exchange water. Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0040]
Sample 7-Preparation of an indium oxide electrolyte membrane obtained by using indium as a base material An indium foil having a width of 50 mm, a length of 50 mm, and a thickness of 15 μm is used as an anode, platinum is used as a cathode, and 0.5 mol / l oxalic acid is used as an electrolyte. The indium foil was electrolytically oxidized by constant voltage electrolysis at a voltage of 45 V using the solution. The diameter of the obtained through hole was 50 nm.
[0041]
Although it showed 50 mA several seconds after the start of energization, it became substantially zero after about 60 minutes. Thereafter, the anode was pulled up and washed with ion exchange water. Then, the anode surface was vapor-deposited with Pt so as not to fill the through hole. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0042]
Sample 8—Preparation of an electrolyte membrane made of silicon oxide obtained by using silicon as a base material A silicon foil provided on a copper foil electrode with a width of 50 mm, a length of 50 mm and a thickness of 100 μm as an anode, platinum as a cathode, and an electrolyte Using a hydrofluoric acid solution having a concentration of about 0.3 mol / l, the silicon foil was electrolytically oxidized by constant voltage electrolysis at a voltage of 40 volts. The diameter of the obtained through hole was 5 nm.
[0043]
The current value after starting energization was 50 mA, but it became substantially 0 after about 2 hours. Thereafter, the anode was pulled up and washed with ion exchange water. Thereafter, the copper foil was removed, the silicon oxide electrolyte membrane was separated, and the surface of the electrolyte membrane was vapor-deposited with Pt so as not to fill the through holes. Thereafter, OH groups were modified on the inner wall surface of the through hole according to the above method.
[0044]
(Example 2)
A fuel cell was constructed using the various electrolyte membranes obtained in Example 1, and the presence or absence of current generation and the permeability of methane gas to the air electrode side were measured.
[0045]
A mass spectrometer was used to check whether methane gas was introduced into the fuel electrode side and methane gas permeated into the air electrode side. Even after about 1 hour from the start of measurement, significant detection was possible within the detector performance range. I couldn't.
[0046]
However, when current was measured, current could be measured several seconds after energization. It is clear that the decomposition of methane gas occurs and the generated protons pass through the electrolyte membrane to the air electrode. Therefore, it was found that any electrolyte membrane has high ion selectivity. The generated currents were as follows.
A current of 1 kilohm was connected to the outside and the current was measured.
[0047]
Sample 1 0.57mA
Sample 2 0.78mA
Sample 3 0.76mA
Sample 4 0.79mA
Sample 5 0.63mA
Sample 6 0.65mA
Sample 7 0.58mA
Sample 8 0.60mA
(Comparative Example 2)
A fuel cell was constructed using Nafion 117, 1135, and 1035, and the presence or absence of current generation and the permeability of methane gas to the air electrode side were measured.
[0048]
Methane gas was introduced into the fuel electrode side, and whether or not methane gas permeated into the air electrode side was examined using a mass spectrometer. At about 10 seconds after the start of measurement, methane began to be detected, and was continuously detected thereafter. In the case of Nafion, current did not flow unless water was used.
[0049]
When methane gas was passed through water and measurement was made hydrophilic, currents were generated, and the generated currents were as follows.
[0050]
Nafion 117 0.5mA
Nafion 1135 0.45mA
Nafion 1035 0.55mA
[0051]
【The invention's effect】
As described above, the present invention has a through hole having a diameter of 0.01 to 150 μm provided by anodizing a metal, and has a proton conductive functional group modified on the inner wall of the through hole. It is an electrolyte membrane. In this way, while maintaining high proton selectivity, heat resistance can be improved, and it is possible to produce an electrolyte membrane that can generate power even in the absence of water at 100 ° C. or higher, and can be used even in a steam environment. It becomes. Further, in the present invention, the coexistence of water becomes indispensable by selecting the type and density of the functional groups of the electrolyte membrane, and a very realistic fuel cell is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure and operating principle of a PEFC type fuel cell.

Claims (3)

金属膜またはケイ素膜を陽極酸化することにより設けられた直径0.01〜150μm貫通孔を有し、該貫通孔の内壁にプロトン伝導性の官能基を修飾したことを燃料電池用電解質膜。An electrolyte membrane for a fuel cell having a through hole having a diameter of 0.01 to 150 μm provided by anodizing a metal film or a silicon film, and a proton conductive functional group being modified on the inner wall of the through hole. 金属膜材質がアルミニウム、チタン、亜鉛、インジウムやこれらを主成分とする合金である請求項1記載の燃料電池用電解質膜。2. The electrolyte membrane for a fuel cell according to claim 1, wherein the metal membrane material is aluminum, titanium, zinc, indium or an alloy containing these as a main component. 官能基がOH基である請求項1または2記載の燃料電池用電解質膜。The electrolyte membrane for a fuel cell according to claim 1 or 2, wherein the functional group is an OH group.
JP2002201005A 2002-07-10 2002-07-10 Electrolyte membrane for fuel cell Expired - Fee Related JP3932549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201005A JP3932549B2 (en) 2002-07-10 2002-07-10 Electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201005A JP3932549B2 (en) 2002-07-10 2002-07-10 Electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2004047206A JP2004047206A (en) 2004-02-12
JP3932549B2 true JP3932549B2 (en) 2007-06-20

Family

ID=31707662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201005A Expired - Fee Related JP3932549B2 (en) 2002-07-10 2002-07-10 Electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP3932549B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958395B2 (en) * 2005-01-13 2012-06-20 国立大学法人大阪大学 Proton conductive membrane, fuel cell using the same, and method for producing the same
JP4760041B2 (en) * 2005-02-14 2011-08-31 住友金属鉱山株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4844799B2 (en) * 2005-03-04 2011-12-28 住友金属鉱山株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5115681B2 (en) * 2005-07-15 2013-01-09 住友金属鉱山株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL
JP2007213852A (en) * 2006-02-07 2007-08-23 Kyushu Institute Of Technology Fuel cell electrolyte film, manufacturing method of the same, and fuel cell using the same
JP5190747B2 (en) * 2006-02-08 2013-04-24 住友金属鉱山株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2011518958A (en) * 2008-04-29 2011-06-30 イー.エム.ダブリュ.エナジー カンパニー リミテッド INORGANIC ION CONDUCTIVE MEMBRANE, FUEL CELL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP5212717B2 (en) * 2008-10-02 2013-06-19 株式会社豊田中央研究所 Fuel cell electrolyte materials
JP5266086B2 (en) * 2009-02-17 2013-08-21 富士フイルム株式会社 Manufacturing method of electrolyte membrane for fuel cell
JP5713343B2 (en) * 2011-01-28 2015-05-07 学校法人東京理科大学 Fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004047206A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
Kang et al. Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells
JP4565644B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, fuel cell system, and method for manufacturing membrane-electrode assembly
KR20160143636A (en) Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2005327732A (en) Reformer for fuel cell system, its manufacturing method, and fuel cell including this
WO2006071325A1 (en) Direct oxidation fuel cell and system operating on concentrated fuel using low oxidant stoichiometry
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP3932549B2 (en) Electrolyte membrane for fuel cell
JP2002231265A (en) Fuel cell
JP5002911B2 (en) Measuring method of electroosmotic water volume EOW per proton in power generation evaluation in direct methanol fuel cell (DMFC)
EP1344844A1 (en) Apparatus for producing hydrogen, electrochemical device, method for producing hydrogen and method for generating electrochemical energy
Lamy Electrocatalytic oxidation of low weight oxygenated organic compounds: A review on their use as a chemical source to produce either electricity in a Direct Oxidation Fuel Cell or clean hydrogen in an electrolysis cell
JP2004134132A (en) Fuel regenerable fuel battery, method for generating electric power, and method for regenerating fuel
US20090117450A1 (en) Method for evaluating performance of electrode catalyst for cell, search method, electrode catalyst for cell and fuel cell using same
US6962760B2 (en) Methods of conditioning direct methanol fuel cells
EP1733965A1 (en) Submersible vessel
JP2001118583A (en) Fuel cell electrode and method for manufacturing the same
JP2001338667A (en) Fuel cell control system
JP4709518B2 (en) Proton conducting membrane and fuel cell
Pham et al. A review of 2019 fuel cell technologies: modelling and controlling
JP4760041B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
KR20030014895A (en) Portable fuel cell system
JP4637460B2 (en) Manufacturing method of fuel cell
US20230203679A1 (en) Membrane electrode assembly for pem water electrolysis capable of improving the electrical conductivity of the electrode layer and method of manufacturing thereof
JPH06231773A (en) Fuel cell
KR100551034B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees