JPH06231773A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06231773A
JPH06231773A JP5021298A JP2129893A JPH06231773A JP H06231773 A JPH06231773 A JP H06231773A JP 5021298 A JP5021298 A JP 5021298A JP 2129893 A JP2129893 A JP 2129893A JP H06231773 A JPH06231773 A JP H06231773A
Authority
JP
Japan
Prior art keywords
porous
porous part
separator
groove
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5021298A
Other languages
Japanese (ja)
Inventor
Kazuo Okuyama
和雄 奥山
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5021298A priority Critical patent/JPH06231773A/en
Publication of JPH06231773A publication Critical patent/JPH06231773A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve an output characteristic by forming a porous surface of a separator having a groove for passing humidified reaction gas, and thereby holding moisture in the holes to maintain the wet condition of an ion exchange film. CONSTITUTION:An ion exchange film used as an electrolyte is a film having an H<+> conductivity, or, for example, a compound primarily consisting of high polymer containing fluorine and having sulfonic group and/or carboxyl group, is used. A known gas diffusion electrode is used for an electrode, while a separator is formed of a non-porous portion and a porous part on the side of the gas diffusion electrode, and the preferred vacancy of the porous part is 0.1-0.7. When the vacancy is too small, water retentivity is reduced, and when the vacancy is too large, current collecting function is reduced. Preferred thickness of the porous part is 100mum-5mm, and when it is no more than 100mum, water retentivity is reduced. The material of the porous part is inactivated against reaction gas, and titanium, copper and the like is used to give the porous part conductivity. The width of the open head upper surface of the groove is 0.5-10mm and the depth is 0.2-5mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池(以下、PEFCと称する。)に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell (hereinafter referred to as PEFC).

【0002】[0002]

【従来の技術】低公害性と高効率性という特徴により、
燃料電池が注目されている。燃料電池は水素やメタノー
ル等の燃料を酸素又は空気を用いて電気化学的に酸化
し、燃料の化学エネルギーを電気エネルギーとして取り
出すものである。用いる電解質の種類によりリン酸型、
溶融炭酸塩型、固体酸化物型等に分類される。この中
で、低温作動性と高出力密度という特徴から、近年特に
PEFCが注目されてきた。
2. Description of the Related Art Due to the characteristics of low pollution and high efficiency,
Fuel cells are receiving attention. A fuel cell electrochemically oxidizes a fuel such as hydrogen or methanol using oxygen or air to take out the chemical energy of the fuel as electric energy. Phosphoric acid type, depending on the type of electrolyte used
It is classified into molten carbonate type and solid oxide type. Among them, PEFC has been particularly attracting attention in recent years because of its characteristics of low temperature operation and high power density.

【0003】図2を用いてPEFCの基本構造について
説明する。図2に示すように電池本体は固体高分子電解
質膜1の両側にガス拡散電極2が接合されることにより
構成されている。ガス拡散電極2には触媒が担持されて
おり、電池反応は固体高分子電解質膜1とガス拡散電極
2の接合界面にて生じる。例えば、ガス拡散電極2に水
素ガスを流すと膜との接合界面で、2H2 →4H+ +4
- の反応が生じる。H+ は固体高分子電解質膜1を通
って対極のガス拡散電極2に移動する。このガス拡散電
極2に酸素ガスを流すと、O2 →4H+ +4e- →2H
2 Oの反応が膜と電極の界面で生じ、水が生成すると同
時に電気エネルギーが得られる。
The basic structure of PEFC will be described with reference to FIG. As shown in FIG. 2, the battery body is configured by joining gas diffusion electrodes 2 on both sides of a solid polymer electrolyte membrane 1. A catalyst is supported on the gas diffusion electrode 2, and a cell reaction occurs at the bonding interface between the solid polymer electrolyte membrane 1 and the gas diffusion electrode 2. For example, when hydrogen gas is flown through the gas diffusion electrode 2, 2H 2 → 4H + +4 at the bonding interface with the film.
e - reaction occurs of. H + moves through the solid polymer electrolyte membrane 1 to the gas diffusion electrode 2 of the counter electrode. When oxygen gas is supplied to the gas diffusion electrode 2, O 2 → 4H + + 4e → 2H
The reaction of 2 O occurs at the interface between the membrane and the electrode, and at the same time water is produced, electric energy is obtained.

【0004】イオン交換膜のH+ 導伝性は、膜が湿潤し
た状態で初めて発現されることから、加湿した反応ガス
の他に、水を供給する工夫(特開平3−102774号
公報、特開平3−269958号公報)がなされてい
る。しかし、このような工夫だけでは膜の湿潤状態を保
持するのに充分ではなく、燃料電池としての出力低下の
原因となっている。
Since the H + conductivity of the ion exchange membrane is first expressed in a wet state of the membrane, it is devised to supply water in addition to the humidified reaction gas (JP-A-3-102774, JP (Kaihei 3-269958). However, such a contrivance alone is not sufficient to maintain the wet state of the membrane, which causes a reduction in output as a fuel cell.

【0005】[0005]

【発明が解決しようとする課題】本発明は出力性能に優
れた燃料電池を提供することを目的とする。
An object of the present invention is to provide a fuel cell having excellent output performance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、イオン交
換膜の湿潤状態保持に関して鋭意検討した結果、加湿し
た反応ガス通路用溝を有するセパレーターの表面を多孔
性とすることにより、この孔中に水分が保持され、その
結果イオン交換膜の湿潤状態が維持されて燃料電池とし
ての出力特性が向上することを見い出し、本発明に至っ
た。
Means for Solving the Problems The inventors of the present invention have made earnest studies as to maintaining the wet state of an ion exchange membrane, and as a result, the surface of a separator having a groove for a humidified reaction gas passage is made porous, so that The present invention has been completed by finding that water is retained therein, and as a result, the wet state of the ion exchange membrane is maintained and the output characteristics of the fuel cell are improved.

【0007】すなわち、本発明は電解質としてイオン交
換膜を用いる燃料電池において、ガス拡散電極側のセパ
レーター表面が多孔性の導電材からなることを特徴とす
る燃料電池を提供するものである。本発明において、電
解質として用いるイオン交換膜はH+ 導伝性を有すれば
良く、例えば含フッ素高分子を骨格とし、スルホン酸基
および/又はカルボキシル基を有する下記化1で示され
るものがある。
That is, the present invention provides a fuel cell using an ion exchange membrane as an electrolyte, wherein the separator surface on the gas diffusion electrode side is made of a porous conductive material. In the present invention, the ion exchange membrane used as the electrolyte may have H + conductivity, and for example, there is one having the fluorinated polymer as a skeleton and having a sulfonic acid group and / or a carboxyl group as shown in the following chemical formula 1. .

【0008】[0008]

【化1】 [Chemical 1]

【0009】電極は公知のガス拡散電極であればよく、
例えば、白金を担持したカーボンと、結着剤・撥水剤と
してのテフロン、さらに、プロトン導伝材としての例え
ばイオン交換樹脂成分から成る。セパレーターは、燃料
電池の単セルを分離するものであり、反応ガス不透過
性、集電性に加えて、反応ガス通路用の溝を付けること
により反応ガス分集機能を有する。本発明においては、
さらに、保水性という新しい機能を持たせ、PEFCに
不可欠なイオン交換膜のH+ 導伝性を高めるものであ
る。保水性を持たせるために、加湿した反応ガスが通過
する部分、及びガス拡散電極に接している部分を多孔性
にすることが有効である。すなわち、本発明のセパレー
ターは非多孔部分とガス拡散電極側の多孔部分から構成
されることが必要である。該多孔部分の空孔率は特に限
定する必要がないが好ましくは0.1〜0.7である。
ここで空孔率は多孔部分の全体積に対する空孔の占める
体積を表す。空孔率が小さすぎると保水効果が低下し、
一方、大きすぎると集電機能が低下する。
The electrode may be any known gas diffusion electrode,
For example, it is composed of carbon carrying platinum, Teflon as a binder / water repellent, and, for example, an ion exchange resin component as a proton conducting material. The separator separates a single cell of a fuel cell, and has a reaction gas collecting function by forming a groove for a reaction gas passage in addition to the reaction gas impermeability and current collecting property. In the present invention,
Furthermore, it has a new function of water retention and enhances the H + conductivity of the ion exchange membrane, which is essential for PEFC. In order to provide water retention, it is effective to make the portion through which the humidified reaction gas passes and the portion in contact with the gas diffusion electrode porous. That is, the separator of the present invention needs to be composed of a non-porous portion and a porous portion on the gas diffusion electrode side. The porosity of the porous portion does not need to be particularly limited, but is preferably 0.1 to 0.7.
Here, the porosity represents the volume occupied by the pores with respect to the total volume of the porous portion. If the porosity is too small, the water retention effect will decrease,
On the other hand, if it is too large, the current collecting function will be reduced.

【0010】多孔部分の厚さは、100μmから5mm
が好ましい。100μmより小さいと保水効果が低下
し、一方、5mmより大きくとも保水効果は変わらない
が、セルとして組み上げた時のコンパクト性が悪くな
る。多孔部分の材質は反応ガスに対して不活性であり、
かつ導電体である材料であれば良く、例えばチタン、ニ
オブ、銅、ニッケル、カーボン、それらの合金、また
は、それらの構造物に白金、銀、パラジウム、ロジウム
等の貴金属をメッキしたもの等がある。多孔構造物とす
るには、例えば上記材料の粉末の燃結法、鋳型成形法、
孔形成材を含ませ成形後孔形成材を除去する方法、非多
孔部から成る構造物へのスパッター法等がある。多孔部
分には、加湿した反応ガスが通過する溝がある。
The thickness of the porous portion is 100 μm to 5 mm
Is preferred. If it is smaller than 100 μm, the water retention effect is lowered, while if it is larger than 5 mm, the water retention effect is not changed, but the compactness when assembled as a cell is deteriorated. The material of the porous part is inert to the reaction gas,
In addition, any material that is a conductor may be used, and examples thereof include titanium, niobium, copper, nickel, carbon, alloys thereof, or those structures plated with a noble metal such as platinum, silver, palladium, or rhodium. . To form a porous structure, for example, a method of burning powder of the above material, a molding method,
There are a method of including a hole forming material and removing the hole forming material after molding, and a sputtering method for a structure composed of a non-porous portion. The porous portion has a groove through which the humidified reaction gas passes.

【0011】溝の開放上面の幅は0.5〜10mmであ
り、好ましくは1〜5mmである。0.5mm未満で
は、反応ガスを流した時に圧力損失が大きくなり高圧で
反応ガスを流入しなければならなくなると同時に、電極
とセパレーターの部分的剥離を生じ易くなる。一方10
mmより大きいと、1本の溝の中で反応ガスの片流れが
生じ性能低下の原因となる。溝の底面の幅は溝の開放上
面の幅以下がよい。溝の一方の端は反応ガス入口と、そ
してもう一方の端は反応ガス出口とつながっている。
The width of the open upper surface of the groove is 0.5 to 10 mm, preferably 1 to 5 mm. If it is less than 0.5 mm, the pressure loss becomes large when the reaction gas flows, and the reaction gas must flow at a high pressure, and at the same time, partial separation of the electrode and the separator is likely to occur. While 10
If it is larger than mm, a one-way flow of the reaction gas occurs in one groove, which causes deterioration of performance. The width of the bottom surface of the groove is preferably less than or equal to the width of the open upper surface of the groove. One end of the groove is connected to the reaction gas inlet and the other end is connected to the reaction gas outlet.

【0012】溝の深さは0.2〜5mmであり、好まし
くは1から3mmである。0.2mm未満では、ガス拡
散電極とセパレーターを重ねて締め付けた時に溝が閉塞
しやすくなり、一方、5mmより大きいとセパレーター
が厚くなり、かつ、反応ガスの未使用分が増加し好まし
くない。セパレーターの非多孔部分は、反応ガスに対し
て不活性であり、ガス透過性がなく、かつ電導体である
材料であれば良く、例えばチタン、ニオブ、銅、ニッケ
ル、カーボン、または、それらの構造物に白金、銀、パ
ラジウム、ロジウム等をメッキしたもの、あるいは、ポ
リテトラフルオロエチレン、テトラフルオロエチレン−
パーフルオロアルキルビニルエーテル共重合体、テトロ
フルオロエチレン−ヘキサフルオロプロピレン共重合体
等のフッ素樹脂と前記金属との混合物が好ましい。
The depth of the groove is 0.2 to 5 mm, preferably 1 to 3 mm. If it is less than 0.2 mm, the groove tends to be closed when the gas diffusion electrode and the separator are overlapped and tightened, while if it is more than 5 mm, the separator becomes thick and the unused portion of the reaction gas increases, which is not preferable. The non-porous portion of the separator may be any material that is inert to the reaction gas, has no gas permeability, and is an electric conductor, such as titanium, niobium, copper, nickel, carbon, or a structure thereof. Thing plated with platinum, silver, palladium, rhodium, or polytetrafluoroethylene, tetrafluoroethylene-
A mixture of a fluororesin such as a perfluoroalkyl vinyl ether copolymer and a tetrofluoroethylene-hexafluoropropylene copolymer and the above metal is preferable.

【0013】本発明のセパレーターを用いた単セル燃料
電池の1例を図3に示した。この他に、例えば反応ガス
通路用溝を有する非多孔部分上にスパッタリングにより
多孔部分を薄く形成させたもの等がある。
An example of a single cell fuel cell using the separator of the present invention is shown in FIG. In addition to this, there is, for example, one in which a porous portion is thinly formed by sputtering on a non-porous portion having a reaction gas passage groove.

【0014】[0014]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこの実施例に限定されるものではない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples.

【0015】[0015]

【実施例1】面積が10cm2 のガス拡散電極(米国E
−TEK社製)白金担持量0.38mg/cm2 を2枚
用意し、一方、パーフルオロカーボンイオン交換膜 A
ciplex〔旭化成工業(株)製 商標1000g/
当量〕を、重量で50対50のエタノールと水の混合溶
媒に溶解して5重量%の溶液とした。用意したガス拡散
電極にこのAciplex溶液0.15mlを含浸した
後、70℃にて2時間減圧乾燥した。得られた電極の重
量測定より含浸したAciplex成分量は0.6mg
/cm2 であった。
Example 1 A gas diffusion electrode having an area of 10 cm 2 (US E
-TEK Co., Ltd.) Two pieces of platinum loading 0.38 mg / cm 2 were prepared, while a perfluorocarbon ion exchange membrane A
ciplex [Asahi Kasei Co., Ltd. trademark 1000g /
Equivalent weight] was dissolved in a mixed solvent of 50:50 by weight of ethanol and water to give a 5% by weight solution. The prepared gas diffusion electrode was impregnated with 0.15 ml of this Aciplex solution, and dried under reduced pressure at 70 ° C. for 2 hours. From the weight measurement of the obtained electrode, the impregnated Aciplex component amount was 0.6 mg.
Was / cm 2 .

【0016】4ミルの厚みのAciplex膜をこの電
極で挟んで、ホットプレス器にて140℃、90秒間接
合処理を行った。図3に示したセパレーターにおいて、
非多孔部分としてチタン材(大同鋼板(株)製 TB−
35)を用い、多孔部分にグラファイト(東洋炭素
(株)製 IG−11 空孔率15%)を用いた。多孔
部分にある反応ガス通路用溝の深さは1mm、溝の底に
おける多孔部分の厚さは4mmであった。
An Aciplex film having a thickness of 4 mils was sandwiched between these electrodes, and a hot press machine was used to perform a bonding treatment at 140 ° C. for 90 seconds. In the separator shown in FIG. 3,
Titanium material (TB-made by Daido Steel Sheet Co., Ltd.)
35) and graphite (IG-11 porosity 15%, manufactured by Toyo Tanso Co., Ltd.) was used in the porous portion. The depth of the reaction gas passage groove in the porous portion was 1 mm, and the thickness of the porous portion at the bottom of the groove was 4 mm.

【0017】図4に示す評価装置を用いて、圧力常圧、
セル温度55℃、加湿温度70℃、反応ガスは酸素と水
素を用い、流量は各々50ml/min、100ml/
minで燃料電池としての出力評価を行った。得られた
電流密度対電圧曲線を図1に示す。
Using the evaluation device shown in FIG.
Cell temperature is 55 ° C, humidification temperature is 70 ° C, oxygen and hydrogen are used as reaction gases, and flow rates are 50 ml / min and 100 ml / min, respectively.
The output of the fuel cell was evaluated at min. The obtained current density vs. voltage curve is shown in FIG.

【0018】[0018]

【比較例1】実施例と同じ操作により作成した接合体を
用いて、図3に示したセパレーターとして、非多孔部分
及び多孔部分ともにチタン材(大同鋼板(株)製 TB
−35)で作成したもので実施例と同じ装置で同じ条件
にて出力評価を行った。この結果を図1に示す。
[Comparative Example 1] Using a joined body prepared by the same operation as that of the example, a titanium material (TB manufactured by Daido Steel Co., Ltd.) was used as a separator shown in Fig. 3 for both the non-porous portion and the porous portion.
The output was evaluated under the same conditions with the same apparatus as in the example, which was created in -35). The result is shown in FIG.

【0019】[0019]

【発明の効果】本発明の燃料電池では、出力性能が大き
く向上している。
The output performance of the fuel cell of the present invention is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例の評価結果の電流密度対電
圧を示すグラフ図である。
FIG. 1 is a graph showing current density vs. voltage as an evaluation result of an example and a comparative example.

【図2】評価用単セル構造を示す断面概略図である。FIG. 2 is a schematic cross-sectional view showing a single cell structure for evaluation.

【図3】本発明の1例であるセパレーターを用いた単セ
ル構造を示す断面概略図である。
FIG. 3 is a schematic sectional view showing a single cell structure using a separator which is an example of the present invention.

【図4】実施例及び比較例で用いた接合体評価装置を示
す説明図である。
FIG. 4 is an explanatory diagram showing a bonded body evaluation apparatus used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 イオン交換膜 2 ガス拡散電極 3 セパレーター 4 ガス分集溝 5 反応ガス流路用溝開口部 6 反応ガス出入口 7 燃料電池単セル 8 加湿器 9 純水 10 多孔部分 11 非多孔部分 1 Ion Exchange Membrane 2 Gas Diffusion Electrode 3 Separator 4 Gas Collection Groove 5 Reactor Gas Channel Groove Opening 6 Reaction Gas Inlet / Outlet 7 Fuel Cell Single Cell 8 Humidifier 9 Pure Water 10 Porous Part 11 Non-Porous Part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質としてイオン交換膜を用いる燃料
電池において、ガス拡散電極側のセパレーター表面が多
孔性の導電材からなることを特徴とする燃料電池。
1. A fuel cell using an ion exchange membrane as an electrolyte, characterized in that the separator surface on the gas diffusion electrode side is made of a porous conductive material.
JP5021298A 1993-02-09 1993-02-09 Fuel cell Withdrawn JPH06231773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021298A JPH06231773A (en) 1993-02-09 1993-02-09 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021298A JPH06231773A (en) 1993-02-09 1993-02-09 Fuel cell

Publications (1)

Publication Number Publication Date
JPH06231773A true JPH06231773A (en) 1994-08-19

Family

ID=12051243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021298A Withdrawn JPH06231773A (en) 1993-02-09 1993-02-09 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06231773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133282A (en) * 1998-10-21 2000-05-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for solid polymer electrolyte fuel cell
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
JP2008192606A (en) * 2007-01-09 2008-08-21 Soc D Technologie Michelin Flexible graphite/metal distribution plate for fuel cell assembly
US8137866B2 (en) 2005-07-28 2012-03-20 Kobe Steel, Ltd. Titanium material for fuel cell separator having low contact resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133282A (en) * 1998-10-21 2000-05-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for solid polymer electrolyte fuel cell
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
JP4691742B2 (en) * 1999-01-27 2011-06-01 トヨタ自動車株式会社 GAS SEPARATOR FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING GAS SEPARATOR FOR FUEL CELL
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
US8137866B2 (en) 2005-07-28 2012-03-20 Kobe Steel, Ltd. Titanium material for fuel cell separator having low contact resistance
JP2008192606A (en) * 2007-01-09 2008-08-21 Soc D Technologie Michelin Flexible graphite/metal distribution plate for fuel cell assembly
JP2015092501A (en) * 2007-01-09 2015-05-14 コンパニー ゼネラール デ エタブリッスマン ミシュラン Fluid distribution plate for fuel cell assembly

Similar Documents

Publication Publication Date Title
EP0090358B1 (en) Fuel cell
US7803490B2 (en) Direct methanol fuel cell
JP2000058072A (en) Fuel cell
JP2002231265A (en) Fuel cell
JP2004134132A (en) Fuel regenerable fuel battery, method for generating electric power, and method for regenerating fuel
JP2007284705A (en) Electrolytic hydrogen-generating device, method for generating hydrogen gas, and fuel cell
JP2010244791A (en) Direct methanol fuel cell
JP5274035B2 (en) Fuel cell
US20050147868A1 (en) Fuel cell
JPH06231773A (en) Fuel cell
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JP2003115299A (en) Solid polymer fuel cell
JP4433552B2 (en) Composite catalyst and production method thereof
JP2011171301A (en) Direct oxidation fuel cell
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JP2020077581A (en) Catalyst layer
JPH10208757A (en) Fuel cell generating set
JP2002056856A (en) Fuel cell using liquid fuel
JP2002289202A (en) Method for lowering fuel cell cathode activating overvoltage
JPH06150937A (en) Solid high polymer type fuel cell
JP3758615B2 (en) Fuel cell
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JPH06215780A (en) Fuel cell
JPH06163056A (en) Polymer electrolytic fuel cell
JP2004146387A (en) Fuel cell and its using method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509