JP2005078870A - Fuel cell and its manufacturing method - Google Patents

Fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2005078870A
JP2005078870A JP2003305795A JP2003305795A JP2005078870A JP 2005078870 A JP2005078870 A JP 2005078870A JP 2003305795 A JP2003305795 A JP 2003305795A JP 2003305795 A JP2003305795 A JP 2003305795A JP 2005078870 A JP2005078870 A JP 2005078870A
Authority
JP
Japan
Prior art keywords
electrode
fuel
metal film
fuel cell
oxygen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305795A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamaura
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003305795A priority Critical patent/JP2005078870A/en
Publication of JP2005078870A publication Critical patent/JP2005078870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which enhances its output by raising catalyst efficiency on the interface of an electrode and an electrolyte, and also to provide its manufacturing method. <P>SOLUTION: Metal films 17 having openings are provided on the electrolyte film 11 side of the fuel cell electrode 12 and on the electrolyte film 11 side of the oxygen electrode 13. The opening area percentage of the metal film 17 in a surface perpendicular to the direction in which the fuel cell electrode 12 faces the oxygen electrode 13 is 25 % or more, and electron conductivity of the fuel electrode 12 and the oxygen electrode 13 is enhanced while securing the contact area where the fuel electrode 12 and the oxygen electrode 13 are brought into contact with the electrolyte film 11. The metal film 17 is preferably formed of noble metal such as Pt or Au, and its thickness is preferably not less than 0.10 μm and not more than 10 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解質膜を介して燃料電極と酸素電極とが対向配置された燃料電池およびその製造方法に関する。   The present invention relates to a fuel cell in which a fuel electrode and an oxygen electrode are arranged to face each other via an electrolyte membrane, and a method for manufacturing the same.

近年、石油等の化石燃料に代わりうる代替クリーンエネルギー源の必要性が高まっており、例えば水素(ガス)燃料あるいはメタノール燃料が注目されている。水素は、単位質量当たりに含まれる化学エネルギー量が大きく、また使用に際して有害物質あるいは地球温暖化ガスなどを放出しない等の理由から、クリーンでかつ無尽蔵な理想エネルギー源であると言える。また、メタノールに代表される低級アルコールは、水素の反応電位に近い反応電位を示すため、直接メタノール型燃料電池として注目されている。   In recent years, the need for alternative clean energy sources that can replace fossil fuels such as petroleum has increased, and for example, hydrogen (gas) fuel or methanol fuel has attracted attention. Hydrogen is a clean and inexhaustible ideal energy source because it contains a large amount of chemical energy per unit mass and does not release harmful substances or global warming gases when used. Further, lower alcohols typified by methanol are attracting attention as direct methanol fuel cells because they exhibit a reaction potential close to that of hydrogen.

燃料電池は、電解質膜を挟んで燃料電極と酸素電極とを配置し、燃料電極に水素などの燃料を供給し、酸素電極に酸素を供給することにより電池反応を起こし、起電力を得るものである。電極には、電池反応を生じさせるための触媒が含まれているが、通常、この触媒はカーボンブラックなどの比表面積の大きな担持体に担持されている。これは、担持体を用いないと、シンタリング現象により触媒粒子が肥大化してしまい、安定して存在させることができないからである。   In a fuel cell, a fuel electrode and an oxygen electrode are arranged with an electrolyte membrane in between, a fuel such as hydrogen is supplied to the fuel electrode, and oxygen is supplied to the oxygen electrode to cause a cell reaction and obtain an electromotive force. is there. The electrode contains a catalyst for causing a battery reaction, but this catalyst is usually carried on a carrier having a large specific surface area such as carbon black. This is because if the support is not used, the catalyst particles are enlarged due to the sintering phenomenon and cannot be stably present.

しかし、このように担持体に担持させた触媒により形成した電極は、粒子の集合体であるがゆえに、粒子間の接触抵抗が金属などに比べ大きい。また、電極にはスルホン基を有するフルオロカーボンなどのイオンを伝導させるためのポリマーも含まれているが、このポリマーの電子伝導性は絶縁体に近く、触媒を担持する担持体を包み込むように結着して存在している。よって、電極全体としての電子伝導性が低くなっている。   However, since the electrode formed of the catalyst supported on the carrier is an aggregate of particles, the contact resistance between the particles is larger than that of metal or the like. The electrode also contains a polymer for conducting ions such as fluorocarbons having a sulfonic group, but the electronic conductivity of this polymer is close to that of an insulator, and it is bound so as to enclose the carrier carrying the catalyst. Exist. Therefore, the electronic conductivity as the whole electrode is low.

更に、この電極と電解質膜との界面では、電解質膜を構成するポリマーが電極内に食い込み、触媒を担持する担持体の粒子間に割り込んでしまい、界面の触媒を不活性化してしまっていた。よって、触媒効率を向上させるためには、電極と電解質膜との界面での電子伝導性を向上させる必要があった。   Further, at the interface between the electrode and the electrolyte membrane, the polymer constituting the electrolyte membrane has digged into the electrode and has intervened between the particles of the carrier carrying the catalyst, thereby inactivating the catalyst at the interface. Therefore, in order to improve the catalyst efficiency, it is necessary to improve the electron conductivity at the interface between the electrode and the electrolyte membrane.

そこで、従来では、例えば、電解質膜の表面に、白金(Pt)よりなる金属膜を形成することが提案されている(例えば、非特許文献1および特許文献1参照。)。
S.Y.チャー(S.Y.Cha )、外1名、「膜表面への極薄白金直接成膜により製造されたプロトン交換膜燃料電池電極の特性(Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition Ultrathin Platinum on the Membrane Surface )」、ジャーナル・オブ・ザ・エレクトロケミカル・ソサイエティ(Journal of The Electrochemical Society)、(米国)、ザ・エレクトロケミカル・ソサイエティ(The Electrochemical Society )、1999年11月、第146巻、第11号、p.4055−4060 特開2002−75384号公報
Therefore, conventionally, for example, it has been proposed to form a metal film made of platinum (Pt) on the surface of the electrolyte film (see, for example, Non-Patent Document 1 and Patent Document 1).
S. Y. SYCha, 1 other, “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition Ultrathin Platinum on the Membrane Surface) ", Journal of the Electrochemical Society (USA), The Electrochemical Society, November 1999, 146, 11 , P. 4055-4060 JP 2002-75384 A

しかしながら、従来のように電解質膜に金属膜を形成してしまうと、金属の剛性のため、電極と電解質膜との界面における触媒粒子と電解質膜との接触面積が小さくなり、出力が極端に低下してしまうという問題があった。   However, if a metal film is formed on the electrolyte membrane as in the past, the contact area between the catalyst particles and the electrolyte membrane at the interface between the electrode and the electrolyte membrane is reduced due to the rigidity of the metal, and the output is extremely reduced. There was a problem of doing.

本発明はかかる問題点に鑑みてなされたもので、その目的は、電極と電解質膜との界面における触媒効率を高め、出力を向上させることができる燃料電池およびその製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a fuel cell capable of increasing the catalyst efficiency at the interface between the electrode and the electrolyte membrane and improving the output, and a method for manufacturing the same. .

本発明による燃料電池は、電解質膜を介して燃料電極と酸素電極とが対向配置された燃料電池であって、燃料電極および酸素電極の電解質膜の側のうちの少なくとも一方に、貴金属元素を含む金属膜を備え、この金属膜は開口を有し、燃料電極と酸素電極との対向方向に対して垂直な面内における開口面積率が25%以上のものである。   A fuel cell according to the present invention is a fuel cell in which a fuel electrode and an oxygen electrode are arranged to face each other through an electrolyte membrane, and includes a noble metal element on at least one of the fuel electrode and the electrolyte membrane side of the oxygen electrode. The metal film has an opening, and the opening area ratio in a plane perpendicular to the opposing direction of the fuel electrode and the oxygen electrode is 25% or more.

本発明による燃料電池の製造方法は、電解質膜を介して燃料電極と酸素電極とが対向配置された燃料電池の製造方法であって、燃料電極および酸素電極の少なくとも一方の上に、貴金属元素を含む金属膜を形成する工程を含むものである。   A method of manufacturing a fuel cell according to the present invention is a method of manufacturing a fuel cell in which a fuel electrode and an oxygen electrode are arranged to face each other with an electrolyte membrane, wherein a noble metal element is placed on at least one of the fuel electrode and the oxygen electrode. Including a step of forming a metal film.

本発明による燃料電池では、燃料電極の電解質膜の側、または酸素電極の電解質膜の側、またはその両方に、開口面積率が25%以上の貴金属元素を含む金属膜が設けられているので、金属膜により電解質膜との界面における電極の不活性化が抑制され、かつ、開口を介して電極と電解質膜との接触が確保される。よって、触媒効率が向上する。   In the fuel cell according to the present invention, a metal film containing a noble metal element having an opening area ratio of 25% or more is provided on the electrolyte membrane side of the fuel electrode, the electrolyte membrane side of the oxygen electrode, or both. The metal film suppresses inactivation of the electrode at the interface with the electrolyte membrane, and ensures contact between the electrode and the electrolyte membrane through the opening. Therefore, the catalyst efficiency is improved.

本発明による燃料電池の製造方法では、燃料電極の上、または酸素電極の上、またはその両方に、貴金属元素を含む金属膜が形成される。よって、金属膜には開口が形成され、その成膜方向に対して垂直な面内における開口面積率は25%以上となる。   In the fuel cell manufacturing method according to the present invention, a metal film containing a noble metal element is formed on the fuel electrode, the oxygen electrode, or both. Therefore, an opening is formed in the metal film, and an opening area ratio in a plane perpendicular to the film forming direction is 25% or more.

本発明による燃料電池によれば、燃料電極および酸素電極の電解質膜の側のうちの少なくとも一方に、開口面積率が25%以上の開口を有する金属膜を備えるようにしたので、燃料電極または酸素電極と電解質膜との接触面積を確保しつつ、燃料電極または酸素電極の電子伝導性を向上させることができる。よって、燃料電極または酸素電極の触媒効率を高めることができ、出力を向上させることができる。   According to the fuel cell of the present invention, the metal electrode having the opening with an opening area ratio of 25% or more is provided on at least one of the fuel electrode and the electrolyte membrane side of the oxygen electrode. The electron conductivity of the fuel electrode or the oxygen electrode can be improved while ensuring the contact area between the electrode and the electrolyte membrane. Therefore, the catalyst efficiency of the fuel electrode or oxygen electrode can be increased, and the output can be improved.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の一実施の形態に係る燃料電池の構成を表すものである。この燃料電池は、電解質膜11を介して対向配置された燃料電極12と酸素電極13とを有している。これら電解質膜11,燃料電極12および酸素電極13は、外装部材14の内部に収納されている。外装部材14の内部には、燃料電極12に隣接して燃料室15が設けられると共に、酸素電極13に隣接して酸素室16が設けられている。燃料室15は、外装部材14に設けられた流通孔14A,14Bを介して図示しない燃料供給部に連結されており、この燃料供給部から水素またはメタノール,エタノールあるいはジメチルエーテルなどを含む液体燃料が供給されるようになっている。酸素室16は、外装部材14に設けられた流通孔14Cを介して外部と連通しており、自然換気により空気すなわち酸素を酸素電極13に供給するようになっている。   FIG. 1 shows the configuration of a fuel cell according to an embodiment of the present invention. This fuel cell has a fuel electrode 12 and an oxygen electrode 13 which are arranged to face each other with an electrolyte membrane 11 interposed therebetween. The electrolyte membrane 11, the fuel electrode 12, and the oxygen electrode 13 are housed inside the exterior member 14. Inside the exterior member 14, a fuel chamber 15 is provided adjacent to the fuel electrode 12, and an oxygen chamber 16 is provided adjacent to the oxygen electrode 13. The fuel chamber 15 is connected to a fuel supply unit (not shown) through circulation holes 14A and 14B provided in the exterior member 14, and liquid fuel containing hydrogen, methanol, ethanol, dimethyl ether, or the like is supplied from the fuel supply unit. It has come to be. The oxygen chamber 16 communicates with the outside through a circulation hole 14 </ b> C provided in the exterior member 14, and supplies air, that is, oxygen to the oxygen electrode 13 by natural ventilation.

電解質膜11は、例えば、プロトン伝導体により構成されている。プロトン伝導体としては、例えば、スルホン酸基(−SO3 H)を有するパーフルオロカーボン重合体、またはH3 Mo12PO40・29H2 OあるいはSb2 5 ・5.4H2 Oなどの多くの水和水を持つポリモリブデン酸類あるいは酸化物が挙げられる。これらは、湿潤状態において高いプロトン伝導性を有するものであり、プロトンが水と反応してオキソニウムイオン(H3 + )を生成し、このオキソニウムイオンが移動するものである。 The electrolyte membrane 11 is made of, for example, a proton conductor. Examples of the proton conductor include many perfluorocarbon polymers having a sulfonic acid group (—SO 3 H), H 3 Mo 12 PO 40 · 29H 2 O, and Sb 2 O 5 · 5.4H 2 O. Examples include polymolybdic acids or oxides having hydration water. These have high proton conductivity in a wet state. Protons react with water to generate oxonium ions (H 3 O + ), and these oxonium ions move.

また、これらとは伝導機構の全く異なるプロトン伝導体を用いてもよい。他の伝導機構を有するものとしては、例えば、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されたものが挙げられる。これは、プロトン解離性の基を介してプロトンが移動するものである。ここで、「プロトン解離性の基」とは、電離によりプロトン(H+ )が離れ得る官能基のことを意味する。具体的には、プロトン解離性の基として、−OH、−OSO3 H、−SO3 H、−COOH、−OP(OH)2 等を挙げることができる。母体となる炭素質材料には、炭素を主成分とするものであれば任意の材料を使用することができるが、プロトン解離性の基を導入した後に、イオン伝導性が電子伝導性よりも大であることが必要である。 In addition, proton conductors having completely different conduction mechanisms may be used. As what has another conduction mechanism, the thing which made the base the carbonaceous material which has carbon as a main component, and introduce | transduced the proton dissociative group into this is mentioned, for example. This is because protons move through a proton dissociable group. Here, the “proton dissociable group” means a functional group capable of leaving a proton (H +) by ionization. Specific examples of the proton dissociable group include —OH, —OSO 3 H, —SO 3 H, —COOH, —OP (OH) 2, and the like. As the base carbonaceous material, any material having carbon as a main component can be used. However, after introducing a proton-dissociable group, ion conductivity is higher than electron conductivity. It is necessary to be.

燃料電極12および酸素電極13は、例えば、カーボンペーパーなどよりなる集電体に、白金(Pt)あるいはルテニウム(Ru)などの触媒を含む触媒層が形成された構成を有している。触媒層は、例えば、触媒を担持させたカーボンブラックなどの担持体をプロトン伝導材料に分散させたものにより構成されている。   The fuel electrode 12 and the oxygen electrode 13 have a configuration in which a catalyst layer containing a catalyst such as platinum (Pt) or ruthenium (Ru) is formed on a current collector made of, for example, carbon paper. The catalyst layer is composed of, for example, a carrier in which a catalyst is supported, such as carbon black, dispersed in a proton conductive material.

この燃料電池は、また、燃料電極12の電解質膜11の側、および酸素電極13の電解質膜11の側に、金属膜17を有している。図2は、電解質膜11と、燃料電極12または酸素電極13との界面近傍を模式的に拡大して表したものである。金属膜17は、燃料電極12および酸素電極13の表面の凹凸、すなわち触媒12A,13Aを担持させた担持体12B,13Bの凹凸に追随して凹凸に形成されており、多数の開口17Aを有している。金属膜17の燃料電極12と酸素電極13との対向方向に対して垂直な面内における開口面積率は25%以上となっている。これにより、この燃料電池では、燃料電極12および酸素電極13の電子伝導性を高くしつつ、燃料電極12および酸素電極13と電解質膜11との接触面積を増大させることができるようになっている。   This fuel cell also has a metal film 17 on the electrolyte membrane 11 side of the fuel electrode 12 and on the electrolyte membrane 11 side of the oxygen electrode 13. FIG. 2 is a schematic enlarged view of the vicinity of the interface between the electrolyte membrane 11 and the fuel electrode 12 or the oxygen electrode 13. The metal film 17 is formed to have irregularities following the irregularities on the surfaces of the fuel electrode 12 and the oxygen electrode 13, that is, the irregularities of the supports 12B and 13B carrying the catalysts 12A and 13A, and has a large number of openings 17A. doing. The opening area ratio in the plane perpendicular to the opposing direction of the fuel electrode 12 and the oxygen electrode 13 of the metal film 17 is 25% or more. Thereby, in this fuel cell, the contact area between the fuel electrode 12 and the oxygen electrode 13 and the electrolyte membrane 11 can be increased while the electron conductivity of the fuel electrode 12 and the oxygen electrode 13 is increased. .

この開口面積率は、金属膜17の燃料電極12と酸素電極13との対向方向に対して垂直な面の面積(開口の面積も含む)S1に対する同一面内における開口の面積S2の比(S2/S1)で表される。なお、この開口面積率は40%以上であればより好ましく、45%以上であれば更に好ましい。また、この開口面積率は80%以下であることが好ましい。この開口面積率が大きすぎると、燃料電極12および酸素電極13の電子伝導性を十分に向上させることができないからである。   This opening area ratio is the ratio of the area S2 of the opening in the same plane to the area (including the area of the opening) S1 of the surface perpendicular to the facing direction of the fuel electrode 12 and the oxygen electrode 13 of the metal film 17 (S2 / S1). The opening area ratio is more preferably 40% or more, and further preferably 45% or more. Moreover, it is preferable that this opening area ratio is 80% or less. This is because if the opening area ratio is too large, the electron conductivity of the fuel electrode 12 and the oxygen electrode 13 cannot be sufficiently improved.

金属膜17は、硫酸以上の強酸である電解質膜11に接するので、電解質膜11,燃料電極12および酸素電極13と反応しない貴金属元素を含んで構成されることが好ましい。例えば、白金, 金(Au),銀(Ag),パラジウム(Pd),イリジウム(Ir)およびルテニウム(Ru)からなる群のうちの少なくとも1種を含むように構成されることが好ましく、これらのうちの少なくとも1種により構成されればより好ましい。中でも白金または金が特に好ましい。金属膜17の厚みは、0.10μm以上10μm以下であることが好ましい。0.10μmより薄いと、燃料電極12および酸素電極13の電子伝導性を十分に向上させることができず、10μmよりも厚いと、金属膜17はイオン伝導性が小さいので、燃料電極12で発生したプロトンが電解質膜11に到達するのが困難となり、燃料電池としての特性が低下してしまうからである。   Since the metal film 17 is in contact with the electrolyte film 11 that is a strong acid of sulfuric acid or more, it is preferable that the metal film 17 includes a noble metal element that does not react with the electrolyte film 11, the fuel electrode 12, and the oxygen electrode 13. For example, it is preferably configured to include at least one member selected from the group consisting of platinum, gold (Au), silver (Ag), palladium (Pd), iridium (Ir), and ruthenium (Ru). More preferably, it is composed of at least one of them. Of these, platinum or gold is particularly preferable. The thickness of the metal film 17 is preferably 0.10 μm or more and 10 μm or less. If the thickness is smaller than 0.10 μm, the electron conductivity of the fuel electrode 12 and the oxygen electrode 13 cannot be sufficiently improved. If the thickness is larger than 10 μm, the metal film 17 has a low ionic conductivity, and is generated at the fuel electrode 12. This is because it becomes difficult for the protons to reach the electrolyte membrane 11 and the characteristics of the fuel cell deteriorate.

この燃料電池は、例えば、次のようにして製造することができる。   This fuel cell can be manufactured, for example, as follows.

まず、上述した材料よりなる電解質膜11,燃料電極12および酸素電極13を用意し、燃料電極12および酸素電極13の触媒層の表面に、蒸着法,スパッタ法あるいは化学還元法などにより、例えば上述した厚みおよび材料よりなる金属膜17を形成する。これにより、金属膜17には燃料電極12および酸素電極13の触媒層の凹凸に追随して開口17Aが形成され、その開口面積率は25%以上となる。   First, the electrolyte membrane 11, the fuel electrode 12, and the oxygen electrode 13 made of the above-described materials are prepared, and the above-described materials are deposited on the surfaces of the catalyst layers of the fuel electrode 12 and the oxygen electrode 13 by vapor deposition, sputtering, chemical reduction, or the like. A metal film 17 made of the thickness and material is formed. Thereby, an opening 17A is formed in the metal film 17 following the irregularities of the catalyst layer of the fuel electrode 12 and the oxygen electrode 13, and the opening area ratio is 25% or more.

次に、金属膜17を形成した燃料電極12および酸素電極13と、電解質膜11とを、金属膜17の側を電解質膜11の側として積層し、例えばホットプレス法により接合する。続いて、積層した電解質膜11,燃料電極12および酸素電極13を外装部材14の内部に収容する。これにより図1に示した燃料電池が完成する。   Next, the fuel electrode 12 and the oxygen electrode 13 on which the metal film 17 is formed, and the electrolyte film 11 are laminated with the metal film 17 side as the electrolyte film 11 side, and are joined by, for example, hot pressing. Subsequently, the laminated electrolyte membrane 11, fuel electrode 12, and oxygen electrode 13 are accommodated in the exterior member 14. Thereby, the fuel cell shown in FIG. 1 is completed.

なお、金属膜17は、燃料電極12および酸素電極13の表面に形成するのではなく、電解質膜11の表面に蒸着法,スパッタ法あるいは化学還元法などにより成膜したのち、開口を形成して開口面積率を25%以上とするようにしてもよい。この方法においては、表面の粗い膜と接触させることなどにより電解質膜11の表面粗さを大きくしたのち、その上に蒸着法,スパッタ法あるいは化学還元法などにより成膜し、開口面積率を25%以上とするようにしてもよい。但し、燃料電極12および酸素電極13の表面に形成するようにすれば、少ない製造工程で容易に良好な金属膜17を形成することができるので好ましい。   The metal film 17 is not formed on the surfaces of the fuel electrode 12 and the oxygen electrode 13, but is formed on the surface of the electrolyte film 11 by vapor deposition, sputtering, chemical reduction, or the like, and then an opening is formed. The opening area ratio may be 25% or more. In this method, after the surface roughness of the electrolyte membrane 11 is increased by bringing it into contact with a rough surface film or the like, a film is formed thereon by vapor deposition, sputtering, chemical reduction, or the like, and the opening area ratio is 25. % Or more. However, it is preferable to form them on the surfaces of the fuel electrode 12 and the oxygen electrode 13 because a good metal film 17 can be easily formed with a small number of manufacturing steps.

この燃料電池では、燃料電極12に燃料が供給され、反応によりプロトンと電子とを生成する。プロトンは電解質膜11を通って酸素電極13に移動し、電子および酸素と反応して水を生成する。その際、電解質膜11と燃料電極12との間、および電解質膜11と酸素電極13との間におけるプロトンの移動は、主として金属膜17の開口17Aを介して行われ、燃料電極12および酸素電極13における電子の移動は、主として金属膜17を介して行われる。よって、触媒効率が向上する。   In this fuel cell, fuel is supplied to the fuel electrode 12, and protons and electrons are generated by the reaction. Protons move to the oxygen electrode 13 through the electrolyte membrane 11 and react with electrons and oxygen to generate water. At that time, protons move between the electrolyte membrane 11 and the fuel electrode 12 and between the electrolyte membrane 11 and the oxygen electrode 13 mainly through the opening 17A of the metal membrane 17, and the fuel electrode 12 and the oxygen electrode. The movement of electrons in 13 is mainly performed through the metal film 17. Therefore, the catalyst efficiency is improved.

このように本実施の形態によれば、燃料電極12の電解質膜11の側、および酸素電極13の電解質膜11の側に、開口面積率が25%以上の開口17Aを有する金属膜17を設けるようにしたので、燃料電極12および酸素電極13と電解質膜11との接触面積を確保しつつ、燃料電極12および酸素電極13の電子伝導性を向上させることができる。よって、燃料電極12および酸素電極13の触媒効率を高めることができ、出力を向上させることができる。   Thus, according to the present embodiment, the metal film 17 having the opening 17A having an opening area ratio of 25% or more is provided on the electrolyte membrane 11 side of the fuel electrode 12 and the electrolyte membrane 11 side of the oxygen electrode 13. Since it did in this way, the electronic conductivity of the fuel electrode 12 and the oxygen electrode 13 can be improved, ensuring the contact area of the fuel electrode 12 and the oxygen electrode 13, and the electrolyte membrane 11. FIG. Therefore, the catalyst efficiency of the fuel electrode 12 and the oxygen electrode 13 can be increased, and the output can be improved.

特に、金属膜17を白金, 金,銀,パラジウム,イリジウムおよびルテニウムからなる群のうちの少なくとも1種を含むようにすれば、さらにはこれらのうちの少なくとも1種により構成するようにすれば、中でも白金または金により構成するようにすれば、金属膜17の反応を抑制することができ、より高い効果を得ることができる。   In particular, if the metal film 17 includes at least one of the group consisting of platinum, gold, silver, palladium, iridium, and ruthenium, and further includes at least one of these, Above all, if it is made of platinum or gold, the reaction of the metal film 17 can be suppressed, and a higher effect can be obtained.

また、金属膜17の厚みを0.10μm以上10μm以下の範囲内とすれば、電子伝導性およびイオン伝導性をより高めることができ、より高い効果を得ることができる。   Moreover, if the thickness of the metal film 17 is in the range of 0.10 μm or more and 10 μm or less, the electron conductivity and the ion conductivity can be further increased, and a higher effect can be obtained.

更に、本発明の具体的な実施例について説明する。なお、以下の実施例では、図1と同様の構成を有する燃料電池を作製し、特性を評価した。よって、以下の実施例においても、図1を参照し、同一の符号を用いて説明する。   Furthermore, specific examples of the present invention will be described. In the following examples, a fuel cell having the same configuration as that shown in FIG. 1 was produced and the characteristics were evaluated. Therefore, the following embodiments will be described using the same reference numerals with reference to FIG.

(実施例1〜8)
まず、カーボンの担持体に白金の触媒を20質量%担持させたもの(エレクトロケミカル社製)を市販のナフィオン溶液(フルウチ化学社製;5wt%)と混合し、カーボンぺーパー(エレクトロケミカル社製)に塗布し、燃料電極12および酸素電極13を作製した。次いで、燃料電極12および酸素電極13の表面に、蒸着法により、白金よりなる金属膜17を形成した。蒸着は0.5φの白金線に電流を赤熱するまで通電し、線が切れるまで行った。その際、金属膜17の厚みを実施例1〜8で電流値および蒸着時間を変えることにより変化させ、実施例1では0.05μm、実施例2では0.1μm、実施例3では0.2μm、実施例4では0.3μm、実施例5では1.0μm、実施例6では5.0μm、実施例7では10.0μm、実施例8では15μmとした。なお、金属膜17の厚みは、SEM(Scanning Electron Microscope;走査型電子顕微鏡)により目視観察した。SEMには日立S−8000(日立株式会社製)を使用した。膜厚の誤差は±0.01μmである。
(Examples 1-8)
First, 20% by mass of a platinum catalyst supported on a carbon support (manufactured by Electrochemical Co., Ltd.) is mixed with a commercially available Nafion solution (manufactured by Furuuchi Chemical Co., Ltd .; 5 wt%), and carbon paper (manufactured by Electrochemical Co., Ltd.) is mixed. The fuel electrode 12 and the oxygen electrode 13 were produced. Next, a metal film 17 made of platinum was formed on the surfaces of the fuel electrode 12 and the oxygen electrode 13 by vapor deposition. Vapor deposition was conducted until a 0.5φ platinum wire was heated to red hot current until the wire was cut. At that time, the thickness of the metal film 17 was changed by changing the current value and the deposition time in Examples 1 to 8, 0.05 μm in Example 1, 0.1 μm in Example 2, and 0.2 μm in Example 3. Example 4 was 0.3 μm, Example 5 was 1.0 μm, Example 6 was 5.0 μm, Example 7 was 10.0 μm, and Example 8 was 15 μm. The thickness of the metal film 17 was visually observed with an SEM (Scanning Electron Microscope). Hitachi S-8000 (made by Hitachi, Ltd.) was used for SEM. The error in film thickness is ± 0.01 μm.

得られた実施例1〜8の金属膜17についてSEMにより開口面積率を調べたところ、いずれも45%以上であった。図3に実施例2の金属膜17のSEM写真を代表して示す。また、得られた実施例1〜8の燃料電極12および酸素電極13について、図4に示した4端子法により、金属膜17の側の界面抵抗を測定した。得られた結果を図5および図6に示す。   When the opening area ratio was investigated by SEM about the obtained metal film 17 of Examples 1-8, all were 45% or more. FIG. 3 shows an SEM photograph of the metal film 17 of Example 2 as a representative. Further, for the obtained fuel electrode 12 and oxygen electrode 13 of Examples 1 to 8, the interfacial resistance on the metal film 17 side was measured by the four-terminal method shown in FIG. The obtained results are shown in FIGS.

続いて、電解質膜11にスルホン酸基を有するパーフルオロカーボン重合体の膜を用い、燃料電極12と電解質膜11と酸素電極13とを金属膜17が電解質膜11に接触するようにして積層して、ホットプレス法により一体化し、発電体を作製した。ホットプレス条件は、加圧時間15分、圧力70kgf/cm2 、温度130℃とした。これにより実施例1〜8の燃料電池を得た。 Subsequently, a perfluorocarbon polymer film having a sulfonic acid group is used as the electrolyte film 11, and the fuel electrode 12, the electrolyte film 11, and the oxygen electrode 13 are laminated so that the metal film 17 is in contact with the electrolyte film 11. Then, they were integrated by a hot press method to produce a power generator. The hot press conditions were a pressurization time of 15 minutes, a pressure of 70 kgf / cm 2 , and a temperature of 130 ° C. Thus, fuel cells of Examples 1 to 8 were obtained.

得られた実施例1〜8の燃料電池について、東陽テクニカ株式会社製の評価装置を用いて出力特性の評価を行った。その際、燃料電極12には50ml/minの乾燥水素を供給し、酸素電極13には100ml/minの乾燥空気を供給して、閉回路電圧0.3Vにおける電池出力を測定した。評価時の燃料電池の温度は20℃〜24℃であった。得られた結果を図5および図6に示す。   About the obtained fuel cell of Examples 1-8, output characteristics were evaluated using the evaluation apparatus by Toyo Technica Co., Ltd. At that time, 50 ml / min of dry hydrogen was supplied to the fuel electrode 12 and 100 ml / min of dry air was supplied to the oxygen electrode 13 to measure the battery output at a closed circuit voltage of 0.3V. The temperature of the fuel cell at the time of evaluation was 20 ° C to 24 ° C. The obtained results are shown in FIGS.

また、本実施例に対する比較例1として、金属膜を形成しなかったことを除き、実施例1〜8と同様にして燃料電池を作製した。比較例1についても、実施例1〜8と同様にして、燃料電極および酸素電極の界面抵抗および電池出力を測定した。得られた結果を図5および図6に合わせて示す。   Further, as Comparative Example 1 for this example, a fuel cell was fabricated in the same manner as in Examples 1 to 8, except that no metal film was formed. Also in Comparative Example 1, the interface resistance and the battery output of the fuel electrode and the oxygen electrode were measured in the same manner as in Examples 1-8. The obtained results are shown in FIG. 5 and FIG.

更に、本実施例に対する比較例2として、表面を荒らしていない電解質膜に蒸着により厚み0.1μmの白金よりなる金属膜を形成し、金属膜を形成していない燃料電極および酸素電極と一体化したことを除き、実施例1〜8と同様にして燃料電池を作製した。比較例2の金属膜についても実施例1〜8と同様にして開口面積率を調べたところ、24%と低かった。図7に比較例2の金属膜のSEM写真を示す。また、比較例2の燃料電池についても実施例1〜8と同様にして電池出力を調べたところ、0.3Vにおける電池出力は100mA/cm2 ときわめて低かった。 Furthermore, as Comparative Example 2 for this example, a metal film made of platinum having a thickness of 0.1 μm is formed on an electrolyte film whose surface is not roughened by vapor deposition, and is integrated with a fuel electrode and an oxygen electrode on which no metal film is formed. A fuel cell was fabricated in the same manner as in Examples 1 to 8 except that. When the opening area ratio of the metal film of Comparative Example 2 was examined in the same manner as in Examples 1 to 8, it was as low as 24%. FIG. 7 shows an SEM photograph of the metal film of Comparative Example 2. Further, when the battery output of the fuel cell of Comparative Example 2 was examined in the same manner as in Examples 1 to 8, the battery output at 0.3 V was as extremely low as 100 mA / cm 2 .

以上、実施例1〜8と比較例1との結果から、金属膜17を設けることにより燃料電極12および酸素電極13の界面抵抗を低くすることができると共に、電池出力を向上させることができることが分かった。また、実施例1〜8と比較例2との結果から、金属膜17の開口面積率を25%以上、さらには40%以上、より好ましくは45%以上とするようにすれば、燃料電極12および酸素電極13の界面抵抗を低くしつつ、電池出力を向上させることができることが分かった。更に、燃料電極12および酸素電極13の上に金属膜17を形成するようにすれば、容易に開口面積率を大きくでいることも分かった。   As described above, from the results of Examples 1 to 8 and Comparative Example 1, by providing the metal film 17, the interface resistance between the fuel electrode 12 and the oxygen electrode 13 can be lowered and the battery output can be improved. I understood. From the results of Examples 1 to 8 and Comparative Example 2, the fuel electrode 12 can be obtained by setting the opening area ratio of the metal film 17 to 25% or more, further 40% or more, more preferably 45% or more. It was also found that the battery output can be improved while lowering the interface resistance of the oxygen electrode 13. Further, it has been found that if the metal film 17 is formed on the fuel electrode 12 and the oxygen electrode 13, the opening area ratio can be easily increased.

加えて、実施例1〜8の比較から分かるように、金属膜17の厚みを0.1μmよりも薄くした実施例1では、金属膜17の界面抵抗が高くなってしまい、電池出力も低かった。また、金属膜17の厚みを15μmとした実施例8では、金属膜17の界面抵抗は低くなったものの、電池出力が低かった。すなわち、金属膜17の厚みを1μm以上10μm以下とすれば、金属膜17の界面抵抗を低くすることができると共に、電池出力も向上させることができ、好ましいことが分かった。   In addition, as can be seen from the comparison of Examples 1 to 8, in Example 1 in which the thickness of the metal film 17 was thinner than 0.1 μm, the interface resistance of the metal film 17 was increased, and the battery output was also low. . In Example 8 in which the thickness of the metal film 17 was 15 μm, although the interface resistance of the metal film 17 was low, the battery output was low. That is, it has been found that if the thickness of the metal film 17 is 1 μm or more and 10 μm or less, the interface resistance of the metal film 17 can be lowered and the battery output can be improved, which is preferable.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は、上記実施の形態および実施例に限定されるものではなく、種々変形することができる。例えば、上記実施の形態および実施例では、燃料電極12および酸素電極13の電解質膜11の側に金属膜17を設けるようにしたが、燃料電極12の電解質膜11の側、あるいは酸素電極13の電解質膜11の側のいずれか一方にのみ金属膜17を設けるようにしてもよい。但し、両方に設けた方がより高い効果を得ることができるので好ましい。   The present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the above embodiment and example, the metal film 17 is provided on the fuel electrode 12 and the oxygen electrode 13 on the side of the electrolyte film 11. The metal film 17 may be provided only on one side of the electrolyte film 11 side. However, it is preferable to provide both of them because a higher effect can be obtained.

また、上記実施の形態および実施例では、電解質膜11,燃料電極12および酸素電極13の構成について具体的に説明したが、他の構造あるいは他の材料により構成するようにしてもよい。   Moreover, in the said embodiment and Example, although the structure of the electrolyte membrane 11, the fuel electrode 12, and the oxygen electrode 13 was demonstrated concretely, you may make it comprise with another structure or another material.

更に、上記実施の形態および実施例では、燃料電極12に図示しない燃料供給部から燃料を供給するようにしたが、燃料室を密閉型とし、必要に応じて燃料を供給するようにしてもよい。   Further, in the above-described embodiments and examples, fuel is supplied to the fuel electrode 12 from a fuel supply unit (not shown). However, the fuel chamber may be a sealed type, and fuel may be supplied as necessary. .

加えて、上記実施の形態および実施例では、酸素電極13への空気の供給を自然換気とするようにしたが、ポンプなどを利用して強制的に供給するようにしてもよい。その場合、空気に変えて酸素または酸素を含むガスを供給するようにしてもよい。   In addition, in the above-described embodiments and examples, the supply of air to the oxygen electrode 13 is natural ventilation, but may be forcibly supplied using a pump or the like. In that case, oxygen or a gas containing oxygen may be supplied instead of air.

更にまた、上記実施の形態および実施例では、単セル型の燃料電池について説明したが、本発明は、複数のセルを積層した積層型のものについても適用することができる。   Furthermore, in the above-described embodiments and examples, the single cell type fuel cell has been described. However, the present invention can also be applied to a stacked type in which a plurality of cells are stacked.

本発明の一実施の形態に係る燃料電池の構成を表す断面図である。It is sectional drawing showing the structure of the fuel cell which concerns on one embodiment of this invention. 図1に示した電解質膜と、燃料電極または酸素電極との界面近傍を拡大して表す断面図である。FIG. 2 is an enlarged cross-sectional view illustrating the vicinity of an interface between the electrolyte membrane illustrated in FIG. 1 and a fuel electrode or an oxygen electrode. 本発明の実施例2に係る金属膜の顕微鏡写真である。It is a microscope picture of the metal film which concerns on Example 2 of this invention. 本発明の実施例および比較例において界面抵抗を測定する際に用いた4端子法を表す平面図である。It is a top view showing the 4-terminal method used when measuring interface resistance in the Example and comparative example of this invention. 本発明の実施例および比較例の結果を表す特性図である。It is a characteristic view showing the result of the Example and comparative example of this invention. 本発明の実施例および比較例の結果を表す特性図である。It is a characteristic view showing the result of the Example and comparative example of this invention. 比較例4に係る金属膜の顕微鏡写真である。6 is a micrograph of a metal film according to Comparative Example 4.

符号の説明Explanation of symbols

11…電解質膜、12…燃料電極、13…酸素電極、14…外装部材、14A,14B,14C…流通孔、15…燃料室、16…酸素室、17…金属膜、17A…開口。   DESCRIPTION OF SYMBOLS 11 ... Electrolyte membrane, 12 ... Fuel electrode, 13 ... Oxygen electrode, 14 ... Exterior member, 14A, 14B, 14C ... Flow hole, 15 ... Fuel chamber, 16 ... Oxygen chamber, 17 ... Metal film, 17A ... Opening.

Claims (5)

電解質膜を介して燃料電極と酸素電極とが対向配置された燃料電池であって、
前記燃料電極および前記酸素電極の前記電解質膜の側のうちの少なくとも一方に、貴金属元素を含む金属膜を備え、
この金属膜は開口を有し、前記燃料電極と前記酸素電極との対向方向に対して垂直な面内における開口面積率が25%以上であることを特徴とする燃料電池。
A fuel cell in which a fuel electrode and an oxygen electrode are arranged to face each other through an electrolyte membrane,
A metal film containing a noble metal element is provided on at least one of the fuel electrode and the electrolyte film side of the oxygen electrode,
The metal film has an opening, and an opening area ratio in a plane perpendicular to a facing direction of the fuel electrode and the oxygen electrode is 25% or more.
前記金属膜は、白金(Pt), 金(Au),銀(Ag),パラジウム(Pd),イリジウム(Ir)およびルテニウム(Ru)からなる群のうちの少なくとも1種を含むことを特徴とする請求項1記載の燃料電池。   The metal film includes at least one selected from the group consisting of platinum (Pt), gold (Au), silver (Ag), palladium (Pd), iridium (Ir), and ruthenium (Ru). The fuel cell according to claim 1. 前記金属膜は、白金または金よりなることを特徴とする請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the metal film is made of platinum or gold. 前記金属膜の厚みは0.10μm以上10μm以下であることを特徴とする請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the metal film has a thickness of 0.10 μm to 10 μm. 電解質膜を介して燃料電極と酸素電極とが対向配置された燃料電池の製造方法であって、
燃料電極および酸素電極の少なくとも一方の上に、貴金属元素を含む金属膜を形成する工程を含むことを特徴とする燃料電池の製造方法。
A method of manufacturing a fuel cell in which a fuel electrode and an oxygen electrode are arranged to face each other through an electrolyte membrane,
A method for producing a fuel cell, comprising a step of forming a metal film containing a noble metal element on at least one of a fuel electrode and an oxygen electrode.
JP2003305795A 2003-08-29 2003-08-29 Fuel cell and its manufacturing method Pending JP2005078870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305795A JP2005078870A (en) 2003-08-29 2003-08-29 Fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305795A JP2005078870A (en) 2003-08-29 2003-08-29 Fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005078870A true JP2005078870A (en) 2005-03-24

Family

ID=34409049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305795A Pending JP2005078870A (en) 2003-08-29 2003-08-29 Fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005078870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119344A1 (en) * 2006-03-14 2007-10-25 Tokuyama Corporation Separation membrane for direct liquid fuel cell
JP2008060081A (en) * 2006-08-31 2008-03-13 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, its manufacturing method, and fuel cell system including the same
WO2012099113A1 (en) * 2011-01-17 2012-07-26 住友化学株式会社 Film electrode junction and fuel cell

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258756A (en) * 1992-03-02 1993-10-08 Honda Motor Co Ltd Surface treating method for fuel battery electrolyte film
JPH08148176A (en) * 1994-11-24 1996-06-07 Toyota Motor Corp Reaction layer forming method for fuel cell
JPH09265993A (en) * 1996-03-29 1997-10-07 Mazda Motor Corp Solid polymer type fuel cell
JP2000182628A (en) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd Manufacture of porous electrode for thin film solid electrolyte element
JP2001307751A (en) * 2000-03-22 2001-11-02 Samsung Electronics Co Ltd Manufacturing method for electrode-membrane assembly and fuel cell using the assembly manufacturing by the method
WO2002015303A1 (en) * 2000-08-16 2002-02-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2002216801A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Polymer electrolyte fuel cell and its manufacturing method
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell
JP2002237308A (en) * 2001-02-09 2002-08-23 Sony Corp Gas diffusible electrode and its manufacturing method, as well as electrochemical device
JP2003208908A (en) * 2002-01-10 2003-07-25 Hitachi Cable Ltd Electrolyte film constituting body for fuel cell
JP2005026225A (en) * 2003-07-02 2005-01-27 Samsung Sdi Co Ltd Minutely porous thin film formed of nano-particle, its manufacturing method, and fuel cell adopting it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258756A (en) * 1992-03-02 1993-10-08 Honda Motor Co Ltd Surface treating method for fuel battery electrolyte film
JPH08148176A (en) * 1994-11-24 1996-06-07 Toyota Motor Corp Reaction layer forming method for fuel cell
JPH09265993A (en) * 1996-03-29 1997-10-07 Mazda Motor Corp Solid polymer type fuel cell
JP2000182628A (en) * 1998-12-15 2000-06-30 Matsushita Electric Ind Co Ltd Manufacture of porous electrode for thin film solid electrolyte element
JP2001307751A (en) * 2000-03-22 2001-11-02 Samsung Electronics Co Ltd Manufacturing method for electrode-membrane assembly and fuel cell using the assembly manufacturing by the method
WO2002015303A1 (en) * 2000-08-16 2002-02-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2002216801A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Polymer electrolyte fuel cell and its manufacturing method
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell
JP2002237308A (en) * 2001-02-09 2002-08-23 Sony Corp Gas diffusible electrode and its manufacturing method, as well as electrochemical device
JP2003208908A (en) * 2002-01-10 2003-07-25 Hitachi Cable Ltd Electrolyte film constituting body for fuel cell
JP2005026225A (en) * 2003-07-02 2005-01-27 Samsung Sdi Co Ltd Minutely porous thin film formed of nano-particle, its manufacturing method, and fuel cell adopting it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119344A1 (en) * 2006-03-14 2007-10-25 Tokuyama Corporation Separation membrane for direct liquid fuel cell
JP4719796B2 (en) * 2006-03-14 2011-07-06 株式会社トクヤマ Diaphragm for direct liquid fuel cell
JP2008060081A (en) * 2006-08-31 2008-03-13 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, its manufacturing method, and fuel cell system including the same
WO2012099113A1 (en) * 2011-01-17 2012-07-26 住友化学株式会社 Film electrode junction and fuel cell

Similar Documents

Publication Publication Date Title
JP4565644B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, fuel cell system, and method for manufacturing membrane-electrode assembly
JP2006210349A (en) Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP3357872B2 (en) Fuel cell
JP2014523965A (en) Membrane electrode assembly for electrolyzer
JP4207120B2 (en) Catalytic electrode and electrochemical device
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
JP2006228501A (en) Polymer electrolyte fuel cell
JP2009080967A (en) Membrane electrode assembly and fuel cell
JP2010212127A (en) Membrane electrode assembly, method of manufacturing the same, and polymer electrolyte fuel cell
JP5618485B2 (en) Electrochemical cell operation method
JPH11265721A (en) Fuel cell
JP2004047206A (en) Electrolyte film for fuel cell
JP2005174835A (en) Electrode
JP2020077581A (en) Catalyst layer
JP4407308B2 (en) Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2005078870A (en) Fuel cell and its manufacturing method
JP2006244715A (en) Bipolar membrane and fuel cell using it
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2005174770A (en) Fuel cell
JP2009170175A (en) Membrane electrode structure, and fuel cell
JP2008077956A (en) Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP2005209402A (en) Manufacturing method of membrane-electrode assembly of solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100401