JP3932180B2 - ティーチング方法、電子基板検査方法、および電子基板検査装置 - Google Patents

ティーチング方法、電子基板検査方法、および電子基板検査装置 Download PDF

Info

Publication number
JP3932180B2
JP3932180B2 JP2002194140A JP2002194140A JP3932180B2 JP 3932180 B2 JP3932180 B2 JP 3932180B2 JP 2002194140 A JP2002194140 A JP 2002194140A JP 2002194140 A JP2002194140 A JP 2002194140A JP 3932180 B2 JP3932180 B2 JP 3932180B2
Authority
JP
Japan
Prior art keywords
shape
dimensional
teaching method
inspection
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002194140A
Other languages
English (en)
Other versions
JP2004037222A (ja
Inventor
昇 東
大介 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002194140A priority Critical patent/JP3932180B2/ja
Publication of JP2004037222A publication Critical patent/JP2004037222A/ja
Application granted granted Critical
Publication of JP3932180B2 publication Critical patent/JP3932180B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品が実装された電子基板を検査する電子基板検査装置に関し、特に電子基板の表面形状データ(3次元データ)を計測することが可能な検査装置において、被検体の形状モデルの設定や検査パラメータの設定を行う教示(ティーチング)方法に関するものである。
【0002】
【従来の技術】
図2は電子基板検査装置が使用される電子基板製造ラインの一例を示す図である。電子基板の製造においては、まずクリームはんだ塗布装置210により、回路パターンが施された回路基板にクリーム半田を塗布する。その後、クリームはんだ検査装置220により、塗布したクリーム半田の位置や塗布量等を検査する。次に、電子部品搭載装置230により、クリーム半田検査を通過した回路基板に対して電子部品を搭載する。その後、電子部品検査装置240により、搭載した電子部品の状態や、あるいは電子部品が搭載されていない部分のクリーム半田の状態を検査する。最後にリフロー装置250により、搭載した電子部品と回路基板をはんだ接合する。そして、実装基板検査装置260により、電子基板の完成状態を検査する。
【0003】
上記、クリームはんだ検査装置220、電子部品検査装置240、実装基板検査装置260を、計測するデータの種類に基づいて2種類に分類すると、CCDカメラやラインセンサ等の各種センサーで計測した2次元情報により検査を行う2次元検査装置と、2次元情報のみならず、さらに三角測量等のセンシングにより被検体の表面形状データ(高さ画像)や、X線CT等の3次元情報により検査を行う3次元検査装置とに分類することができる。
【0004】
さて、実装基板の検査を行う場合、上記2次元検査装置、3次元検査装置にかかわらず、まず、検査個所や検査方法を予め検査装置に設定するティーチングを行い、そして、実際の検査において、設定したティーチングデータに基づいて検査を実行する。
【0005】
図3にクリームはんだ検査装置220における従来のティーチング方法の一例を示す。まず、クリームはんだ検査装置220により計測したデータを2次元画像310としてディスプレイ320に表示する。次に、クリーム半田を塗布する領域として、回路パターンの一部であるランド領域340に対し、マウス330やジョイスティック等のポインティングデバイスやキーボード等を用いて、クリーム半田の形状モデルや検査データを設定する。クリーム半田の形状モデルの設定は、ランド350上に塗布されるクリーム半田のXYサイズ360を画像上で決定し、クリーム半田の高さや体積等をキーボード等の入力装置から入力することにより行なう。また検査データの設定は、表示された画像上でクリーム半田を検索する検査領域370を決定し、該検査領域において、クリーム半田を認識するためのアルゴリズムやその認識パラメータ,および認識したクリーム半田と形状モデルとの許容誤差等の検査判定条件をキーボード等の入力装置を用いて設定することにより行なう。
【0006】
また3次元検査装置においては、ランド350上に塗布されたクリーム半田の高さを決定するために、回路基板の近似平面を決定するための基準領域(381,382,383)を設定する。
【0007】
上記検査データの作成を全ランド領域340に対して行い、これにより作成したデータをティーチングデータとして保存する。そして電子基板製造工程において、実際に検査を実行する際に、予め作成してあるティーチングデータを読み出し、ティーチングデータに基づいてクリーム半田の検査を行う。
【0008】
上記においては、クリーム半田検査装置について記述したが、電子部品検査装置,実装基板検査装置においても同様であり、予め決定したティーチングデータに基づいて検査を実行する。
【0009】
【発明が解決しようとする課題】
従来のティーチング方法では、3次元形状を測定することが可能な3次元検査装置においても、3次元データを2次元画像データとしてディスプレイ上に表示し、この2次元画像上でティーチングを行っている(2次元ティーチング)。2次元ティーチングは、2次元画像上でティーチングを行うため、その画像上での表現空間が2次元に限定されてしまうため、3次元情報を有するにもかかわらず立体的な表示を行うことができない。
【0010】
例えば図3において、クリーム半田の形状モデルの表示において、縦、横のサイズは画像上にグラフィック表示することが可能で、エリア360のように視覚的な確認が可能であるが、高さデータの確認は、テキストデータとして表示される数値でのみ可能で、計測データとの視覚的な比較確認を行うことができない。
【0011】
また、検査範囲370内において、塗布されたクリーム半田の状態を検査するためには、計測データからクリーム半田の形状を認識する必要がある。例えば,クリーム半田を認識するためのアルゴリズムとして、指定した高さ閾値より高い値を示す画素を被検体であるクリーム半田領域として決定するアルゴリズムを検査データとして設定した場合、設定する高さ閾値はキーボードより数値データとして入力されており、その入力の結果の確認は、数値データをテキストデータとして表示するか、あるいは設定した高さ閾値を用いて計測した高さ画像を2値化処理し、その2値化処理結果を2次元画像として表示して、確認を行うのみで、閾値が真に適切に設定されているのか、あとどれくらい調整可能なのかを視覚的に判断することができない。
【0012】
この発明は、上記のような問題点に鑑みてなされたもので、設定したティーチングデータの妥当性を、3次元空間にて視覚的に確認できるティーチング方法、電子基板検査方法、および電子基板検査装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記の課題を解決するために、本発明(請求項1)にかかるティーチング方法は、測定対象の3次元形状を測定することが可能な形状測定手段により測定対象を計測し、該計測した3次元形状データに基づいてディスプレイ上に測定対象の形状画像を表示する計測表示ステップと、上記計測表示ステップで表示された測定対象の形状画像を用いて、測定対象中の検査対象である被検体を検査するために用いる検査情報を設定するティーチングステップと、上記計測表示ステップにおいて計測,表示した3次元形状データと、上記ティーチングステップにおいて設定した検査情報のうち、少なくとも1つ以上のデータを3次元画像表示する3次元画像表示ステップとを含むものである。
【0014】
また、本発明(請求項2)は、請求項1記載のティーチング方法において、上記表示ステップにおいて、計測した3次元形状データに基づいて上記測定対象の3次元画像を表示するものである。
【0015】
また、本発明(請求項3)は、請求項1または請求項2に記載のティーチング方法において、上記被検体を検査するために用いる検査情報として、被検体について所望される形状を示すデータである形状モデルを設定するものである。
【0016】
また、本発明(請求項4)は、請求項1ないし請求項3のいずれかに記載のティーチング方法において、上記3次元画像表示ステップにおいて、少なくとも1つ以上のデータを色付けして表示するものである。
【0017】
また、本発明(請求項5)は、請求項4記載のティーチング方法において、3次元形状の高さの値に対応して、上記色付け表示を行なうものである。
【0018】
また、本発明(請求項6)は、請求項5記載のティーチング方法において、3次元形状の高さの値として、計測した3次元形状の高さの値を、特定個所の高さの値からの相対高さに変換し、相対高さの値に対応して、上記色付け表示を行なうものである。
【0019】
また、本発明(請求項7)は、請求項6記載のティーチング方法において、上記測定対象が表面に導体パターンを有する電子基板であり、上記計測した3次元形状の特定個所の高さからの相対高さに変換する処理において、電子基板上における検査領域の周辺に存在する上記導体パターン面の高さを、上記特定個所の高さとして用いるものである。
【0020】
また、本発明(請求項8)は、請求項3記載のティーチング方法において、上記計測した3次元形状データと設定した上記形状モデルとの差領域を決定し、差領域を3次元画像表示するものである。
【0021】
また、本発明(請求項9)は、請求項8記載のティーチング方法において、上記差領域を色付けして3次元画像表示するものである。
【0022】
また、本発明(請求項10)は、請求項8記載のティーチング方法において、上記形状モデルに対し、上記計測した3次元形状データが不足している領域を3次元画像表示するものである。
【0023】
また、本発明(請求項11)は、請求項8記載のティーチング方法において、上記形状モデルに対し、上記計測した3次元形状データが余剰である領域を3次元画像表示するものである。
【0024】
また、本発明(請求項12)は、請求項1記載のティーチング方法において、計測した3次元形状データに対して被検体の認識処理を行い、認識処理により決定した被検体領域と、それ以外の領域とを異なる色で色付けして表示するものである。
【0025】
また、本発明(請求項13)は、請求項4記載のティーチング方法において、被検体の部品種別に応じて、上記色付け表示を行なうものである。
【0026】
また、本発明(請求項14)にかかる電子基板検査方法は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査方法において、上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示するものである。
【0027】
また、本発明(請求項15)は、請求項14記載の電子基板検査方法において、検査結果に基づいて、良好個所と不良個所を色付け表示するものである。
【0028】
また、本発明(請求項16)にかかる電子基板検査方法は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、請求項1ないし請求項13のいずれかに記載のティーチング方法を用いて予め設定される検査情報とを用いて電子基板の検査を行なうものである。
【0029】
また、本発明(請求項17)にかかる電子基板検査装置は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査装置において、上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示するものである。
【0030】
【発明の実施の形態】
(実施の形態1)
図4は、本発明の実施の形態1による3次元ティーチング方法において用いる、被検体の3次元形状(表面形状)データの計測が可能な外観検査装置の一例を示す図である。この外観検査装置は、三角測量の原理に基づいて被検体の表面形状データを計測するものである。本外観検査装置では、レーザーユニット410からレーザー光420を被検体430に照射し、被検体430からの反射光をPSD(Position Sensitive Detector)センサ440で受光する。三角測量の原理から、レーザーの照射座標、被検体上の計測座標(サンプリング座標)、センサにおける受光座標により、サンプリング点における高さが決定される。例えば、被検体430が存在する場合、レーザー光420はポイント450で反射し、集光レンズ470を通り、その反射光451はPSD440のポイント452へ到達する。これに対し、被検体430が存在しない場合、照射されたレーザー光420はポイント460で反射し、その反射光461は集光レンズ470を通り、PSD440のポイント462へ到達する。このように、サンプリング座標における高さ(Z)の違いにより、PSDセンサ440が受光する位置が異なる。PSDセンサ440は受光位置に応じた2つの信号を出力するセンサであり、この2つの信号を(式1)に基づいて計算することによりサンプリング座標における高さを決定することができる。また図4においては、簡略化のため投光光学系および受光光学系の記載を省略しているが、これらが組み込まれた場合においても、計測原理は同様である。
【0031】
(式1)
H(x,y)=Ia(x,y) /(Ia(x,y)+Ib(x,y))
H(x,y):任意座標(x,y)における表面形状データ
Ia(x,y):任意座標(x,y)におけるPSDの出力信号値1
Ib(x,y):任意座標(x,y)におけるPSDの出力信号値2
本外観検査装置において、任意領域の表面形状データを計測するためには、本制御系を固定したまま被検体をXY平面内で平行移動させて信号計測を繰り返し行うか、あるいは被検体を固定しサンプリング座標点を平行移動させることによって、2次元領域における表面形状データを計測することが可能となる。このとき計測した表面形状データは、2次元配列に格納され、その画素値が、各サンプリング点における高さを表す。以下、この高さを表す表面形状データを、高さ画像と記述する。
【0032】
また本外観検査装置においては、PSDセンサから出力される2つの信号データを足し合わせることにより、受光光量を反映した輝度画像を生成することができる。これを(式2)に示す。
【0033】
(式2)
B(x,y)=Ia(x,y)+Ib(x,y)
B(x,y):検査面座標(x,y)における輝度値
Ia(x,y):検査面座標(x,y)におけるPSDの出力信号値1
Ib(x,y):検査面座標(x,y)におけるPSDの出力信号値2
図1は、本発明の実施の形態1による3次元ティーチング方法の概略フローを示す図である。まず、ステップS110において、上記図4を用いて説明した外観検査装置により、高さ画像や輝度画像を計測する。ステップS120において、計測した高さ画像や輝度画像の2次元画像をディスプレイに表示する。ステップS130において、高さ画像から3次元画像を生成し、3次元画像をディスプレイ上に表示する。ステップS140において、表示した2次元画像および3次元画像に対して、被検体の形状モデルデータの入力(ステップS141)や検査データの入力(ステップS142)を行う。ステップS150において、入力されたデータが2次元グラフィック上で表示可能なデータ、例えば形状モデルのXYデータなどであれば、2次元画像上において2次元グラフィック表示を行う。ステップS160において、入力されたデータが3次元グラフィック上で表示可能なデータ、例えば形状モデルのXYZサイズや、認識閾値などであれば、3次元画像上において3次元グラフィックを合成表示する。ステップS170において、ティーチングの終了まで、ステップS140からステップS160までを繰り返し行う制御を行う。
【0034】
以下本実施の形態による3次元ティーチング方法の詳細を説明する。
図5は、高さ画像を3次元画像として表示する一例を示す図である。まず、図5(a)に示す2次元高さ画像510から図5(c)に示す立体表示データ530を生成する。立体表示データ530は、図5(b)に示すような3次元座標系における三角形の集合520である。その変換方法は、高さ画像510において、隣り合う画素3点を決定し、決定した画素を結んだ三角形の集合520を生成する。そして三角形の集合520において、高さ画像のサンプリング座標(X、Y)を各三角形の各頂点のX,Y座標として割り当て、高さ画像の画素値を各三角形の各頂点のZ座標として割り当てることにより、立体表示データ530を生成する。次に、生成した立体表示データ530をOPEN−GL等の3次元コンピュータグラフィック処理により、投影処理,陰面消去処理,シェーディング処理等を行い、図5(d)に示す3次元画像540を生成する。この3次元画像540の生成処理において、3角形の頂点座標以外のデータが必要な場合には、そのデータを生成し、3次元グラフィック処理により3次元画像を生成する。例えばOPEN−GLでは3角形の法線ベクトルが必要となるため、(式3)により法線ベクトルを算出し、3次元画像の生成を行う。
【0035】
(式3)
V=(p1−p2)×(p3−p2)
V:法線ベクトル
p1,p2,p3:三角形の各頂点座標(X,Y,Z)
×:外積
また3次元画像の表示方法には、三角形の輪郭線のみを表示するワイヤーフレーム表示,3角形の内部を面の傾きに対応して塗りつぶし表示する各種シェーディング表示,高さ画像や輝度画像の2次元画像を立体表示データに張り合わせて表示処理するテクスチャマッピング表示等の様々な方法があり、これらの方法の何れかを用いて処理を行い3次元画像を表示する。テクスチャマッピング表示においては,他の計測器で撮像した画像を適用してもよく、この場合は前処理として、特定の座標点を基準に、立体形状データの元データである高さ画像と、張り合わせ画像におけるXY座標の位置合わせ処理を行なうことにより、高精度なテクスチャマッピング表示を行うことが可能となる。
【0036】
次に図6において、検査対象の形状モデルを3次元表示する一例について説明する。この例では、2次元ティーチングを行った結果に基づいて、形状モデルの3次元表示を行なう。3次元表示においては、形状モデルを配置する座標(X,Y,Z)が必要になる。2次元ティーチングにおいて、XY座標は画像上で決定しており、Z座標は、パターン面上に基準点を設定することにより間接的に決定している。Z座標の決定方法を以下に説明する。回路基板の表面は、図6(a)に示すように、絶縁層650上に形成された銅箔の回路パターン620が露出した導電性のあるランド領域670と、絶縁膜660で覆われた領域671,672に分けられる。ランド領域670は、電子部品を回路基板に接合するための領域で、電子基板製造過程においては、このランド領域670上に、電子部品と回路基板を接合するためのクリーム半田610や電子部品が搭載される。従って、形状モデルを配置する高さは、ランド領域の表面(ランド面)とするのが理想的であるが、実際の高さ画像の計測時においては、ランド領域上にクリーム半田610や電子部品等の被検体が搭載され、ランド領域の表面が覆われているため、ランド面の高さを直接計測することができない。また電子基板が薄い板状であるため、その基板は均一な平面でなく波板のように歪を持つため、場所により高さが異なる。このため、ランド面の高さを固定値として決定することはできない。そこで、図6(b)に示すように、ランド毎に、各ランドの周辺の回路パターン620から、対象ランドを含むような3点(641,642,643)を決定し、この3点を通る平面680をランド平面として決定する。そして、ランド平面680の高さを被検体の形状モデルを配置する高さ(高さ原点(ゼロ))として設定する。3点を通る平面の計算式を(式4)に示す。
【0037】
(式4)
V・(P−VP)=0
P: 平面上の任意の座標(x,y,z)
VP: 3点のうちの1つの点(x、y、z)
V: 3点を通る平面の法線ベクトル(式3参照)
・: 内積
またこのとき、ランド平面680の高さは回路パターン620の表面の高さよりも絶縁膜660の厚さ分だけ高く設定されるため、ランド平面を、絶縁膜660の厚さ分、法線ベクトルを基準に平行移動させた平面位置をランド平面として設定してもよい。また,基準点を3点設定できないケースでは、基準点の1点あるいは2点からランド平面を決定する。1点の場合は、例えばその1点を通り、機械の絶対座標系における水平面をランド平面として決定する。2点の場合は、例えばランド重心点を決定し、そのランド重心点における高さを2点の線形補間により決定し、ランド重心点を通り、機械の絶対座標系における水平面をランド平面として決定する。そして決定したXYZ座標に形状モデルを配置し,OPEN−GL等の3次元コンピュータグラフィック処理により、投影処理,陰面消去処理,シェーディング処理等を行うことにより,3次元画像を生成する。
【0038】
図7は、高さ画像から生成した立体表示データに基づく3次元画像710と形状モデルの3次元画像720を合成表示する一例を示す図である。図7に示す例では、高さ画像から生成した立体表示データに基づく3次元画像と被検体の形状モデルの3次元画像を同一空間に配置し、OPEN−GL等の3次元コンピュータグラフィック処理により、投影処理,陰面消去処理,シェーディング処理等を行い,3次元合成画像を生成する。このとき、立体表示データの3次元画像と形状モデルの3次元画像に異なる色属性を与えて3次元合成表示を行うことにより、それぞれを異なる色で3次元合成表示を行い、これにより立体表示モデルと形状モデルを視覚的に容易に区別できるようにすることもできる。また、形状モデルにおいては、検査対象種別(部品種別)に応じて、異なる色属性を与えて3次元合成表示を行うことにより、部品種別毎に対応した色付けが行われ、部品種別の判断を視覚的に行うこともできる。これにより立体表示データと被検体の形状モデルを3次元空間で視覚的に比較することが可能となり、またティーチングにおいて設定した形状モデルが実際に計測した被検体の表面形状と合致しているか、またそれがどれくらい合致しているのかを容易に確認することができる。上記表示結果において、形状モデルが実測値と比較して異なる場合、形状モデルの配置位置やサイズをキーボードやマウス等を用いて変更する操作を行い、変更後のデータに基づいて再度3次元合成表示を行う。上記処理を繰り返し、目的のモデルデータを視覚的に確認しながら生成する。そして最終的に決定した被検体の形状モデルや形状モデルの配置位置をティーチングデータとして登録する。上記3次元合成表示においては、立体表示データの3次元画像あるいは形状モデルの3次元画像に透過属性を与えて3次元合成表示を行ってもよい。
【0039】
また、上記の例では、2次元ティーチングで設定したデータに基づいて形状モデルを生成する例を示したが、3次元画像上において直接形状モデルを生成してもよい。この場合、計測した表面形状データの3次元画像上において、マウスやキーボードにより形状モデルを設定する座標を指定する。そして指定した座標、表示している3次元画像の回転角度や視点角度から、3次元画像上におけるXY座標を決定する。そして、決定したXY座標における高さの値を高さ画像から決定し、決定した座標において、予め設定した形状モデルを配置する。そして配置した形状モデルをマウスやキーボードを用いて修正し、目的とする形状モデルを生成する。予め設定する形状モデルとしては、クリーム半田であれば立方体、電子部品であれば、立方体や予め登録している形状データを用いればよい。またこのケースでは、銅箔面上の高さ基準領域が設定されていないが、上記3次元画像表で、高さ基準領域を生成し、この高さ基準領域から、生成した形状データの高さを補正してもよい。
【0040】
図8は、被検体の認識パラメータを設定する一例を示す図である。図8では、被検体の認識アルゴリズムにおいて、指定した高さ閾値よりも高い画素領域を被検体領域として決定する認識アルゴリズムにおいて、そのパラメータとなる高さ閾値の決定を3次元合成表示上において視覚的に行う例を示している。まず、前記図6において示したランド平面の決定方法と同様に、計測画像上における回路パターン800上の3点(810,820,830)を決定し、この3点を通る平面をランド平面840として決定する。このランド平面840と平行で、ランド平面を高さ原点(ゼロ)とし、ランド平面840の法線ベクトルを移動方向とする高さ閾値平面850を定義する。この高さ閾値平面850を、ユーザーが入力した高さ閾値に基づいて移動させる。この高さ閾値平面850の3次元画像と立体表示データ860の3次元画像を合成表示する。3次元合成表示においては、立体表示データあるいは高さ閾値平面に透過属性を与え、3次元合成表示を行ってもよい。そして、ユーザーの入力に従い高さ閾値平面850を移動させる処理、立体表示データと高さ閾値平面との3次元合成表示を繰り返し行い、視覚的に高さ閾値平面850の位置を決定し、この高さ閾値平面位置を被検体の認識閾値として決定する。そして決定した閾値をティーチングデータとして決定する。
【0041】
図9は、上記図8に示すように立体表示データの3次元画像と高さ閾値平面の3次元画像を合成表示する代わりに、高さ閾値平面920を境に、その上下の高さの領域において異なる色により立体表示データの3次元画像表示を行う一例を示す図である。高さ閾値平面920の表示、非表示をユーザーの指定によって切り替えるようにしてもよい。3次元画像表示においては、立体表示データの構成要素単位(ここでは、高さ画像から生成した三角形モデル)毎に色属性を設定する。高さ閾値平面位置950を境に色分けするために、高さ閾値平面920と交差する三角形モデルを分割する。ここでは三角形モデル960を例に説明する。高さ閾値平面920(高さ閾値平面位置950)により、三角形モデル960を、平面モデル970と平面モデル971に分割する。分割においては、閾値平面920と、三角モデル960における各辺との交点計算を行い、交点(980,981)で分割を行う。(式5)に平面と直線の交点計算式を示す。
【0042】
(式5)
R=L*(−(V・(LP−VP))/(V・L))+LP
R:求める切断面と直線の交点(x,y,z)
L:直線の単位ベクトル(x,y,z)
V:切断面の法線ベクトル(x,y,z)
LP:ライン上における既知の1点(x、y、z)
VP:切断面上における既知の1点(x,y,z)
次に、立体表示データにおける各面が切断面より上に存在するか下に存在するかを判定し、夫々の位置関係に応じて色属性を割り当て、3次元画像表示処理を行うことにより、閾値平面920を境に色分けを行う。(式6)に平面の上下関係を判定する計算式を示す。
【0043】
(式6)
H=(V・S)/|V|
H:切断面と任意点との距離
V:切断面の法線ベクトル(x,y,z)
S:任意点と切断面上の1点とを結ぶベクトル(x,y,z)
(式6)においては、高さ閾値平面の法線ベクトル、高さ閾値平面上の1点、立体表示データの1点を入力とし、高さ閾値平面920と立体表示データの頂点座標との距離を決定し、その符号により上下の位置関係を判定する。表示結果を990に示す。また、この高さ閾値平面を複数設定し、それぞれを異なった高さに設定し、各々に対して、異なった色属性を割り当て、3次元表示を行い、高さに応じた色付け表示を行ってもよい。
【0044】
また、立体表示データの色付け表示においては、立体表示データの各頂点の高さ値(Z)毎に色を設定することにより色付け表示を行うことも可能となる。またこの色付け表示においては、立体表示データの高さの計測値を用いているが、高さの値を検査領域の周辺の3点から生成したランド平面を基準に相対値に変換し、この相対値に応じて色属性を割り当てて3次元表示をおこなってもよい。またこの時、グラデーション処理を施してもよい。
【0045】
図10は、表面形状データと形状モデルの差分領域を表示する一例を示す図である。まず、検査領域において検査対象を認識する処理を行う。認識処理は、図8で示した方法を適用する。次に認識した被検体領域と被検体の形状モデルを比較し、例えば認識領域1010と形状モデル1020において、形状モデルの高さより認識領域が高い領域1030を決定し、その領域を余剰領域として決定する。余剰領域を決定する処理としては、立体形状データと形状モデル上面の平面との交点を求め、図8の認識方法と同様に決定する。または高さ画像と形状モデル上面とのサブトラクションにより決定してもよい。そして決定した余剰領域の3次元表示を行う。逆の領域として、モデルデータよりも高さが小さい領域を決定し、立体表示データと形状モデルの差領域を3次元表示する。またXY方向においても、認識領域がモデル領域より溢れている領域(余剰領域)や、不足している領域(不足領域)を決定し3次元表示を行う。3次元表示においては、形状モデルや立体表示データの色と異なる色属性を設定し、色付け表示を行ってもよい。また、余剰領域と不足領域の色属性を異なる色に設定し、3次元表示を行なってもよい。これにより、色の違いによって、正常領域、不足領域、余剰領域を視覚的に判別することが容易とできる。
【0046】
なお、設定されたティーチングデータが適切なものであるか否かの判断は、ティーチングデータを作成した後、実際に検査処理を行い、目的とする結果が得られているかで行い、期待される結果が得られないときには、再度ティーチングデータを修正する。このティーチングデータの修正と検査実行を繰り返し行い、目的とするティーチングデータを作成する。この過程において、期待される結果と異なる結果が現われた際には、その箇所のティーチングデータの3次元画像表示を、良好な結果が得られた箇所のティーチングデータの3次元画像表示と異なる色付けを行って表示するようにすれば、修正すべきティーチングデータを視覚的に容易に認識することができ、作業効率を向上することができる。
【0047】
このように、本実施の形態1によるティーチング方法では、3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測した3次元形状データに基づいてディスプレイ上に電子基板の画像を表示し、表示された電子基板の画像を用いて、電子基板中で検査の対象となる被検体を検査するために用いるティーチングデータを設定するティーチング方法において、ティーチングデータの設定後に、上記計測した3次元形状データと上記設定されたティーチングデータのうち、少なくとも1つ以上のデータを3次元画像表示するようにしたから、これまで2次元表示画像上で数値でのみ確認していたデータを、3次元表示画像上で視覚的に比較確認することが可能となり、設計値の妥当性を容易に確認でき、ティーチングデータの視覚的な設計を可能とできる。
【0048】
【発明の効果】
以上のように、本発明(請求項1)によれば、測定対象の3次元形状を測定することが可能な形状測定手段により測定対象を計測し、該計測した3次元形状データに基づいてディスプレイ上に測定対象の形状画像を表示する計測表示ステップと、上記計測表示ステップで表示された測定対象の形状画像を用いて、測定対象中の検査対象である被検体を検査するために用いる検査情報を設定するティーチングステップと、上記計測表示ステップにおいて計測,表示した3次元形状データと、上記ティーチングステップにおいて設定した検査情報のうち、少なくとも1つ以上のデータを3次元画像表示する3次元画像表示ステップとを含むものとしたから、これまで数値でのみ確認していたデータを、画像上で視覚的に比較確認することが可能となり、設計値の妥当性を容易に確認でき、ティーチングデータの視覚的な設計を可能とできる効果がある。
【0049】
また、本発明(請求項2)によれば、請求項1記載のティーチング方法において、上記表示ステップにおいて、計測した3次元形状データに基づいて上記測定対象の3次元画像を表示するものとしたから、入力データの妥当性を確認しながら設計することができ、ティーチングデータの視覚的な設計や修正を対話的に可能とできる効果がある。
【0050】
また、本発明(請求項4)は、請求項1ないし請求項3のいずれかに記載のティーチング方法において、上記3次元画像表示ステップにおいて、少なくとも1つ以上のデータを色付けして表示するものとしたから、表面形状データ(3次元形状データ)とティーチングデータの区別を容易にできる効果がある。
【0051】
また、本発明(請求項5)は、請求項4記載のティーチング方法において、3次元形状の高さの値に対応して、上記色付け表示を行なうものとしたから、被検体の高さを、立体的な3次元画像と色情報により容易に認識することを可能とできる効果がある。
【0052】
また、本発明(請求項6)は、請求項5記載のティーチング方法において、3次元形状の高さの値として、計測した3次元形状の高さの値を、特定個所の高さの値からの相対高さに変換し、相対高さの値に対応して、上記色付け表示を行なうものとしたから、基板の状態に影響を受けることなく、被検体の高さを、立体的な3次元画像と色情報から容易に認識することを可能とできる効果がある。
【0053】
また、本発明(請求項7)は、請求項6記載のティーチング方法において、上記測定対象が表面に導体パターンを有する電子基板であり、上記計測した3次元形状の特定個所の高さからの相対高さに変換する処理において、電子基板上における検査領域の周辺に存在する上記導体パターン面の高さを、上記特定個所の高さとして用いるものとしたから、基板の歪の影響を高精度に除去することにより、被検体の高さを、立体的な3次元画像と色情報により、容易に認識することを可能とできる効果がある。
【0054】
また、本発明(請求項8)は、請求項3記載のティーチング方法において、上記計測した3次元形状データと設定した上記形状モデルとの差領域を決定し、差領域を3次元画像表示するものとしたから、実測値と設計値との誤差を、立体的な3次元画像から視覚的に確認することを可能とできる効果がある。
【0055】
また、本発明(請求項9)は、請求項8記載のティーチング方法において、上記差領域を色付けして3次元画像表示するものとしたから、差領域を、立体的な3次元画像と色情報から容易に識別することを可能とできる効果がある。
【0056】
また、本発明(請求項10)は、請求項8記載のティーチング方法において、上記形状モデルに対し、上記計測した3次元形状データが不足している領域を3次元画像表示するものとしたから、実測値と設計値との誤差において不足領域を、立体的な3次元画像により視覚的に確認することを可能とできる効果がある。
【0057】
また、本発明(請求項11)は、請求項8記載のティーチング方法において、上記形状モデルに対し、上記計測した3次元形状データが余剰である領域を3次元画像表示するものとしたから、実測値と設計値との誤差において余分な領域を視覚的に確認することを可能とできる効果がある。
【0058】
また、本発明(請求項12)は、請求項1記載のティーチング方法において、計測した3次元形状データに対して被検体の認識処理を行い、認識処理により決定した被検体領域と、それ以外の領域とを異なる色で色付けして表示するものとしたから、実測値と設計値との誤差領域を、立体的な3次元画像と色情報により、容易に視覚的に確認することを可能とできる効果がある。
【0059】
また、本発明(請求項13)は、請求項4記載のティーチング方法において、被検体の部品種別に応じて、上記色付け表示を行なうものとしたから、電子部品やクリーム半田等の被検体の種別を色情報により、容易に視覚的に確認することを可能とできる効果がある。
【0060】
また、本発明(請求項14)にかかる電子基板検査方法は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査方法において、上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示するものとしたから、被検体の良、不良を、立体的な3次元情報により、容易に視覚的に確認することを可能とできる効果がある。
【0061】
また、本発明(請求項15)は、請求項14記載の電子基板検査方法において、検査結果に基づいて、良好個所と不良個所を色付け表示するものとしたから、被検体の不良を、立体的な3次元情報と色情報により、容易に視覚的に確認することを可能とできる効果がある。
【0062】
また、本発明(請求項16)にかかる電子基板検査方法は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、請求項1ないし請求項13のいずれかに記載のティーチング方法を用いて予め設定される検査情報とを用いて電子基板の検査を行なうものとしたから、ティーチングデータの視覚的な設計が行える効果がある。
【0063】
また、本発明(請求項17)にかかる電子基板検査装置は、電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査装置において、上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示するものとしたから、被検体の良、不良を、立体的な3次元情報により、容易に視覚的に確認することのできる電子基板検査装置を提供することができる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態によるティーチング方法の概略処理フローを示す図
【図2】本発明の適用の対象となる電子基板検査装置が使用される電子基板製造ラインの一例を示す図
【図3】従来のティーチング方法の一例を示す図
【図4】被検体の3次元形状データの計測が可能な外観検査装置の一例を示す図
【図5】本発明において高さ画像を3次元画像として表示する一例を示す図
【図6】本発明において検査対称(被検体)の形状モデルを3次元画像として表示する一例を示す図
【図7】本発明において高さ画像から生成した立体表示データに基づく3次元画像と形状モデルの3次元画像を合成表示する一例を示す図
【図8】本発明において被検体の認識パラメータを設定する一例を示す図
【図9】本発明においてカラー表示による被検体の認識パラメータを設定する一例を示す図
【図10】本発明において計測値と設計値の誤差(差分)領域を3次元画像により表示する一例を示す図
【符号の説明】
210 クリームはんだ塗布装置
220 クリームはんだ検査装置
230 電子部品搭載装置
240 電子部品検査装置
250 リフロー装置
260 実装基板検査装置
310 2次元画像
320 ディスプレイ
330 マウス
340 ランド領域
350 ランド
360 XYサイズ
370 検査領域
381,382,383 基準領域
410 レーザーユニット
420 レーザー光
430 被検体
440 PSDセンサ
451,461 反射光
470 集光レンズ
510 2次元高さ画像
520 三角形の集合
530 立体表示データ
540 3次元画像
610 クリーム半田
620 回路パターン
650 絶縁層
660 絶縁膜
670 ランド領域
680 ランド平面
710 立体表示データに基づく3次元画像
720 形状モデルの3次元画像
800 回路パターン
810,820,830 回路パターン上の点
840 ランド平面
850 高さ閾値平面
860 立体表示データ
910 立体表示データ
920 高さ閾値平面
950 高さ閾値平面位置
960 三角形モデル
970,971 平面モデル
980,981 交点

Claims (17)

  1. 測定対象の3次元形状を測定することが可能な形状測定手段により測定対象を計測し、該計測した3次元形状データに基づいてディスプレイ上に測定対象の形状画像を表示する計測表示ステップと、
    上記計測表示ステップで表示された測定対象の形状画像を用いて、測定対象中の検査対象である被検体を検査するために用いる検査情報を設定するティーチングステップと、
    上記計測表示ステップにおいて計測,表示した3次元形状データと、上記ティーチングステップにおいて設定した検査情報のうち、少なくとも1つ以上のデータを3次元画像表示する3次元画像表示ステップとを含む、
    ことを特徴とするティーチング方法。
  2. 請求項1記載のティーチング方法において、
    上記表示ステップにおいて、計測した3次元形状データに基づいて上記測定対象の3次元画像を表示する、
    ことを特徴とするティーチング方法。
  3. 請求項1または請求項2に記載のティーチング方法において、
    上記被検体を検査するために用いる検査情報として、被検体について所望される形状を示すデータである形状モデルを設定する、
    ことを特徴とするティーチング方法。
  4. 請求項1ないし請求項3のいずれかに記載のティーチング方法において、
    上記3次元画像表示ステップにおいて、少なくとも1つ以上のデータを色付けして表示する、
    ことを特徴とするティーチング方法。
  5. 請求項4記載のティーチング方法において、
    3次元形状の高さの値に対応して、上記色付け表示を行う、
    ことを特徴とするティーチング方法。
  6. 請求項5記載のティーチング方法において、
    3次元形状の高さの値として、計測した3次元形状の高さの値を、特定個所の高さの値からの相対高さに変換し、相対高さの値に対応して、上記色付け表示を行なう、
    ことを特徴とするティーチング方法。
  7. 請求項6記載のティーチング方法において、
    上記測定対象が表面に導体パターンを有する電子基板であり、
    上記計測した3次元形状の特定個所の高さからの相対高さに変換する処理において、電子基板上における検査領域の周辺に存在する上記導体パターン面の高さを、上記特定個所の高さとして用いる、
    ことを特徴とするティーチング方法。
  8. 請求項3記載のティーチング方法において、
    上記計測した3次元形状データと設定した上記形状モデルとの差領域を決定し、該差領域を3次元画像表示することを特徴とするティーチング方法。
  9. 請求項8記載のティーチング方法において、
    上記差領域を色付けして3次元画像表示する、
    ことを特徴とするティーチング方法。
  10. 請求項8記載のティーチング方法において、
    上記形状モデルに対し、上記計測した3次元形状データが不足している領域を3次元画像表示する、
    ことを特徴とするティーチング方法。
  11. 請求項8記載のティーチング方法において、
    上記形状モデルに対し、上記計測した3次元形状データが余剰である領域を3次元画像表示する、
    ことを特徴とするティーチング方法。
  12. 請求項1記載のティーチング方法において、
    計測した3次元形状データに対して被検体の認識処理を行い、認識処理により決定した被検体領域と、それ以外の領域とを異なる色で色付けして表示する、
    ことを特徴とするティーチング方法。
  13. 請求項4記載のティーチング方法において、
    被検体の部品種別に応じて、上記色付け表示を行なう、
    ことを特徴とするティーチング方法。
  14. 電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査方法において、
    上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示する、
    ことを特徴とする電子基板検査方法。
  15. 請求項14記載の電子基板検査方法において、
    検査結果に基づいて、良好個所と不良個所を色付け表示する、
    ことを特徴とする電子基板検査方法。
  16. 電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、請求項1ないし請求項13のいずれかに記載のティーチング方法を用いて予め設定される検査情報とを用いて電子基板の検査を行なう、
    ことを特徴とする電子基板検査方法。
  17. 電子基板の3次元形状を測定することが可能な形状測定手段を用いて電子基板を計測して得られた3次元形状データと、予め設定した検査情報を用いて電子基板の検査を行なう電子基板検査装置において、
    上記検査対象である電子基板を3次元画像表示し、該3次元画像中に、3次元画像よりなる検査結果を表示する、
    ことを特徴とする電子基板検査装置。
JP2002194140A 2002-07-03 2002-07-03 ティーチング方法、電子基板検査方法、および電子基板検査装置 Expired - Lifetime JP3932180B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194140A JP3932180B2 (ja) 2002-07-03 2002-07-03 ティーチング方法、電子基板検査方法、および電子基板検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194140A JP3932180B2 (ja) 2002-07-03 2002-07-03 ティーチング方法、電子基板検査方法、および電子基板検査装置

Publications (2)

Publication Number Publication Date
JP2004037222A JP2004037222A (ja) 2004-02-05
JP3932180B2 true JP3932180B2 (ja) 2007-06-20

Family

ID=31702906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194140A Expired - Lifetime JP3932180B2 (ja) 2002-07-03 2002-07-03 ティーチング方法、電子基板検査方法、および電子基板検査装置

Country Status (1)

Country Link
JP (1) JP3932180B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620954A (zh) * 2017-03-15 2018-10-09 发那科株式会社 计测装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672313B2 (ja) * 2004-09-01 2011-04-20 アンリツ株式会社 印刷はんだ検査装置
JP4591103B2 (ja) * 2005-02-08 2010-12-01 パナソニック株式会社 X線ct検査装置及びx線ct検査方法
JP5273926B2 (ja) * 2007-02-13 2013-08-28 オリンパス株式会社 欠陥検査装置
JP4941394B2 (ja) * 2008-04-18 2012-05-30 パナソニック株式会社 半田の印刷状態を評価する方法および装置
DE102010028894B4 (de) 2009-05-13 2018-05-24 Koh Young Technology Inc. Verfahren zur Messung eines Messobjekts
FR2945630B1 (fr) * 2009-05-14 2011-12-30 Airbus France Procede et systeme d'inspection a distance d'une structure
DE102009033886A1 (de) * 2009-07-20 2011-01-27 Steinbichler Optotechnik Gmbh Verfahren zur Darstellung der Oberfläche eines Objekts
CN101696876B (zh) * 2009-10-26 2011-05-18 宁波大红鹰学院 一种vcm磁钢的视觉检测方法
JP2011232111A (ja) * 2010-04-26 2011-11-17 Olympus Corp 検査装置及び検査装置の用いた欠陥検出方法
JP2012105047A (ja) * 2010-11-10 2012-05-31 Fujifilm Corp 立体視画像表示装置および方法並びにプログラム
JP5676387B2 (ja) * 2011-07-27 2015-02-25 株式会社日立製作所 外観検査方法及びその装置
KR101511089B1 (ko) 2013-07-22 2015-04-10 (주)펨트론 Aoi 장비의 티칭 데이터 자동 생성 방법
JP6040215B2 (ja) * 2014-12-25 2016-12-07 株式会社日立製作所 検査方法
CA3009798A1 (en) * 2017-07-12 2019-01-12 General Electric Company Graphic overlay for measuring dimensions of features using a video inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620954A (zh) * 2017-03-15 2018-10-09 发那科株式会社 计测装置
CN108620954B (zh) * 2017-03-15 2020-01-17 发那科株式会社 计测装置

Also Published As

Publication number Publication date
JP2004037222A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3932180B2 (ja) ティーチング方法、電子基板検査方法、および電子基板検査装置
KR101155816B1 (ko) 3차원 계측을 행하는 화상 처리 장치 및 화상 처리 방법
KR101604037B1 (ko) 카메라와 레이저 스캔을 이용한 3차원 모델 생성 및 결함 분석 방법
CA2553477C (en) Transprojection of geometry data
US8564655B2 (en) Three-dimensional measurement method and three-dimensional measurement apparatus
JP5365645B2 (ja) 基板検査装置および基板検査システムならびに基板検査結果の確認用画面の表示方法
KR100785594B1 (ko) 화상 처리 장치
US7450248B2 (en) Three-dimensional measuring method and three-dimensional measuring apparatus
JP5438475B2 (ja) 隙間段差計測装置、隙間段差計測方法、及びそのプログラム
JP2017151067A (ja) 三次元画像検査装置、三次元画像検査方法、三次元画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6966997B2 (ja) 対象上または対象の近くの特徴を測定するための方法および機器
CN110703230A (zh) 激光雷达与摄像头之间的位置标定方法
JP2019197018A (ja) 平坦度検出方法、平坦度検出装置及び平坦度検出プログラム
JP4591103B2 (ja) X線ct検査装置及びx線ct検査方法
JP4333349B2 (ja) 実装外観検査方法及び実装外観検査装置
JP7266070B2 (ja) 基板用の配線計測システム及びその方法
JP2022134614A (ja) 基板検査方法
JP2012063310A (ja) 欠陥寸法測定装置、欠陥寸法測定方法、及びプログラム
JP2005292027A (ja) 三次元形状計測・復元処理装置および方法
WO2022157993A1 (ja) 計測システム、検査システム、計測装置、計測方法、検査方法、及びプログラム
JPH0739997B2 (ja) 半田付け部の外観検査方法
JP2005181068A (ja) X線検査装置及び検査方法
JPH06307813A (ja) 曲面上の三次元位置計測方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Ref document number: 3932180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

EXPY Cancellation because of completion of term