JP3925382B2 - High durability polymer electrolyte, composition, and fuel cell - Google Patents

High durability polymer electrolyte, composition, and fuel cell Download PDF

Info

Publication number
JP3925382B2
JP3925382B2 JP2002298438A JP2002298438A JP3925382B2 JP 3925382 B2 JP3925382 B2 JP 3925382B2 JP 2002298438 A JP2002298438 A JP 2002298438A JP 2002298438 A JP2002298438 A JP 2002298438A JP 3925382 B2 JP3925382 B2 JP 3925382B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte
fuel cell
fluorine
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002298438A
Other languages
Japanese (ja)
Other versions
JP2004134269A (en
Inventor
拓未 谷口
昌宜 高見
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002298438A priority Critical patent/JP3925382B2/en
Priority to CA002444647A priority patent/CA2444647A1/en
Priority to DE10362101A priority patent/DE10362101B4/en
Priority to DE10347457A priority patent/DE10347457B4/en
Publication of JP2004134269A publication Critical patent/JP2004134269A/en
Application granted granted Critical
Publication of JP3925382B2 publication Critical patent/JP3925382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、高耐久性固体高分子電解質、同組成物に関し、さらに詳しくは、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等に用いられる電解質膜等に好適な耐酸化性等に優れた高耐久性固体高分子電解質、同組成物に関するものである。
【0002】
【従来の技術】
固体高分子電解質は、高分子鎖中にスルホン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されているものである。
【0003】
例えば、改質ガス燃料電池は、プロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、メタン、メタノール等、低分子の炭化水素を改質することにより得られる水素ガスを燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として異なる電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造する方法である。
【0004】
燃料電池や水電解の場合、固体高分子電解質膜と電極の界面に形成された触媒層において過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって劣化反応を起こすので、耐酸化性に乏しい炭化水素系電解質膜を使用することが困難である。そのため、燃料電池や水電解においては、一般に、高いプロトン伝導性を有し、高い耐酸化性を有するパーフルオロスルホン酸膜が用いられている。
【0005】
また、食塩電解は、固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウムと、塩素と、水素を製造する方法である。この場合、固体高分子電解質膜は、塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。
【0006】
ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に高く、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはプロトン伝導性を利用して、湿度センサ、ガスセンサ、酸素濃縮器等にも広く応用されているものである。
【0007】
特に、Nafion(登録商標、デュポン社製)の商品名で知られるパーフルオロスルホン酸膜に代表されるフッ素系電解質膜は、化学的安定性が非常に高いことから、過酷な条件下で使用される電解質膜として賞用されている。
【0008】
しかしながら、フッ素系電解質は製造が困難で、非常に高価であるという欠点がある。そのため、炭化水素系電解質の系内で生成された過酸化水素ラジカルを抑制して耐酸化性を向上させることが検討された。
【0009】
これに対し、炭化水素系電解質膜は、Nafionに代表されるフッ素系電解質膜と比較すると、製造が容易で低コストという利点がある。しかしその一方で、炭化水素系電解質膜は、上述したように耐酸化性が低いという問題が残されていた。耐酸化性が低い理由は、炭化水素化合物は一般にラジカルに対する耐久性が低く、炭化水素骨格を有する電解質はラジカルによる劣化反応(過酸化物ラジカルによる酸化反応)を起こしやすいためである。
【0010】
そこで、フッ素系電解質と同等以上、もしくは実用上十分な耐酸化性を有し、しかも低コストで製造可能な高耐久性固体高分子電解質を提供することを目的として、炭化水素部を有する高分子化合物からなり、燐を含む官能基を導入した高耐久性固体高分子電解質(下記特許文献1)、電解質基及び炭化水素部を有する高分子化合物と、燐を含む化合物とを混合することにより得られる高耐久性固体高分子電解質組成物(下記特許文献2)が出願されている。
【0011】
【特許文献1】
特開2000−11755号公報
【特許文献2】
特開2000−11756号公報
【特許文献3】
特表平8−512358号公報
【特許文献4】
特開2002−212291号公報
【特許文献5】
特開2002−012598号公報
【特許文献6】
特開2001−253921号公報
【0012】
【発明が解決しようとする課題】
しかしながら、炭化水素系電解質の場合、燃料電池に用いた場合、上記特許文献1および2に開示された耐酸化抑制電解質はガス遮断性が大きく、電極内に配置すると燃料ガス(水素等)もしくは酸化ガス(酸素、空気等)の触媒(白金等)への接触を大きく阻害し、燃料電池の性能を著しく低下させていた。このように、炭化水素系電解質と燐を含む官能基または燐を含む化合物との組み合わせに問題があった。
上記問題に鑑み、本発明は、燃料電池等に用いられる固体高分子電解質の耐久性を飛躍的に向上させることを目的とする。
【0013】
【発明を解決するための手段】
本発明者らは、鋭意研究した結果、元来化学的安定性の高いフッ素系高分子電解質の耐酸化安定性を更に飛躍的に向上させる手法を見出し、本発明に到達した。
【0017】
第1に、本発明は、フッ素系高分子電解質と、酸化防止剤としてポリビニルホスホン酸からなる高耐久性固体高分子電解質組成物である。
元来、フッ素系高分子は分子間結合が強いため化学的に安定であり、該フッ素系高分子に安定化の方策を取ることは通常考えられていなかった。しかし、該フッ素系高分子でも、系内に過酸化水素ラジカル等が発生すると、側鎖の含フッ素エーテル単位の分解が連鎖的に生じるとともに、一旦分解が始まると原子間の結合エネルギーの高さゆえに発熱量が大きく、一気に熱分解が進行するという現象があった。
【0018】
そこで、本発明では、フッ素系高分子電解質に、酸化防止剤を配合することにより、該酸化防止剤が系内に発生した過酸化水素ラジカルをクエンチするのみならず、フッ素系高分子電解質の分解過程で生じる分解ラジカルをクエンチして、フッ素系高分子電解質の耐酸化安定性を飛躍的に向上させる。
【0019】
これら酸化防止剤としては、燐系酸化防止剤が好ましく、その中でもアルキルホスホン酸系酸化防止剤が特に好ましく例示される。
フッ素系高分子電解質に配合させる酸化防止剤としては、低分子、オリゴマー、高分子のものが用いられる。その中でも、含燐高分子が好ましく、特に、ポリビニルホスホン酸が好ましく例示される。
【0020】
第2に、本発明は、プロトン交換材料と触媒担持導電体とからなる燃料電池用電極であって、プロトン交換材料として上記第1の発明の高耐久性固体高分子電解質組成物を用いた燃料電池用電極である。
【0021】
これにより、高熱条件下で過酸化水素ラジカルが発生する場合においてもラジカルを抑制することが可能となり、フッ素系高分子電解質の耐久性が向上する。また、フッ素系高分子と燐を含む官能基の組み合わせ、およびフッ素系高分子と酸化防止剤の組み合わせにより、材料間のミクロ相分離により多孔性が増すため、電極中でプロトン交換材料が触媒を被覆することが防止される。よって、燃料電池の性能を維持することが出来る。
【0022】
第3に、本発明は、上記第2の本発明の燃料電池用電極を用いた燃料電池である。より具体的には、プロトン(水素イオン)の選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
本発明でいうフッ素系高分子電解質とは、フルオロカーボン骨格あるいはヒドロフルオロカーボン骨格に置換基としてスルホン酸基等の電解質基が導入されているポリマーであって、分子内にエーテル基や塩素やカルボン酸基やリン酸基や芳香環を有していてもよい。一般的にはパーフルオロカーボンを主鎖骨格とし、パーフルオロエーテルや芳香環等のスペーサーを介してスルホン酸基を有するポリマーが用いられる。具体例としては下記(1)式や(2)式で表される構造のポリマーを例示することができる。
【0024】
【化1】

Figure 0003925382
(式中、x=0〜2の整数、y=2〜3の整数、n/m=1〜10である。)
【0025】
【化2】
Figure 0003925382
(式中、n/m=0.1〜2である。)
【0026】
(1)式のポリマーとしては、デュポン社製の「ナフィオン(Nafion;登録商標)」や旭化成工業(株)製の「アシプレックス−S(登録商標)」等が知られており、(2)式のポリマーは上記特許文献3に燃料電池としての使用が記載されている。これらの中で、(1)式のようなパーフルオロポリマーが、燃料電池として用いたときの安定性に優れていることから、本発明を適用する対象の材料として好ましい。
【0027】
燐を含む官能基には、3価の燐を含む官能基と、5価の燐を含む官能基とがあるが、本発明でいう「燐を含む官能基」には、3価及び5価の官能基の双方が含まれる。これらの燐を含む官能基は、次の化3の式(3価の燐を含む官能基)、及び化4の式(5価の燐を含む官能基)に示すような一般式で表すことができる。
【0028】
【化3】
Figure 0003925382
【0029】
【化4】
Figure 0003925382
【0030】
なお、化3の式及び化4の式において、x、y、及びzは、0又は1の値をとる。また、化3の式及び化4の式において、R1、R2及びR3は、一般式Cmnで表される直鎖、環状、もしくは分岐構造のある炭化水素化合物、又はフッ素、塩素、臭素等のハロゲン原子もしくは水素原子である。さらに、化3の式及び化4の式において、y又はzが1の場合には、R2又はR3は、金属原子でもよい。
【0031】
燐を含む官能基の具体例としては、ホスホン酸基、ホスホン酸エステル基、ホスファイト基等が挙げられる。中でも、ホスホン酸基は、安価であり、フッ素系高分子電解質に対し高い耐酸化性を付与することができるので、燐を含む官能基として特に好適である。
【0032】
また、燐を含む官能基は、前記フッ素系高分子電解質に対し、単独で導入してもよく、あるいは、スルホン酸基、カルボン酸基等の他の電解質基と同時に導入しても良い。導入すべき他の電解質基の種類、及び燐を含有する官能基と他の電解質基の導入比率は、導電率、耐酸化性等、固体高分子電解質に要求される特性に応じて調整すればよい。
【0033】
すなわち、燐を含む官能基の導入量が多くなるほど、耐酸化性は向上する。しかし、燐を含む官能基は一般的に弱酸性基であるために、導入量が増大するに伴い、材料全体の導電率が低下する。従って、耐酸化性のみを問題とし、高い導電率が要求されないような用途に用いられる場合には、フッ素系高分子電解質に対して燐を含む官能基を多量に導入すればよい。
【0034】
一方、燃料電池や水電解のように、高い耐酸化性に加え、高い導電率特性が要求される場合には、燐を含む官能基と、スルホン酸基等の強酸基の双方を所定の比率で導入すればよい。さらに、食塩電解のように、塩素や高温、高濃度の水酸化ナトリウム水溶液に対する高い耐性が要求されると同時に、イオンの逆拡散を防ぐ必要がある場合には、燐を含む官能基に加え、スルホン酸基及びカルボン酸基を所定の比率で導入すればよい。
【0035】
但し、燐を含む官能基の導入量が、全電解質基の0.1mol%未満になると、耐酸化性向上効果が十分ではなくなる。従って、燐を含む官能基の導入量は、全電解質基の0.1以上、100mol%未満の範囲とする必要がある。特に、燃料電池、水電解、食塩電解等、過酷な条件下で使用される固体高分子電解質の場合、燐を含む官能基は5〜100mol%の範囲が好適である。
【0036】
さらに、ホスホン酸基等の燐を含む官能基の導入場所は、フッ素系高分子電解質の主鎖あるいは側鎖のいずれでもよい。また、フッ素系高分子電解質の主鎖あるいは側鎖上の導入可能な部位に対して、燐を含む官能基をランダムに導入することにより、燐を含む官能基を固体高分子電解質全体に均一に導入してもよい。あるいは、固体高分子電解質の内、耐酸化性が要求される部分にのみ、燐を含む官能基を選択的に導入してもよい。
【0037】
例えば、固体高分子電解質膜を過酸化物溶液に浸漬した状態で加熱する場合のように、膜中でラジカルがランダムに生成するような環境では、高分子鎖中に燐を含む官能基がランダムに導入された構造が有効である。
【0038】
また、例えばスルホン酸型電解質膜に、耐酸化性を向上させる目的で燐を含む官能基を部分的に導入する場合は、弱酸性基であり導電率を低下させる可能性のあるホスホン酸基は、ランダムに導入されている方が膜全体の導電率の低下を防ぐために有効である。
【0039】
一方、水電解用あるいは燃料電池用の電解質膜のように膜表面の触媒層で過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって劣化反応を起こす環境では、酸化劣化反応の最も激しい膜の表面部分にホスホン酸基を選択的に導入することが、電解質膜の性能維持のために有効と考えられる。
【0040】
以上、詳細に説明したように、第1の本発明に係る高耐久性固体高分子電解質は、酸化反応を抑制する機能を持つ官能基としてホスホン酸基等の燐を含む官能基を用いたことを特徴とするものである。
【0041】
次に、第2の本発明に係るフッ素系高分子電解質組成物に添加される酸化防止剤としては、従来より公知の高分子配合用のものを広く用いることが出来る。例えば、金属不活性剤、フェノール化合物、アミン化合物、イオウ化合物及び燐化合物等を挙げることができる。
金属不活性剤の具体例としては、ジフェニルオキサミドが挙げられる。
【0042】
フェノール化合物としては、ヒドロキノン、p−クレゾール、BHT等の他、ヒンダードフェノール化合物が挙げられる。ヒンダードフェノール化合物の具体例としては、2,6−ジ−tert−ブチル−4−メチルフェノール、2,2’−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス(4−エチル−6−tert−ブチルフェノール)、4,4’−チオ−ビス(3−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデン−ビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−〔3,5−ジ−tert−ブチル−4−ヒドロキシフェニル〕プロピオネート、3,5−ジ−ter−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジルベンゼン、イソオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート等を挙げることができる。
【0043】
アミン化合物の具体例としては、フェニル−2−ナフチルアミン、フェノチアジン、ジフェニルフェニレンジアミン、ナフチルアミン、オクチル化ジフェニルアミン(4,4’−ジオクチル−ジフェニルアミン)、4,4’−ジクミル−ジフェニルアミン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン、2,2,4−トリメチル−1,2−ジヒドロキノリンポリマー等を挙げることができる。
【0044】
イオウ化合物の具体例としては、2−メルカプトベンズイミダゾール、2,4−ビス〔(オクチルチオ)メチル〕−o−クレゾール、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジンアデカスタブ AO−412S(旭電化工業製)等を挙げることができる。
【0045】
燐化合物の具体例としては、リン酸、トリエチルホスファイト、トリエチルホスフェート、トリフェニルホスフィン、トリフェニルホスフィンオキシド、トリフェニルホスフィンスルフィド、ジステアリルペンタエリスリチルジホスファイト、有機ホスファイト、ジフェニルイソデシルホスファイト、ジフェニルイソオクチルホスファイト、ジイソデシルフェニルホスファイト、トリフェニルホスファイト、トリスノニルフェニルホスファイトよりなる群から選ばれたものであってもよい。さらに、複合有機ホスファイト、ポリホスファイト、テトラペンタエリスリトールよりなる群から選ばれたものであることが好適である。アデカスタブ PER−4C(旭電化工業製)、アデカスタブ 260(旭電化工業製)、アデカスタブ 522A(旭電化工業製)、等を挙げることができる。
【0046】
燐化合物の中でも、アルキルホスホン系が特に好ましい、具体例としては、ポリビニルホスホン酸、キシリジルホスホン酸、ベンジルホスホン酸が好ましく例示される。
【0047】
これら酸化防止剤は、1種又は2種以上を使用することができる。酸化防止剤の固体高分子電解質組成物中の使用量としては、通常0.005〜10重量%、好ましくは0.01〜5重量%である。
【0048】
また、燐を含む化合物とは、燐を含む官能基が含まれている物質をいい、燐を含む官能基を有する化合物、及び主鎖もしくは側鎖中に燐を含む官能基を有する高分子化合物の双方が該当する。また、燐を含む官能基には、3価の燐を含む官能基と、5価の燐を含む官能基とがあるが、本発明でいう「燐を含む官能基」には、3価及び5価の官能基の双方が含まれる。これらの燐を含む官能基は、上記の化3の式(3価の燐を含む官能基)、及び化4の式(5価の燐を含む官能基)に示すような一般式で表すことができる。
【0049】
燐を含む官能基の具体例としては、ホスホン酸基、ホスホン酸エステル基、ホスファイト基、リン酸、リン酸エステル等が挙げられる。中でも、ホスホン酸基は、安価であり、炭化水素部を有する高分子化合物に対し高い耐酸化性を付与することができるので、燐を含む官能基として特に好適である。
【0050】
また、含燐高分子の具体例としては、ポリビニルホスホン酸、あるいはホスホン酸基等を導入したポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹脂、架橋型フェノール−ホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2、3−ジフェニル−1、4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂等が一例として挙げられる。更に、ホスホン酸含有ポリイミダゾール(上記特許文献4)、ポリアクリロホスホン酸(上記特許文献5)、フルオロアルキル基含有ホスホン酸オリゴマー(上記特許文献6)等も挙げられる。
【0051】
フッ素系高分子電解質と酸化安定剤との混合方法は、特に限定されるものではなく、種々の方法を用いることができる。例えば、溶液によるドープ又はブレンドでもよい。また、フッ素系高分子電解質と酸化安定剤の双方が熱溶融するものである場合には、熱溶融によるブレンドでもよい。
【0052】
また、フッ素系高分子電解質と、酸化安定剤とを均一に混合することにより、固体高分子電解質全体に酸化安定剤を均一に分散させた構造としてもよい。あるいは、フッ素系高分子電解質のみで固体高分子電解質の主要部を構成し、耐酸化性が要求される部分のみをフッ素系高分子電解質と酸化安定剤との混合物で構成してもよい。
【0053】
例えば、固体高分子電解質膜を過酸化物溶液に浸漬した状態で加熱する場合のように、膜中でラジカルがランダムに生成するような環境では、フッ素系高分子電解質と酸化安定剤とを均一に混合し、酸化安定剤を固体高分子電解質膜中に均一に分散させた構造が有効である。
【0054】
一方、水電解用あるいは燃料電池用の電解質膜のように膜表面の触媒層で過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって劣化反応を起こす環境では、酸化安定剤が膜中に均一に分散している必要はない。この場合には、フッ素系高分子電解質に対して酸化安定剤をドープすることにより、酸化劣化反応の最も激しい膜の表面部分のみをフッ素系高分子電解質と酸化安定剤の混合物とすればよい。
【0055】
あるいは、フッ素系高分子電解質と酸化安定剤の混合物からなる膜状成形物を、フッ素系高分子電解質のみからなる電解質と電極の間に挿入する方法も、電解質膜の性能維持のために有効と考えられる。
【0056】
また、フッ素系高分子電解質中に導入する電解質基の種類及び量、あるいは、燐を含む化合物と、フッ素系高分子電解質との混合比率は、導電率、耐酸化性等、固体高分子電解質に要求される特性に応じて調整すればよい。
【0057】
すなわち、酸化安定剤の配合量が多くなるほど、耐酸化性は向上する。しかし、酸化安定剤の多くは弱酸性基であるために、配合量が増大するに伴い、材料全体の導電率が低下する。従って、耐酸化性のみを問題とし、高い導電率が要求されないような用途に用いられる場合には、フッ素系高分子電解質を有する高分子化合物に対する、酸化安定剤の混合比率を増大させればよい。
【0058】
一方、燃料電池や水電解のように、高い耐酸化性に加え、高い導電率特性が要求される場合には、酸化安定剤と、スルホン酸基等の強酸基を導入したフッ素系高分子電解質とを所定の比率で混合すればよい。また、食塩電解のように、塩素や高温、高濃度の水酸化ナトリウム水溶液に対する高い耐性が要求されると同時に、イオンの逆拡散を防ぐ必要がある場合には、酸化安定剤と、スルホン酸基及びカルボン酸基等を導入したフッ素系高分子電解質とを所定の比率で混合すればよい。
【0059】
但し、酸化安定剤の配合量が全電解質基の0.1mol%未満になると、耐酸化性向上効果が十分ではなくなる。従って、酸化安定剤の配合量は、全電解質基の0.1mol%以上とする必要がある。特に、燃料電池、水電解、食塩電解等、過酷な条件下で使用される固体高分子電解質の場合には、燐を含む化合物は5mol%以上が好適である。
【0060】
以上、詳細に説明したように、第2の本発明に係る高耐久性固体高分子電解質組成物は、フッ素系高分子電解質と、酸化反応を抑制する機能を持つホスホン酸基等の酸化安定剤を混合することにより得られるものである。
【0061】
【実施例および比較例】
以下、実施例および比較例によって本発明をさらに詳細に説明する。
(1)ポリビニルホスホン酸を添加した燃料電池用電極の作製
[比較例]
60%白金担持カーボン1100mgに電解質溶液(市販の5%Nafion溶液)3.3mlおよび所定量の水を加えて攪拌し、均質な分散溶液を作製した。分散溶液をドクターブレードを用いてフッ素樹脂シート上に流延し、80℃で8時間減圧乾燥して燃料電池用電極シートを得た。
これは通常の燃料電池用電極(白金担持カーボンのNafion分散液を乾固したもの)であり、Pt:C:Nafion=60:40:28である。
【0062】
[実施例]
上記比較例の分散溶液作製時に160mgのポリビニルホスホン酸(ゼネラルサイエンス社製)を添加し、酸化防止剤添加電極シートを得た。
これは上記比較例の電極にポリビニルホスホン酸(PVPA)を添加したものであり、Pt:C:Nafion:PVPA=60:40:28:14である。
【0063】
(2)TG−MSによる分解挙動解析
TG−MSにより各温度での発生ガスを定量し、熱分解に対するポリビニルホスホン酸(PVPA)の添加効果を調べた。He雰囲気中、10℃/minで昇温した。その中から、Nafionの分解成分であるSO2の発生挙動(図1)、およびフルオロカーボンの発生挙動(図2)を示す。
【0064】
図1の▲1▼の温度領域で発生するSO2は、カーボン上に吸着していた硫黄の、同じくカーボン上に吸着していた酸素による酸化によるものであり、Nafionの分解とは無関係である。Nafionの分解によるSO2の発生は200℃以上で顕著となるが、その生成量は比較例に比べて実施例では大幅に減少している。
【0065】
図2より、250℃以上の温度領域で比較例ではCF3 +およびC25 +の生成が観察された。これはNafionの分解によるよるものである。これに対して、実施例では、C25 +の生成は観察されず、CF3 +の生成のみが観察され、その生成量も比較例と比べて減少している。
【0066】
上記の結果より、ポリビニルホスホン酸(PVPA)の添加により、電極中のNafionの熱に対する分解安定性が大幅に改善されることが明らかとなった。この分解抑制機構は必ずしも明らかではないが、スルホン酸基が脱離した後の炭素ラジカルを安定化することにより、分解の連鎖を止めているものと推定される。
【0067】
(3)電池評価による経時安定性評価
[初期特性]
セル:80℃、Aハブラ:H2、275cc/min、Cハブラ:Air、912cc/min、両極2ataの条件でI−V評価を行った結果を、図3に示す。
【0068】
図3より、実施例にポリビニルホスホン酸(PVPA)が添加されているにも関わらず、傾きは比較例とほぼ同等であり、膜/電極間の接触抵抗はほぼ同等である。また、実施例と比較例の限界電流値はほぼ同等であり、電極の排水性はほぼ同等である。通常、ポリビニルホスホン酸(PVPA)の添加により、重量で1.5倍、体積で約2倍の電解質量になったにも関わらず、限界電流値はほぼ同等であることは、ポリビニルホスホン酸(PVPA)の添加により排水性が低下しないことを示している。更に、図3においては、本実施例の電圧は比較例と比べると全体的に低かった。これは、触媒活性に起因するものと考えられるが、ポリビニルホスホン酸(PVPA)の添加量を減らすことで調整可能である。
上記の結果より、ポリビニルホスホン酸(PVPA)の添加により、燃料電池特性、特に抵抗および限界電流値が変化しないことが明らかとなった。
【0069】
[加速耐久試験によるガスリーク量]
セル:80℃、A:加湿H2ガス、C:加湿空気、開回路条件を含む負荷条件で連続運転を行った。結果を図4に示す。
【0070】
図4から、比較例では初期の段階からガスリーク量が増加しているのに対して、実施例では250時間を過ぎてもガスリーク量が低く抑えられている。本来、ポリビニルホスホン酸(PVPA)の添加による酸化防止効果が期待されるのは電極内の電解質であるが、本結果により、電解質膜の劣化も抑制されていることが分かる。原因の詳細は必ずしも明らかではないが、電極で発生した過酸化水素ラジカルあるいは分解ラジカルが酸化防止剤によって不活性化され、ラジカルの電解質膜中への拡散が抑制されたためと考えられる。
【0071】
【発明の効果】
フッ素系高分子電解質に燐を含む官能基を導入したり、フッ素系高分子電解質と酸化防止剤を組み合わせることにより、高熱条件下で過酸化水素ラジカルが発生する場合においてもラジカルを抑制することも可能となり、フッ素系高分子電解質の耐久性が向上する。また、材料間のミクロ相分離により多孔性が増すため、電極中でプロトン交換材料が触媒を被覆することが防止され、燃料電池の性能を維持することが出来る。
【図面の簡単な説明】
【図1】燃料電池用電極のSO2発生挙動を示すグラフである。
【図2】燃料電池用電極のフルオロカーボン発生挙動を示すグラフである。
【図3】燃料電池の初期I−V特性を示すグラフである。
【図4】燃料電池の加速耐久試験によるガスリーク量を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly durable solid polymer electrolyte and the same composition, and more specifically, an electrolyte membrane used in fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors and the like. The present invention relates to a highly durable solid polymer electrolyte excellent in oxidation resistance and the like, and the same composition.
[0002]
[Prior art]
A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group in a polymer chain, and has a property of binding firmly to a specific ion or selectively transmitting a cation or an anion. Therefore, it is formed into particles, fibers, or membranes and used for various applications such as electrodialysis, diffusion dialysis, and battery diaphragm.
[0003]
For example, in a reformed gas fuel cell, a pair of electrodes are provided on both sides of a proton conductive solid polymer electrolyte membrane, and hydrogen gas obtained by reforming low molecular hydrocarbons such as methane and methanol is used as fuel gas. Is supplied to one electrode (fuel electrode) and oxygen gas or air is supplied as an oxidant to another electrode (air electrode) to obtain an electromotive force. Water electrolysis is a method for producing hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.
[0004]
In the case of fuel cells and water electrolysis, peroxide is generated in the catalyst layer formed at the interface between the solid polymer electrolyte membrane and the electrode, and the generated peroxide diffuses and becomes a peroxide radical, which causes a deterioration reaction. As a result, it is difficult to use a hydrocarbon-based electrolyte membrane having poor oxidation resistance. Therefore, in a fuel cell or water electrolysis, a perfluorosulfonic acid membrane having high proton conductivity and high oxidation resistance is generally used.
[0005]
The salt electrolysis is a method of producing sodium hydroxide, chlorine, and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine, high temperature and high concentration sodium hydroxide aqueous solution, a hydrocarbon electrolyte membrane having poor resistance to these cannot be used. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition, partly on the surface to prevent back diffusion of generated ions. A perfluorosulfonic acid film into which a carboxylic acid group is introduced is used.
[0006]
By the way, the fluorine-based electrolyte typified by the perfluorosulfonic acid membrane has a very high chemical stability because it has a C—F bond. For the above-described fuel cell, water electrolysis, or salt electrolysis In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and further widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity. It is what.
[0007]
In particular, fluorine-based electrolyte membranes represented by the perfluorosulfonic acid membrane known under the trade name Nafion (registered trademark, manufactured by DuPont) are used under severe conditions because of their extremely high chemical stability. It is used as an electrolyte membrane.
[0008]
However, the fluorine-based electrolyte has a drawback that it is difficult to manufacture and is very expensive. Therefore, it has been studied to suppress the hydrogen peroxide radicals generated in the hydrocarbon electrolyte system to improve the oxidation resistance.
[0009]
In contrast, hydrocarbon electrolyte membranes have the advantage of being easy to manufacture and low in cost compared to fluorine electrolyte membranes represented by Nafion. On the other hand, however, the hydrocarbon electrolyte membrane has a problem of low oxidation resistance as described above. The reason why the oxidation resistance is low is that hydrocarbon compounds generally have low durability against radicals, and electrolytes having a hydrocarbon skeleton are liable to cause degradation reactions due to radicals (oxidation reactions due to peroxide radicals).
[0010]
Therefore, for the purpose of providing a highly durable solid polymer electrolyte that is equal to or higher than that of a fluorine-based electrolyte or has practically sufficient oxidation resistance and can be produced at low cost, a polymer having a hydrocarbon portion. It is obtained by mixing a high-durability solid polymer electrolyte (comprising Patent Document 1 below) composed of a compound and containing a functional group containing phosphorus, a polymer compound having an electrolyte group and a hydrocarbon part, and a compound containing phosphorus. A highly durable solid polymer electrolyte composition (Patent Document 2 below) has been filed.
[0011]
[Patent Document 1]
JP 2000-11755 A
[Patent Document 2]
JP 2000-11756 A
[Patent Document 3]
Japanese translation of PCT publication No. 8-512358
[Patent Document 4]
JP 2002-212291 A
[Patent Document 5]
JP 2002-012598 A
[Patent Document 6]
Japanese Patent Application Laid-Open No. 2001-253921
[0012]
[Problems to be solved by the invention]
However, in the case of a hydrocarbon-based electrolyte, when used in a fuel cell, the oxidation-resistant suppression electrolyte disclosed in Patent Documents 1 and 2 has a large gas barrier property, and if it is placed in an electrode, the fuel gas (hydrogen or the like) or oxidation The contact of the gas (oxygen, air, etc.) with the catalyst (platinum, etc.) was greatly hindered, and the performance of the fuel cell was significantly reduced. Thus, there has been a problem in the combination of a hydrocarbon-based electrolyte and a functional group containing phosphorus or a compound containing phosphorus.
In view of the above problems, an object of the present invention is to dramatically improve the durability of a solid polymer electrolyte used in a fuel cell or the like.
[0013]
[Means for Solving the Invention]
As a result of intensive studies, the present inventors have found a technique for further dramatically improving the oxidation resistance stability of a fluorine-based polymer electrolyte having high chemical stability, and reached the present invention.
[0017]
  First, the present invention is a highly durable solid polymer electrolyte composition comprising a fluorine-based polymer electrolyte and polyvinylphosphonic acid as an antioxidant.
  Originally, fluorine-based polymers are chemically stable because of strong intermolecular bonds, and it has not been generally considered to take a stabilization measure for the fluorine-based polymers. However, even in the fluorine-based polymer, when hydrogen peroxide radicals or the like are generated in the system, side chain fluorine-containing ether units are decomposed in a chain, and once the decomposition starts, the bond energy between atoms is high. Therefore, there was a phenomenon that the calorific value was large and the thermal decomposition proceeded at once.
[0018]
Therefore, in the present invention, by adding an antioxidant to the fluorine-based polymer electrolyte, the antioxidant not only quenches hydrogen peroxide radicals generated in the system, but also decomposes the fluorine-based polymer electrolyte. By quenching the decomposition radical generated in the process, the oxidation resistance stability of the fluorine-based polymer electrolyte is dramatically improved.
[0019]
As these antioxidants, phosphorus antioxidants are preferable, and alkylphosphonic acid antioxidants are particularly preferable among them.
As the antioxidant to be blended in the fluorine-based polymer electrolyte, low molecular weight, oligomer or high molecular weight ones are used. Among these, a phosphorus-containing polymer is preferable, and polyvinyl phosphonic acid is particularly preferable.
[0020]
  Second, the present invention is a fuel cell electrode comprising a proton exchange material and a catalyst-carrying conductor, wherein the fuel uses the highly durable solid polymer electrolyte composition of the first invention as a proton exchange material. It is an electrode for a battery.
[0021]
This makes it possible to suppress radicals even when hydrogen peroxide radicals are generated under high heat conditions, and improve the durability of the fluorine-based polymer electrolyte. In addition, the combination of a functional group containing fluorine-based polymer and phosphorus, and the combination of fluorine-based polymer and antioxidant, increase the porosity due to microphase separation between the materials, so that the proton exchange material acts as a catalyst in the electrode. Covering is prevented. Therefore, the performance of the fuel cell can be maintained.
[0022]
  3rdly, this invention is a fuel cell using the electrode for fuel cells of the said 2nd invention. More specifically, an electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having selective permeability of protons (hydrogen ions), and the solid polymer electrolyte membrane is attached to the electrode catalyst layer. The fuel cell is interposed between a pair of gas diffusible electrodes.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The fluoropolymer electrolyte as used in the present invention is a polymer in which an electrolyte group such as a sulfonic acid group is introduced as a substituent in a fluorocarbon skeleton or a hydrofluorocarbon skeleton, and an ether group, chlorine or carboxylic acid group in the molecule. And may have a phosphate group or an aromatic ring. In general, a polymer having a main chain skeleton of perfluorocarbon and a sulfonic acid group via a spacer such as perfluoroether or an aromatic ring is used. Specific examples include polymers having structures represented by the following formulas (1) and (2).
[0024]
[Chemical 1]
Figure 0003925382
(In the formula, x is an integer of 0 to 2, y is an integer of 2 to 3, and n / m is 1 to 10.)
[0025]
[Chemical 2]
Figure 0003925382
(In the formula, n / m = 0.1-2.)
[0026]
As the polymer of the formula (1), “Nafion (registered trademark)” manufactured by DuPont, “Aciplex-S (registered trademark)” manufactured by Asahi Kasei Kogyo Co., Ltd., and the like are known. The polymer of formula is described in Patent Document 3 as a fuel cell. Among these, perfluoropolymers of the formula (1) are preferable as materials to which the present invention is applied because they are excellent in stability when used as fuel cells.
[0027]
The functional group containing phosphorus includes a functional group containing trivalent phosphorus and a functional group containing pentavalent phosphorus. The “functional group containing phosphorus” in the present invention refers to trivalent and pentavalent groups. Both functional groups are included. These functional groups containing phosphorus are represented by the general formulas shown in the following chemical formula 3 (functional group containing trivalent phosphorus) and chemical formula 4 (functional group containing pentavalent phosphorus). Can do.
[0028]
[Chemical Formula 3]
Figure 0003925382
[0029]
[Formula 4]
Figure 0003925382
[0030]
Note that, in the formulas 3 and 4, x, y, and z each have a value of 0 or 1. In the formulas 3 and 4, R is1, R2And RThreeIs the general formula CmHnOr a hydrocarbon compound having a straight chain, cyclic or branched structure, or a halogen atom or hydrogen atom such as fluorine, chlorine or bromine. Further, when y or z is 1 in the chemical formulas 3 and 4, the R2Or RThreeMay be a metal atom.
[0031]
Specific examples of the functional group containing phosphorus include a phosphonic acid group, a phosphonic acid ester group, and a phosphite group. Among these, a phosphonic acid group is particularly suitable as a functional group containing phosphorus because it is inexpensive and can impart high oxidation resistance to a fluorine-based polymer electrolyte.
[0032]
Moreover, the functional group containing phosphorus may be introduced singly into the fluorinated polymer electrolyte, or may be introduced simultaneously with other electrolyte groups such as a sulfonic acid group and a carboxylic acid group. The type of other electrolyte groups to be introduced and the introduction ratio of the functional group containing phosphorus and the other electrolyte groups should be adjusted according to the characteristics required for the solid polymer electrolyte, such as conductivity and oxidation resistance. Good.
[0033]
That is, as the amount of the functional group containing phosphorus is increased, the oxidation resistance is improved. However, since the functional group containing phosphorus is generally a weakly acidic group, the conductivity of the entire material decreases as the amount of introduction increases. Therefore, when used only in applications where oxidation resistance is a problem and high conductivity is not required, a large amount of functional groups containing phosphorus may be introduced into the fluorine-based polymer electrolyte.
[0034]
On the other hand, when high conductivity characteristics are required in addition to high oxidation resistance, such as fuel cells and water electrolysis, both a functional group containing phosphorus and a strong acid group such as a sulfonic acid group have a predetermined ratio. Can be introduced. Furthermore, in the case where high resistance to chlorine, high temperature, high concentration sodium hydroxide aqueous solution is required as in the case of salt electrolysis and at the same time it is necessary to prevent back diffusion of ions, in addition to the functional group containing phosphorus, A sulfonic acid group and a carboxylic acid group may be introduced at a predetermined ratio.
[0035]
However, if the introduction amount of the functional group containing phosphorus is less than 0.1 mol% of the total electrolyte group, the effect of improving oxidation resistance is not sufficient. Therefore, the introduction amount of the functional group containing phosphorus needs to be in the range of 0.1 or more and less than 100 mol% of the total electrolyte group. In particular, in the case of a solid polymer electrolyte used under severe conditions such as a fuel cell, water electrolysis, and salt electrolysis, the functional group containing phosphorus is preferably in the range of 5 to 100 mol%.
[0036]
Furthermore, the introduction site of the functional group containing phosphorus such as a phosphonic acid group may be either the main chain or the side chain of the fluoropolymer electrolyte. In addition, by introducing a functional group containing phosphorus at random into the main chain or side chain of the fluoropolymer electrolyte, the functional group containing phosphorus can be uniformly distributed throughout the solid polymer electrolyte. It may be introduced. Or you may selectively introduce | transduce the functional group containing phosphorus only to the part as which oxidation resistance is requested | required among solid polymer electrolytes.
[0037]
For example, in an environment where radicals are randomly generated in the membrane, such as when the solid polymer electrolyte membrane is heated while immersed in a peroxide solution, the functional group containing phosphorus in the polymer chain is random. The structure introduced in is effective.
[0038]
For example, when a functional group containing phosphorus is partially introduced into a sulfonic acid type electrolyte membrane for the purpose of improving oxidation resistance, a phosphonic acid group that is a weakly acidic group and may lower the conductivity is The random introduction is more effective for preventing a decrease in the conductivity of the entire film.
[0039]
On the other hand, in an environment where a peroxide is generated in the catalyst layer on the surface of the membrane, such as an electrolyte membrane for water electrolysis or fuel cell, and the generated peroxide diffuses into a peroxide radical to cause a degradation reaction. It is considered effective to maintain the performance of the electrolyte membrane by selectively introducing phosphonic acid groups into the surface portion of the membrane where the oxidation degradation reaction is most severe.
[0040]
As described above in detail, the highly durable solid polymer electrolyte according to the first aspect of the present invention uses a functional group containing phosphorus such as a phosphonic acid group as a functional group having a function of suppressing an oxidation reaction. It is characterized by.
[0041]
Next, as an antioxidant to be added to the fluorine-based polymer electrolyte composition according to the second present invention, conventionally known ones for blending polymers can be widely used. For example, a metal deactivator, a phenol compound, an amine compound, a sulfur compound, a phosphorus compound, etc. can be mentioned.
Specific examples of the metal deactivator include diphenyl oxamide.
[0042]
Examples of the phenol compound include hydroquinone, p-cresol, BHT and the like, and hindered phenol compounds. Specific examples of the hindered phenol compound include 2,6-di-tert-butyl-4-methylphenol, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), 2,2′- Methylene-bis (4-ethyl-6-tert-butylphenol), 4,4′-thio-bis (3-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6- tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-) tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl) -4-hydroxyphenyl) propionate], octadecyl-3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl Ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzylbenzene, isooctyl-3- (3,5-di-tert-butyl-4 -Hydroxyphenyl) propionate and the like.
[0043]
Specific examples of the amine compound include phenyl-2-naphthylamine, phenothiazine, diphenylphenylenediamine, naphthylamine, octylated diphenylamine (4,4′-dioctyl-diphenylamine), 4,4′-dicumyl-diphenylamine, and 6-ethoxy-2. , 2,4-trimethyl-1,2-dihydroquinoline, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, and the like.
[0044]
Specific examples of the sulfur compound include 2-mercaptobenzimidazole, 2,4-bis [(octylthio) methyl] -o-cresol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3 , 5-di-tert-butylanilino) -1,3,5-triazine Adekastab AO-412S (Asahi Denka Kogyo Co., Ltd.).
[0045]
Specific examples of phosphorus compounds include phosphoric acid, triethyl phosphite, triethyl phosphate, triphenyl phosphine, triphenyl phosphine oxide, triphenyl phosphine sulfide, distearyl pentaerythrityl diphosphite, organic phosphite, diphenyl isodecyl phosphite , Diphenylisooctyl phosphite, diisodecylphenyl phosphite, triphenyl phosphite, and trisnonylphenyl phosphite. Furthermore, it is preferable that it is selected from the group consisting of composite organic phosphite, polyphosphite, and tetrapentaerythritol. Examples include ADK STAB PER-4C (Asahi Denka Kogyo), ADK STAB 260 (Asahi Denka Kogyo), ADK STAB 522A (Asahi Denka Kogyo), and the like.
[0046]
Among the phosphorus compounds, alkylphosphonic compounds are particularly preferred. Specific examples thereof include polyvinylphosphonic acid, xylidylphosphonic acid, and benzylphosphonic acid.
[0047]
These antioxidants can use 1 type (s) or 2 or more types. The amount of the antioxidant used in the solid polymer electrolyte composition is usually 0.005 to 10% by weight, preferably 0.01 to 5% by weight.
[0048]
The compound containing phosphorus means a substance containing a functional group containing phosphorus, a compound having a functional group containing phosphorus, and a polymer compound having a functional group containing phosphorus in the main chain or side chain. Both are applicable. The functional group containing phosphorus includes a functional group containing trivalent phosphorus and a functional group containing pentavalent phosphorus. The “functional group containing phosphorus” in the present invention includes trivalent and functional groups. Both pentavalent functional groups are included. These functional groups containing phosphorus are represented by the general formulas shown in the above formula 3 (functional group containing trivalent phosphorus) and the formula 4 (functional group containing pentavalent phosphorus). Can do.
[0049]
Specific examples of the functional group containing phosphorus include phosphonic acid groups, phosphonic acid ester groups, phosphite groups, phosphoric acid, and phosphoric acid esters. Among these, a phosphonic acid group is particularly suitable as a functional group containing phosphorus because it is inexpensive and can impart high oxidation resistance to a polymer compound having a hydrocarbon moiety.
[0050]
Specific examples of the phosphorus-containing polymer include polyvinyl phosphonic acid or polyether sulfone resin into which a phosphonic acid group or the like is introduced, polyether ether ketone resin, linear phenol-formaldehyde resin, cross-linked phenol-formaldehyde resin, Linear polystyrene resin, cross-linked polystyrene resin, linear poly (trifluorostyrene) resin, cross-linked (trifluorostyrene) resin, poly (2,3-diphenyl-1,4-phenylene oxide) resin, poly ( Allyl ether ketone) resin, poly (arylene ether sulfone) resin, poly (phenylquinosan phosphorus) resin, poly (benzylsilane) resin, polystyrene-graft-ethylenetetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene Graft - tetrafluoroethylene resin and the like as an example. Furthermore, a phosphonic acid-containing polyimidazole (the above-mentioned patent document 4), a polyacrylophosphonic acid (the above-mentioned patent document 5), a fluoroalkyl group-containing phosphonic acid oligomer (the above-mentioned patent document 6), and the like are also included.
[0051]
The mixing method of the fluorine-based polymer electrolyte and the oxidation stabilizer is not particularly limited, and various methods can be used. For example, a solution dope or blend may be used. Further, when both the fluorine-based polymer electrolyte and the oxidation stabilizer are heat-melted, they may be blended by heat-melting.
[0052]
Moreover, it is good also as a structure where the oxidation stabilizer was uniformly disperse | distributed to the whole solid polymer electrolyte by mixing a fluorine-type polymer electrolyte and an oxidation stabilizer uniformly. Alternatively, the main part of the solid polymer electrolyte may be composed only of the fluorinated polymer electrolyte, and only the part requiring oxidation resistance may be composed of a mixture of the fluorinated polymer electrolyte and the oxidation stabilizer.
[0053]
For example, in an environment where radicals are randomly generated in the membrane, such as when the polymer electrolyte membrane is heated in a state of being immersed in a peroxide solution, the fluoropolymer electrolyte and the oxidation stabilizer are uniformly distributed. A structure in which the oxidation stabilizer is uniformly dispersed in the solid polymer electrolyte membrane is effective.
[0054]
On the other hand, in an environment where a peroxide is generated in the catalyst layer on the surface of the membrane, such as an electrolyte membrane for water electrolysis or fuel cell, and the generated peroxide diffuses into a peroxide radical to cause a degradation reaction. The oxidation stabilizer need not be uniformly dispersed in the film. In this case, the oxidation stabilizer may be doped into the fluorine-based polymer electrolyte so that only the surface portion of the membrane having the most oxidative degradation reaction is made a mixture of the fluorine-based polymer electrolyte and the oxidation stabilizer.
[0055]
Alternatively, a method of inserting a film-like molded product composed of a mixture of a fluorine-based polymer electrolyte and an oxidation stabilizer between an electrolyte composed only of a fluorine-based polymer electrolyte and an electrode is also effective for maintaining the performance of the electrolyte membrane. Conceivable.
[0056]
In addition, the type and amount of the electrolyte group to be introduced into the fluorinated polymer electrolyte, or the mixing ratio of the phosphorous-containing compound and the fluorinated polymer electrolyte is determined by the solid polymer electrolyte, such as conductivity and oxidation resistance. What is necessary is just to adjust according to the characteristic requested | required.
[0057]
That is, the oxidation resistance improves as the blending amount of the oxidation stabilizer increases. However, since most of the oxidation stabilizers are weakly acidic groups, the conductivity of the whole material is lowered as the amount is increased. Therefore, when used in applications where only oxidation resistance is a problem and high conductivity is not required, the mixing ratio of the oxidation stabilizer to the polymer compound having a fluorine-based polymer electrolyte may be increased. .
[0058]
On the other hand, when high conductivity characteristics are required in addition to high oxidation resistance, such as fuel cells and water electrolysis, a fluorine-based polymer electrolyte into which an oxidation stabilizer and a strong acid group such as a sulfonic acid group are introduced May be mixed at a predetermined ratio. In addition, when sodium chloride is required to have high resistance to chlorine, high temperature, high concentration sodium hydroxide aqueous solution, and at the same time, it is necessary to prevent back diffusion of ions, an oxidation stabilizer and a sulfonic acid group And a fluorine-based polymer electrolyte into which a carboxylic acid group or the like is introduced may be mixed at a predetermined ratio.
[0059]
However, when the blending amount of the oxidation stabilizer is less than 0.1 mol% of the total electrolyte group, the oxidation resistance improving effect is not sufficient. Therefore, the blending amount of the oxidation stabilizer needs to be 0.1 mol% or more of the total electrolyte group. In particular, in the case of a solid polymer electrolyte used under severe conditions such as a fuel cell, water electrolysis, and salt electrolysis, the compound containing phosphorus is preferably 5 mol% or more.
[0060]
As described above in detail, the highly durable solid polymer electrolyte composition according to the second invention includes a fluorine-based polymer electrolyte and an oxidation stabilizer such as a phosphonic acid group having a function of suppressing an oxidation reaction. It is obtained by mixing.
[0061]
Examples and Comparative Examples
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(1) Preparation of electrode for fuel cell to which polyvinylphosphonic acid is added
[Comparative example]
To 1100 mg of 60% platinum-supporting carbon, 3.3 ml of an electrolyte solution (commercially available 5% Nafion solution) and a predetermined amount of water were added and stirred to prepare a homogeneous dispersion solution. The dispersion solution was cast on a fluororesin sheet using a doctor blade and dried under reduced pressure at 80 ° C. for 8 hours to obtain a fuel cell electrode sheet.
This is a normal fuel cell electrode (plated Nafion dispersion of platinum-supported carbon), Pt: C: Nafion = 60: 40: 28.
[0062]
[Example]
160 mg of polyvinylphosphonic acid (manufactured by General Science Co., Ltd.) was added during the preparation of the dispersion solution of the above comparative example to obtain an antioxidant-added electrode sheet.
This is obtained by adding polyvinylphosphonic acid (PVPA) to the electrode of the above comparative example, and Pt: C: Nafion: PVPA = 60: 40: 28: 14.
[0063]
(2) Decomposition behavior analysis by TG-MS
The generated gas at each temperature was quantified by TG-MS, and the effect of adding polyvinylphosphonic acid (PVPA) to thermal decomposition was examined. The temperature was raised at 10 ° C./min in a He atmosphere. Among them, SO which is a decomposition component of Nafion2The generation | occurrence | production behavior (FIG. 1) and the generation | occurrence | production behavior (FIG. 2) of fluorocarbon are shown.
[0064]
SO generated in the temperature range (1) in FIG.2Is due to the oxidation of sulfur adsorbed on carbon by oxygen that was also adsorbed on carbon, and is independent of the decomposition of Nafion. SO by decomposition of Nafion2Although the generation | occurrence | production of becomes remarkable at 200 degreeC or more, the production amount is reducing significantly in the Example compared with the comparative example.
[0065]
From FIG. 2, in the comparative example in the temperature range of 250 ° C. or higher, CFThree +And C2FFive +Production was observed. This is due to the decomposition of Nafion. In contrast, in the embodiment, C2FFive +Production is not observed, CFThree +Only the production | generation of is observed, and the production amount is also reduced compared with the comparative example.
[0066]
From the above results, it was revealed that the addition of polyvinylphosphonic acid (PVPA) significantly improved the decomposition stability of Nafion in the electrode against heat. The mechanism for inhibiting the decomposition is not necessarily clear, but it is presumed that the decomposition chain is stopped by stabilizing the carbon radical after the sulfonic acid group is eliminated.
[0067]
(3) Evaluation of stability over time by battery evaluation
[Initial characteristics]
FIG. 3 shows the results of IV evaluation under the conditions of cell: 80 ° C., A hubra: H2, 275 cc / min, C hubra: Air, 912 cc / min, and bipolar 2 ata.
[0068]
FIG. 3 shows that the slope is almost the same as that of the comparative example and the contact resistance between the membrane / electrode is almost the same, although polyvinyl phosphonic acid (PVPA) is added to the example. Further, the limit current values of the example and the comparative example are substantially equal, and the drainage of the electrode is substantially equal. In general, the addition of polyvinylphosphonic acid (PVPA) results in an almost equal limit current value even though the electrolytic mass is 1.5 times by weight and about 2 times by volume. It shows that drainage does not deteriorate by the addition of PVPA). Furthermore, in FIG. 3, the voltage of this example was generally lower than that of the comparative example. This is considered to be due to the catalytic activity, but can be adjusted by reducing the amount of polyvinylphosphonic acid (PVPA) added.
From the above results, it has been clarified that the addition of polyvinylphosphonic acid (PVPA) does not change the fuel cell characteristics, particularly the resistance and the limit current value.
[0069]
[Gas leakage by accelerated durability test]
Cell: 80 ° C., A: Humidification H2Gas, C: humidified air, continuous operation was performed under load conditions including open circuit conditions. The results are shown in FIG.
[0070]
From FIG. 4, the gas leak amount increased from the initial stage in the comparative example, whereas the gas leak amount was kept low even after 250 hours in the example. Originally, it is the electrolyte in the electrode that is expected to have an antioxidant effect due to the addition of polyvinylphosphonic acid (PVPA), but it can be seen from this result that the deterioration of the electrolyte membrane is also suppressed. Although the details of the cause are not necessarily clear, it is considered that hydrogen peroxide radicals or decomposition radicals generated at the electrode were inactivated by the antioxidant and the diffusion of radicals into the electrolyte membrane was suppressed.
[0071]
【The invention's effect】
By introducing a functional group containing phosphorus into the fluorinated polymer electrolyte or combining a fluorinated polymer electrolyte and an antioxidant, radicals can be suppressed even when hydrogen peroxide radicals are generated under high heat conditions. This makes it possible to improve the durability of the fluorine-based polymer electrolyte. Moreover, since the porosity is increased by microphase separation between the materials, the proton exchange material is prevented from covering the catalyst in the electrode, and the performance of the fuel cell can be maintained.
[Brief description of the drawings]
FIG. 1 SO of electrode for fuel cell2It is a graph which shows generation | occurrence | production behavior.
FIG. 2 is a graph showing the fluorocarbon generation behavior of a fuel cell electrode.
FIG. 3 is a graph showing initial IV characteristics of a fuel cell.
FIG. 4 is a graph showing a gas leak amount by an accelerated durability test of a fuel cell.

Claims (3)

フッ素系高分子電解質と、酸化防止剤としてポリビニルホスホン酸からなる高耐久性固体高分子電解質組成物。  A highly durable solid polymer electrolyte composition comprising a fluorine-based polymer electrolyte and polyvinylphosphonic acid as an antioxidant. プロトン交換材料と触媒担持導電体とからなる燃料電池用電極であって、プロトン交換材料は請求項1に記載の高耐久性固体高分子電解質組成物であることを特徴とする燃料電池用電極。  A fuel cell electrode comprising a proton exchange material and a catalyst-carrying conductor, wherein the proton exchange material is the highly durable solid polymer electrolyte composition according to claim 1. 請求項2に記載の燃料電池用電極を用いた燃料電池。  A fuel cell using the fuel cell electrode according to claim 2.
JP2002298438A 2002-10-11 2002-10-11 High durability polymer electrolyte, composition, and fuel cell Expired - Lifetime JP3925382B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002298438A JP3925382B2 (en) 2002-10-11 2002-10-11 High durability polymer electrolyte, composition, and fuel cell
CA002444647A CA2444647A1 (en) 2002-10-11 2003-10-10 High-durability polymer electrolyte, high-durability polymer electrolyte composite, electrode, and fuel cell
DE10362101A DE10362101B4 (en) 2002-10-11 2003-10-13 Electrode and fuel cell with long service life
DE10347457A DE10347457B4 (en) 2002-10-11 2003-10-13 Highly resistant polymer electrolyte composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298438A JP3925382B2 (en) 2002-10-11 2002-10-11 High durability polymer electrolyte, composition, and fuel cell

Publications (2)

Publication Number Publication Date
JP2004134269A JP2004134269A (en) 2004-04-30
JP3925382B2 true JP3925382B2 (en) 2007-06-06

Family

ID=32064214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298438A Expired - Lifetime JP3925382B2 (en) 2002-10-11 2002-10-11 High durability polymer electrolyte, composition, and fuel cell

Country Status (3)

Country Link
JP (1) JP3925382B2 (en)
CA (1) CA2444647A1 (en)
DE (2) DE10347457B4 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979179B2 (en) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 Solid polymer fuel cell and manufacturing method thereof
EP1777768B1 (en) 2004-07-09 2013-09-18 Nissan Motor Company Limited Fuel cell system comprising a solid polymer electrolyte film
US7799485B2 (en) 2004-07-09 2010-09-21 Nissan Motor Co., Ltd. Fuel cell system and composition for electrode
DE112005003202B4 (en) 2004-12-24 2009-04-30 Asahi Kasei Kabushiki Kaisha Very durable electrode catalyst layer, process for its preparation, electrolytic polymer solution, membrane electrode assembly and polymer electrolyte membrane fuel cell
US20060222920A1 (en) * 2005-04-01 2006-10-05 Belabbes Merzougui Metal cations chelators for fuel cells
US7579116B2 (en) * 2005-04-01 2009-08-25 Gm Global Technology Operations, Inc. Fluoride ion scavenger for fuel cell components
US7517604B2 (en) * 2005-09-19 2009-04-14 3M Innovative Properties Company Fuel cell electrolyte membrane with acidic polymer
US7838138B2 (en) 2005-09-19 2010-11-23 3M Innovative Properties Company Fuel cell electrolyte membrane with basic polymer
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
JP5233069B2 (en) * 2005-12-15 2013-07-10 日産自動車株式会社 Fuel cell system and fuel cell vehicle
JP5205694B2 (en) * 2005-12-15 2013-06-05 日産自動車株式会社 Fuel, fuel cell system and fuel cell vehicle
GB0700819D0 (en) * 2006-01-19 2007-02-21 Sumitomo Chemical Co Polymer electrolyte composition and application thereof
EP2169747A4 (en) * 2007-06-15 2010-07-28 Sumitomo Chemical Co Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
US20100196785A1 (en) 2007-06-15 2010-08-05 Sumitomo Chemical Company, Limited Catalyst ink, method for producing catalyst ink, method for producing membrane-electrode assembly, membrane-electrode assembly produced by the method, and fuel cell
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
JP2009227979A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Polymer electrolyte composition
EP2447953A4 (en) 2009-06-24 2015-08-26 Toyo Boseki Solid polymer electrolyte composition, ion-exchange membrane, membrane electrode assembly, and fuel cell
KR101988688B1 (en) * 2011-12-20 2019-06-12 도레이 카부시키가이샤 Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode assembly and solid polymer fuel cell each using same
JPWO2013161405A1 (en) * 2012-04-26 2015-12-24 Jsr株式会社 Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422411A (en) * 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
DE19653484A1 (en) * 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Method for producing membrane electrode assemblies and a membrane electrode assembly thus produced
JPH11354140A (en) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc Thin film electrolyte having high strength
JP2000011756A (en) * 1998-06-22 2000-01-14 Toyota Central Res & Dev Lab Inc High-durability solid high molecular electrolyte
JP3506213B2 (en) * 1998-06-22 2004-03-15 株式会社豊田中央研究所 Highly durable solid polymer electrolyte
AU2001239406B2 (en) * 2000-03-22 2005-11-03 Victrex Manufacturing Limited Composite ion exchange material
CA2402841C (en) * 2000-03-22 2009-11-24 Victrex Manufacturing Limited Ion exchange materials
US7288603B2 (en) * 2000-11-13 2007-10-30 Toyo Boseki Kabushiki Kaisha Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
DE10220818A1 (en) * 2002-05-10 2003-11-20 Celanese Ventures Gmbh Process for producing a grafted polymer electrolyte membrane and its use in fuel cells

Also Published As

Publication number Publication date
JP2004134269A (en) 2004-04-30
DE10347457B4 (en) 2009-10-15
DE10347457A1 (en) 2004-04-29
CA2444647A1 (en) 2004-04-11
DE10362101B4 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4583705B2 (en) Phosphorus-containing polymer compound, synthesis method thereof, highly durable solid polymer electrolyte composition, and fuel cell
JP3925382B2 (en) High durability polymer electrolyte, composition, and fuel cell
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
US8206873B2 (en) Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell system
EP0787369A1 (en) Proton conducting polymers
JP2004134294A (en) Solid polyelectrolyte
US20070087261A1 (en) Membrane-electrode assembly for polymer electrolyte fuel cell
Jung et al. Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells
Oh et al. A hydrophobic blend binder for anti-water flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells
CN1716669A (en) Electrode assembly for fuel cell and fuel cell comprising the same
EP2169748A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP4399586B2 (en) POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE
JP2015529383A (en) Active layer formation with improved performance
US11482720B2 (en) Membrane-electrode assembly with improved durability and proton conductivity and method for manufacturing the same
KR20090054614A (en) Tailored catalyst binder of non-perfluorinated type, membrane-electrode assembly comprising thereof, and fuel cell comprising the same
JP2004327141A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
JP2006221970A (en) Operation method of direct methanol fuel cell
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
KR100868757B1 (en) Solid polymer electrolyte for fuel cell, manufacturing method thereof, and fuel cell using the same
KR102136167B1 (en) Polymer Electrolyte Membrane Applicable to Low Humidity Conditions and a Manufacturing Method Thereof
JP2007066852A (en) Polymer electrolyte film for fuel cell, and fuel cell
JP2005011697A (en) Proton exchange material and fuel cell electrode using the same
US20070190384A1 (en) Proton conductive membrane containing fullerenes
US20220367893A1 (en) Durable membrane-electrode assembly with high ionic conductivity and method of manufacturing same
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6