JP2000011756A - High-durability solid high molecular electrolyte - Google Patents

High-durability solid high molecular electrolyte

Info

Publication number
JP2000011756A
JP2000011756A JP10174352A JP17435298A JP2000011756A JP 2000011756 A JP2000011756 A JP 2000011756A JP 10174352 A JP10174352 A JP 10174352A JP 17435298 A JP17435298 A JP 17435298A JP 2000011756 A JP2000011756 A JP 2000011756A
Authority
JP
Japan
Prior art keywords
electrolyte
group
compound
high molecular
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10174352A
Other languages
Japanese (ja)
Inventor
Takumi Taniguchi
拓未 谷口
Masaya Kawakado
昌弥 川角
Tomo Morimoto
友 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10174352A priority Critical patent/JP2000011756A/en
Publication of JP2000011756A publication Critical patent/JP2000011756A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high molecular electrolyte that has oxidation resistance which is equal to or more than that of a fluorine electrolyte or practically sufficient and can be manufactured at low cost by mixing a high molecular compound having an electrolyte group and a hydrocarbon part with a compound containing phosphorus. SOLUTION: Because a high molecular compound having an electrolyte group and a hydrocarbon part is mixed with a compound containing phosphorus, the oxidation resistance of the hydrocarbon part is improved, so that a solid high molecular electrolyte having high durability can be provided. In addition, because the high molecular compound having the hydrocarbon part is relatively less expensive, the high molecular electrolyte having oxidation resistance which is equal to or more than that of a fluorine electrolyte or practically sufficient can be manufactured at low cost by mixing a functional group containing phosphorus in a range equal to or more than 0.1 mol.% of the whole electrolyte group. If it is used, for instance, as an electrolyte film for a solid high molecular type fuel cell, the solid high molecular type fuel cell excellent in durability can be manufactured at low cost and its effect is extremely great from an industrial view point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐久性固体高分
子電解質に関し、さらに詳しくは、燃料電池、水電解、
ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度セ
ンサ、ガスセンサ等に用いられる電解質膜等に好適な耐
酸化性等に優れた高耐久性固体高分子電解質に関するも
のである。
The present invention relates to a highly durable solid polymer electrolyte, and more particularly to a fuel cell, water electrolysis,
The present invention relates to a highly durable solid polymer electrolyte excellent in oxidation resistance and the like suitable for an electrolyte membrane used for hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.

【0002】[0002]

【従来の技術】固体高分子電解質は、高分子鎖中にスル
ホン酸基等の電解質基を有する固体高分子材料であり、
特定のイオンと強固に結合したり、陽イオン又は陰イオ
ンを選択的に透過する性質を有していることから、粒
子、繊維、あるいは膜状に成形し、電気透析、拡散透
析、電池隔膜等、各種の用途に利用されているものであ
る。
2. Description of the Related Art A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group in a polymer chain.
Since it has the property of firmly binding to specific ions and selectively permeating cations or anions, it is formed into particles, fibers, or membranes, and is used for electrodialysis, diffusion dialysis, battery membranes, etc. Are used for various purposes.

【0003】特に、ナフィオン(登録商標、デュポン社
製)の商品名で知られるパーフルオロスルホン酸膜に代
表されるフッ素系電解質膜は、化学的安定性が非常に高
いことから、過酷な条件下で使用される電解質膜として
賞用されている。
[0003] In particular, a fluorine-based electrolyte membrane typified by a perfluorosulfonic acid membrane known under the trade name of Nafion (registered trademark, manufactured by DuPont) has extremely high chemical stability, so that it is subjected to severe conditions. It has been awarded as an electrolyte membrane used in.

【0004】例えば、改質ガス燃料電池は、プロトン伝
導性の固体高分子電解質膜の両面に一対の電極を設け、
メタン、メタノール等、低分子の炭化水素を改質するこ
とにより得られる水素ガスを燃料ガスとして一方の電極
(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤と
して異なる電極(空気極)へ供給し、起電力を得るもの
である。また、水電解は、固体高分子電解質膜を用いて
水を電気分解することにより水素と酸素を製造する方法
である。
For example, a reformed gas fuel cell is provided with a pair of electrodes on both surfaces of a proton conductive solid polymer electrolyte membrane,
Hydrogen gas obtained by reforming low molecular hydrocarbons such as methane and methanol is supplied as fuel gas to one electrode (fuel electrode), and oxygen gas or air is used as an oxidant to a different electrode (air electrode). Supply and obtain an electromotive force. Water electrolysis is a method for producing hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.

【0005】燃料電池や水電解の場合、固体高分子電解
質膜と電極の界面に形成された触媒層において過酸化物
が生成し、生成した過酸化物が拡散しながら過酸化物ラ
ジカルとなって劣化反応を起こすので、耐酸化性に乏し
い炭化水素系電解質膜を使用することができない。その
ため、燃料電池や水電解においては、一般に、高いプロ
トン伝導性を有するパーフルオロスルホン酸膜が用いら
れている。
In the case of a fuel cell or water electrolysis, peroxide is generated in a catalyst layer formed at the interface between the solid polymer electrolyte membrane and the electrode, and the generated peroxide is diffused to form peroxide radicals. Since a degradation reaction occurs, a hydrocarbon-based electrolyte membrane having poor oxidation resistance cannot be used. Therefore, a perfluorosulfonic acid membrane having high proton conductivity is generally used in fuel cells and water electrolysis.

【0006】また、食塩電解は、固体高分子電解質膜を
用いて塩化ナトリウム水溶液を電気分解することによ
り、水酸化ナトリウムと、塩素と、水素を製造する方法
である。この場合、固体高分子電解質膜は、塩素と高
温、高濃度の水酸化ナトリウム水溶液にさらされるの
で、これらに対する耐性の乏しい炭化水素系電解質膜を
使用することができない。そのため、食塩電解用の固体
高分子電解質膜には、一般に、塩素及び高温、高濃度の
水酸化ナトリウム水溶液に対して耐性があり、さらに発
生するイオンの逆拡散を防ぐために表面に部分的にカル
ボン酸基を導入したパーフルオロスルホン酸膜が用いら
れている。
[0006] Salt electrolysis is a method for producing sodium hydroxide, chlorine and hydrogen by electrolyzing an aqueous solution of sodium chloride using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine and a high-temperature, high-concentration aqueous sodium hydroxide solution, it is not possible to use a hydrocarbon-based electrolyte membrane having poor resistance to these. Therefore, the solid polymer electrolyte membrane for salt electrolysis is generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and furthermore, the surface thereof is partially carbonized to prevent back diffusion of generated ions. A perfluorosulfonic acid membrane into which an acid group has been introduced is used.

【0007】ところで、パーフルオロスルホン酸膜に代
表されるフッ素系電解質は、C−F結合を有しているた
めに化学的安定性が非常に高く、上述した燃料電池用、
水電解用、あるいは食塩電解用の固体高分子電解質膜の
他、ハロゲン化水素酸電解用の固体高分子電解質膜とし
ても用いられ、さらにはプロトン伝導性を利用して、湿
度センサ、ガスセンサ、酸素濃縮器等にも広く応用され
ているものである。
Meanwhile, a fluorine-based electrolyte represented by a perfluorosulfonic acid membrane has a very high chemical stability because of having a C—F bond, and is used for the above-mentioned fuel cell.
In addition to solid polymer electrolyte membranes for water electrolysis or salt electrolysis, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis.Furthermore, utilizing proton conductivity, humidity sensors, gas sensors, oxygen sensors It is widely applied to concentrators and the like.

【0008】しかしながら、フッ素系電解質は製造が困
難で、非常に高価であるという欠点がある。そのため、
フッ素系電解質膜は、宇宙用あるいは軍用の固体高分子
型燃料電池等、特殊な用途に用いられ、自動車用の低公
害動力源としての固体高分子型燃料電池等、民生用への
応用を困難なものとしていた。
[0008] However, fluorine-based electrolytes have the disadvantage that they are difficult to produce and are very expensive. for that reason,
Fluorine-based electrolyte membranes are used for special applications such as solid polymer fuel cells for space or military use, and are difficult to apply to consumer applications such as solid polymer fuel cells as low-emission power sources for automobiles. I was doing it.

【0009】フッ素系電解質以外の高分子電解質の検討
例としては、スイス特許Appl.02 636/93
−6の、スルホン酸基を導入した架橋型ポリスチレング
ラフト樹脂膜や、特開平10ー45913のスルホン酸
型を導入したポリエーテルスルホン樹脂等の炭化水素系
電解質がある。
As a study example of a polymer electrolyte other than a fluorine-based electrolyte, see Swiss Appl. 02 636/93
And -6, a hydrocarbon-based electrolyte such as a cross-linked polystyrene graft resin film into which a sulfonic acid group is introduced, and a polyether sulfone resin into which a sulfonic acid type is introduced as disclosed in JP-A-10-45913.

【0010】これらの炭化水素系電解質膜は、ナフィオ
ンに代表されるフッ素系電解質膜と比較すると、製造が
容易で低コストという利点がある。しかしその一方で、
炭化水素系電解質膜は、上述したように耐酸化性が低い
という問題が残されていた。耐酸化性が低い理由は、炭
化水素化合物は一般にラジカルに対する耐久性が低く、
炭化水素骨格を有する電解質はラジカルによる劣化反応
(過酸化物ラジカルによる酸化反応)を起こしやすいた
めである。
[0010] These hydrocarbon-based electrolyte membranes are advantageous in that they are easy to manufacture and low in cost, as compared with fluorine-based electrolyte membranes represented by Nafion. But on the other hand,
As described above, the hydrocarbon-based electrolyte membrane has a problem that oxidation resistance is low. The reason that oxidation resistance is low is that hydrocarbon compounds generally have low durability against radicals,
This is because an electrolyte having a hydrocarbon skeleton easily undergoes a degradation reaction due to radicals (an oxidation reaction due to peroxide radicals).

【0011】そこで、フッ素系電解質膜と同等以上の耐
酸化性を有し、しかも低コストで製造可能な固体高分子
電解質膜を得るために、従来から種々の試みがなされて
いる。例えば、特開平9−102322号公報には、炭
化フッ素系ビニルモノマと炭化水素系ビニルモノマとの
共重合によって作られた主鎖と、スルホン酸基を有する
炭化水素系側鎖とから構成される、スルホン酸型ポリス
チレン−グラフト−エチレン−テトラフルオロエチレン
共重合体(ETFE)膜が提案されている。
Therefore, various attempts have hitherto been made to obtain a solid polymer electrolyte membrane having oxidation resistance equal to or higher than that of a fluorine-based electrolyte membrane and which can be manufactured at low cost. For example, Japanese Patent Application Laid-Open No. 9-102322 discloses a sulfone comprising a main chain formed by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a hydrocarbon side chain having a sulfonic acid group. Acid type polystyrene-graft-ethylene-tetrafluoroethylene copolymer (ETFE) membranes have been proposed.

【0012】また、米国特許第4,012,303号及
び米国特許第4,605,685号には、炭化フッ素系
ビニルモノマと炭化水素系ビニルモノマとの共重合によ
って作られた膜に、α,β,β-トリフルオロスチレン
をグラフト重合させ、これにスルホン酸基を導入して固
体高分子電解質膜とした、スルホン酸型ポリ(トリフル
オロスチレン)−グラフト−ETFE膜が提案されてい
る。これは、前記のスルホン酸基を導入したポリスチレ
ン側鎖部の化学的安定性が十分ではないとの認識を前提
に、スチレンの代わりに、スチレンをフッ素化したα,
β,β-トリフルオロスチレンを用いたものである。
Further, US Pat. No. 4,012,303 and US Pat. No. 4,605,685 disclose α, β in films formed by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. A sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane has been proposed in which a sulfonic acid group is introduced into the polymer by graft polymerization of .beta .-. Beta.-trifluorostyrene to form a solid polymer electrolyte membrane. This is based on the assumption that the chemical stability of the polystyrene side chain into which the sulfonic acid group is introduced is not sufficient, and instead of styrene, α, which is obtained by fluorinating styrene,
β, β-trifluorostyrene is used.

【0013】前述したスイス特許Appl.02 63
6/93−6の架橋型スルホン酸基導入型ポリスチレン
グラフト樹脂膜は、劣化しやすい炭化水素部であるポリ
スチレン樹脂に架橋を導入することにより、酸化劣化時
の低分子量成分の脱離を抑制し、燃料電池用の電解質膜
として利用した場合の耐久性を向上させる試みと考える
こともできる。
The above-mentioned Swiss patent Appl. 02 63
The 6 / 93-6 cross-linked sulfonic acid group-introduced polystyrene graft resin membrane suppresses the elimination of low molecular weight components during oxidative deterioration by introducing cross-links into the polystyrene resin, which is a hydrocarbon part that is easily degraded. It can also be considered as an attempt to improve durability when used as an electrolyte membrane for a fuel cell.

【0014】[0014]

【発明が解決しようとする課題】特開平9−10232
2号公報に開示されているスルホン酸型ポリスチレン−
グラフト−ETFE膜は、安価であり、燃料電池用の固
体高分子電解質膜として十分な強度を有し、しかもスル
ホン酸基導入量を増やすことによって導電率を向上させ
ることが可能とされている。
Problems to be Solved by the Invention
No. 2 sulfonic acid type polystyrene disclosed in
The graft-ETFE membrane is inexpensive, has sufficient strength as a solid polymer electrolyte membrane for a fuel cell, and can improve the electrical conductivity by increasing the amount of sulfonic acid groups introduced.

【0015】しかしながら、スルホン酸型ポリスチレン
−グラフト−ETFE膜は、炭化フッ素系ビニルモノマ
と炭化水素系ビニルモノマとの共重合によって作られた
主鎖部分の耐酸化性は高いが、スルホン酸基を導入した
側鎖部分は、酸化劣化を受けやすい炭化水素系高分子で
ある。従って、これを燃料電池に用いた場合には、膜全
体の耐酸化性が不十分であり、耐久性に乏しいという問
題がある。
However, in the sulfonic acid type polystyrene-graft-ETFE membrane, the main chain portion formed by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer has high oxidation resistance, but a sulfonic acid group is introduced. The side chain portion is a hydrocarbon polymer that is susceptible to oxidative degradation. Therefore, when this is used for a fuel cell, there is a problem that the oxidation resistance of the whole membrane is insufficient and the durability is poor.

【0016】一方、米国特許第4,012,303号等
に開示されているスルホン酸型ポリ(トリフルオロスチ
レン)−グラフト−ETFE膜は、側鎖部分をフッ素系
高分子で構成しているために、上述の問題を解決してい
ると思われる。
On the other hand, the sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane disclosed in US Pat. No. 4,012,303 and the like has a side chain composed of a fluoropolymer. It seems that the above problem has been solved.

【0017】しかしながら、側鎖部分の原料となるα,
β,β-トリフルオロスチレンは、合成が困難であるた
め、燃料電池用の固体高分子電解質膜として応用するこ
とを考えた場合には、前述のナフィオンの場合と同様に
コストの問題がある。また、α,β,β-トリフルオロ
スチレンは劣化しやすいために取り扱いが困難で、重合
反応性が低いという性質がある。そのため、グラフト側
鎖として導入できる量が低く、得られる膜の導電率が低
いという問題が残されている。
However, α, which is a raw material for the side chain portion,
Since β, β-trifluorostyrene is difficult to synthesize, there is a problem of cost as in the case of Nafion described above when considering application as a solid polymer electrolyte membrane for a fuel cell. Further, α, β, β-trifluorostyrene tends to deteriorate, so that it is difficult to handle and has low polymerization reactivity. Therefore, there remains a problem that the amount that can be introduced as a graft side chain is low, and the conductivity of the obtained film is low.

【0018】架橋型スルホン酸型ポリスチレングラフト
膜の耐久性は、架橋を導入していないスルホン酸型ポリ
スチレングラフト膜と比較すると高いが、その理由は、
物理的結合を増すことによって、劣化によって生じた成
分の脱離を防ぐものであり、高分子の耐久性そのものが
改善されてはおらず、本質的改善とは言えない。
The durability of the crosslinked sulfonic acid type polystyrene graft membrane is higher than that of the sulfonic acid type polystyrene graft membrane into which no crosslink is introduced.
By increasing the physical bond, it is possible to prevent the desorption of the components caused by the deterioration, and the durability itself of the polymer has not been improved and cannot be said to be an essential improvement.

【0019】本発明が解決しようとする課題は、フッ素
系電解質と同等以上、もしくは実用上十分な耐酸化性を
有し、しかも低コストで製造可能な高耐久性固体高分子
電解質を提供することにある。
An object of the present invention is to provide a highly durable solid polymer electrolyte which has oxidation resistance equal to or higher than that of a fluorine-based electrolyte, or has sufficient oxidation resistance for practical use, and can be manufactured at low cost. It is in.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る高耐久性固体高分子電解質は、電解質基
及び炭化水素部を有する高分子化合物と、燐を含む化合
物とを混合することにより得られるものであることを要
旨とするものである。
In order to solve the above problems, a highly durable solid polymer electrolyte according to the present invention comprises mixing a polymer compound having an electrolyte group and a hydrocarbon moiety with a compound containing phosphorus. The gist of the invention is that it can be obtained by doing so.

【0021】この場合、炭化水素部を有する高分子化合
物には、電解質基が導入可能な部分に対し、スルホン酸
基、カルボン酸基等の電解質基が導入されている必要が
ある。また、燐を含む化合物には、3価の燐を含む官能
基及び/又は5価の燐を含む官能基が含まれる種々の化
合物が含まれる。また、燐を含む化合物としては、ホス
ホン酸基を有する化合物が特に好ましい。
In this case, in the polymer compound having a hydrocarbon part, it is necessary that an electrolyte group such as a sulfonic acid group or a carboxylic acid group is introduced into a portion into which the electrolyte group can be introduced. Further, the compound containing phosphorus includes various compounds containing a functional group containing trivalent phosphorus and / or a functional group containing pentavalent phosphorus. Further, as the compound containing phosphorus, a compound having a phosphonic acid group is particularly preferable.

【0022】本発明に係る高耐久性固体高分子電解質
は、安価な電解質基及び炭化水素部を有する高分子化合
物と、燐を含む化合物とを混合することにより得られる
ものであり、固体高分子電解質に対し、燐を含む官能基
が導入されているので、燐を含む官能基により、炭化水
素部を有する高分子化合物の酸化劣化反応が抑制され
る。これにより、フッ素系電解質と同等以上、もしくは
実用上十分な耐酸化性を有し、しかも安価な高耐久性固
体高分子電解質を得ることが可能となる。
The highly durable solid polymer electrolyte according to the present invention is obtained by mixing an inexpensive polymer compound having an electrolyte group and a hydrocarbon moiety with a compound containing phosphorus. Since the functional group containing phosphorus is introduced into the electrolyte, the functional group containing phosphorus suppresses the oxidative deterioration reaction of the polymer compound having a hydrocarbon portion. This makes it possible to obtain an inexpensive highly durable solid polymer electrolyte having oxidation resistance equal to or higher than that of the fluorine-based electrolyte or sufficient for practical use.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。本発明に係る高耐久性固体高分子電解質
は、電解質基及び炭化水素部を有する高分子化合物と、
燐を含む化合物とを混合することにより得られるもので
ある。
Embodiments of the present invention will be described below in detail. The highly durable solid polymer electrolyte according to the present invention, a polymer compound having an electrolyte group and a hydrocarbon portion,
It is obtained by mixing with a compound containing phosphorus.

【0024】炭化水素部を有する高分子化合物は、高耐
久性固体高分子電解質の基材の一部を構成するものであ
り、高分子化合物を構成する分子鎖のいずれかにC−H
結合を有し、かつ電解質基を導入することが可能なもの
を意味する。また、電解質基とは、スルホン酸基、カル
ボン酸基等、電解質イオンを有する官能基をいう。さら
に、炭化水素部を有する高分子化合物には、電解質基を
導入することが可能な部分に対し、上述の電解質基が所
定の導入率で導入されている。
The high molecular compound having a hydrocarbon moiety constitutes a part of the base material of the highly durable solid polymer electrolyte, and C—H is attached to one of the molecular chains constituting the high molecular compound.
It means a compound having a bond and capable of introducing an electrolyte group. The electrolyte group refers to a functional group having an electrolyte ion, such as a sulfonic acid group and a carboxylic acid group. Further, in the polymer compound having a hydrocarbon portion, the above-described electrolyte group is introduced at a predetermined introduction rate to a portion into which the electrolyte group can be introduced.

【0025】炭化水素部を有する高分子化合物の具体例
としては、ポリエーテルスルホン樹脂、ポリエーテルエ
ーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒ
ド樹脂、架橋型フェノール−ホルムアルデヒド樹脂、直
鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖
型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフ
ルオロスチレン)樹脂、ポリ(2、3−ジフェニル−
1、4−フェニレンオキシド)樹脂、ポリ(アリルエー
テルケトン)樹脂、ポリ(アリレンエーテルスルホン)
樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベン
ジルシラン)樹脂、ポリスチレン−グラフト−エチレン
テトラフルオロエチレン樹脂、ポリスチレン−グラフト
−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト
−テトラフルオロエチレン樹脂等が一例として挙げられ
る。
Specific examples of the high molecular compound having a hydrocarbon moiety include polyether sulfone resin, polyether ether ketone resin, linear phenol-formaldehyde resin, cross-linked phenol-formaldehyde resin, linear polystyrene resin, and cross-linked polystyrene resin. Polystyrene resin, linear poly (trifluorostyrene) resin, crosslinked (trifluorostyrene) resin, poly (2,3-diphenyl-)
1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (arylene ether sulfone)
Resin, poly (phenylquinosan phosphorus) resin, poly (benzylsilane) resin, polystyrene-graft-ethylene-tetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoroethylene resin and the like are exemplified. .

【0026】中でも、ポリスチレン−グラフト−エチレ
ンテトラフルオロエチレン樹脂に代表される、エチレン
テトラフルオロスチレン樹脂を主鎖とし、電解質基を導
入可能な炭化水素系高分子を側鎖とするエチレンテトラ
フルオロエチレン樹脂のグラフト共重合体、ポリエーテ
ルスルホン樹脂及びポリエーテルエーテルケトン樹脂
は、安価であり、薄膜化したときに十分な強度を有し、
しかも電解質基の種類及び導入量を調節することにより
導電率を容易に制御することができるので、炭化水素部
を有する高分子化合物として特に好適である。
Among them, an ethylene tetrafluoroethylene resin represented by a polystyrene-graft-ethylenetetrafluoroethylene resin having an ethylene tetrafluorostyrene resin as a main chain and a hydrocarbon polymer capable of introducing an electrolyte group as a side chain. Graft copolymers, polyethersulfone resins and polyetheretherketone resins are inexpensive and have sufficient strength when thinned,
In addition, since the conductivity can be easily controlled by adjusting the type and the amount of the electrolyte group, it is particularly suitable as a polymer compound having a hydrocarbon moiety.

【0027】また、燐を含む化合物とは、燐を含む官能
基が含まれている物質をいい、燐を含む官能基を有する
化合物、及び主鎖もしくは側鎖中に燐を含む官能基を有
する高分子化合物の双方が該当する。また、燐を含む官
能基には、3価の燐を含む官能基と、5価の燐を含む官
能基とがあるが、本発明でいう「燐を含む官能基」に
は、3価及び5価の官能基の双方が含まれる。これらの
燐を含む官能基は、次の化1の式(3価の燐を含む官能
基)、及び化2の式(5価の燐を含む官能基)に示すよ
うな一般式で表すことができる。
The compound containing phosphorus means a substance containing a functional group containing phosphorus, a compound having a functional group containing phosphorus, and a compound having a functional group containing phosphorus in a main chain or a side chain. Both high molecular compounds are applicable. Further, the functional group containing phosphorus includes a functional group containing trivalent phosphorus and a functional group containing pentavalent phosphorus, and the “functional group containing phosphorus” in the present invention includes trivalent and trivalent phosphorus. Both pentavalent functional groups are included. These phosphorus-containing functional groups should be represented by the following general formulas (functional groups containing trivalent phosphorus) and chemical formulas 2 (functional groups containing pentavalent phosphorus). Can be.

【0028】[0028]

【化1】 Embedded image

【0029】[0029]

【化2】 Embedded image

【0030】なお、化1の式及び化2の式において、
x、y、及びzは、0又は1の値をとる。また、化1の
式及び化2の式において、R、R及びRは、一般
式Cで表される直鎖、環状、もしくは分岐構造の
ある炭化水素化合物、又はフッ素、塩素、臭素等のハロ
ゲン原子もしくは水素原子である。さらに、化1の式及
び化2の式において、y又はzが1の場合には、R
はRは、金属原子でもよい。
In the formulas (1) and (2),
x, y, and z take a value of 0 or 1. In the formulas (1) and (2), R 1 , R 2 and R 3 represent a hydrocarbon compound having a linear, cyclic or branched structure represented by the general formula C m H n , or fluorine, It is a halogen atom such as chlorine or bromine or a hydrogen atom. Further, in the formulas 1 and 2, when y or z is 1, R 2 or R 3 may be a metal atom.

【0031】燐を含む官能基の具体例としては、ホスホ
ン酸基、ホスホン酸エステル基、ホスファイト基、リン
酸、リン酸エステル等が挙げられる。中でも、ホスホン
酸基は、安価であり、炭化水素部を有する高分子化合物
に対し高い耐酸化性を付与することができるので、燐を
含む官能基として特に好適である。
Specific examples of the functional group containing phosphorus include a phosphonic acid group, a phosphonate ester group, a phosphite group, phosphoric acid, a phosphoric ester, and the like. Among them, a phosphonic acid group is particularly suitable as a functional group containing phosphorus because it is inexpensive and can impart high oxidation resistance to a polymer compound having a hydrocarbon moiety.

【0032】また、燐を含む化合物の具体例としては、
ポリビニルホスホン酸、あるいはホスホン酸基等を導入
したポリエーテルスルホン樹脂、ポリエーテルエーテル
ケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹
脂、架橋型フェノール−ホルムアルデヒド樹脂、直鎖型
ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポ
リ(トリフルオロスチレン)樹脂、架橋型(トリフルオ
ロスチレン)樹脂、ポリ(2、3−ジフェニル−1、4
−フェニレンオキシド)樹脂、ポリ(アリルエーテルケ
トン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、
ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシ
ラン)樹脂、ポリスチレン−グラフト−エチレンテトラ
フルオロエチレン樹脂、ポリスチレン−グラフト−ポリ
フッ化ビニリデン樹脂、ポリスチレン−グラフト−テト
ラフルオロエチレン樹脂等が一例として挙げられる。
Specific examples of the compound containing phosphorus include:
Polyvinyl sulfonate or a polyether sulfone resin, a polyether ether ketone resin, a linear phenol-formaldehyde resin, a crosslinked phenol-formaldehyde resin, a linear polystyrene resin, a crosslinked polystyrene resin, Chain type poly (trifluorostyrene) resin, crosslinked type (trifluorostyrene) resin, poly (2,3-diphenyl-1,4)
-Phenylene oxide) resin, poly (allyl ether ketone) resin, poly (arylene ether sulfone) resin,
Examples thereof include poly (phenylquinosan phosphorus) resin, poly (benzylsilane) resin, polystyrene-graft-ethylene-tetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, and polystyrene-graft-tetrafluoroethylene resin.

【0033】電解質基及び炭化水素部を有する高分子化
合物と燐を含む化合物との混合方法は、特に限定される
ものではなく、種々の方法を用いることができる。例え
ば、溶液によるドープ又はブレンドでもよい。また、電
解質基及び炭化水素部を有する高分子化合物と燐を含む
化合物の双方が熱溶融するものである場合には、熱溶融
によるブレンドでもよい。
The method of mixing the high molecular compound having an electrolyte group and a hydrocarbon moiety with the compound containing phosphorus is not particularly limited, and various methods can be used. For example, a dope or a blend by a solution may be used. When both a polymer compound having an electrolyte group and a hydrocarbon portion and a compound containing phosphorus are heat-meltable, a blend by heat melting may be used.

【0034】また、電解質基及び炭化水素部を有する高
分子化合物と、燐を含む化合物とを均一に混合すること
により、固体高分子電解質全体に燐を含む化合物を均一
に分散させた構造としてもよい。あるいは、電解質基及
び炭化水素部を有する高分子化合物のみで固体高分子電
解質の主要部を構成し、耐酸化性が要求される部分のみ
を電解質基及び炭化水素部を有する高分子化合物と燐を
含む化合物との混合物で構成してもよい。
Further, by uniformly mixing a polymer containing an electrolyte group and a hydrocarbon moiety with a compound containing phosphorus, a structure in which the compound containing phosphorus is uniformly dispersed throughout the solid polymer electrolyte may be obtained. Good. Alternatively, the main part of the solid polymer electrolyte is composed only of the polymer compound having the electrolyte group and the hydrocarbon part, and only the part where the oxidation resistance is required is obtained by combining the polymer compound having the electrolyte group and the hydrocarbon part with phosphorus. And a mixture with the compound.

【0035】例えば、固体高分子電解質膜を過酸化物溶
液に浸漬した状態で加熱する場合のように、膜中でラジ
カルがランダムに生成するような環境では、電解質基及
び炭化水素部を有する高分子化合物と燐を含む化合物と
を均一に混合し、燐を含む化合物を固体高分子電解質膜
中に均一に分散させた構造が有効である。
For example, in an environment where radicals are randomly generated in the membrane, such as when the solid polymer electrolyte membrane is heated in a state of being immersed in a peroxide solution, a high polymer having an electrolyte group and a hydrocarbon portion is used. A structure in which a molecular compound and a compound containing phosphorus are uniformly mixed, and a compound containing phosphorus is uniformly dispersed in a solid polymer electrolyte membrane is effective.

【0036】一方、水電解用あるいは燃料電池用の電解
質膜のように膜表面の触媒層で過酸化物が生成し、生成
した過酸化物が拡散しながら過酸化物ラジカルとなって
劣化反応を起こす環境では、燐を含む化合物が膜中に均
一に分散している必要はない。この場合には、電解質基
及び炭化水素部を有する高分子化合物に対して燐を含む
化合物をドープすることにより、酸化劣化反応の最も激
しい膜の表面部分のみを電解質基及び炭化水素部を有す
る高分子化合物と燐を含む化合物の混合物とすればよ
い。
On the other hand, peroxide is generated in the catalyst layer on the surface of the membrane, such as an electrolyte membrane for water electrolysis or a fuel cell, and the generated peroxide is diffused into peroxide radicals to cause a deterioration reaction. In an awake environment, the phosphorus-containing compound need not be uniformly dispersed in the film. In this case, by doping the polymer containing an electrolyte group and a hydrocarbon moiety with a compound containing phosphorus, only the surface portion of the film where the oxidative degradation reaction is the most intense is subjected to a high concentration having an electrolyte group and a hydrocarbon moiety. The mixture may be a mixture of a molecular compound and a compound containing phosphorus.

【0037】あるいは、電解質基及び炭化水素部を有す
る高分子化合物と燐を含む化合物の混合物からなる膜状
成形物を、電解質基及び炭化水素部を有する高分子化合
物のみからなる電解質と電極の間に挿入する方法も、電
解質膜の性能維持のために有効と考えられる。
Alternatively, a film-shaped molded article comprising a mixture of a polymer containing an electrolyte group and a hydrocarbon part and a compound containing phosphorus is placed between an electrolyte consisting only of a polymer compound having an electrolyte group and a hydrocarbon part and an electrode. Is also considered effective for maintaining the performance of the electrolyte membrane.

【0038】また、炭化水素部を有する高分子化合物中
に導入する電解質基の種類及び量、あるいは、燐を含む
化合物と、電解質基及び炭化水素部を有する高分子化合
物との混合比率は、導電率、耐酸化性等、固体高分子電
解質に要求される特性に応じて調整すればよい。
The type and amount of the electrolyte group introduced into the polymer compound having a hydrocarbon moiety, or the mixing ratio between the compound containing phosphorus and the polymer compound having the electrolyte group and the hydrocarbon moiety depends on the conductivity. What is necessary is just to adjust according to the characteristics required for a solid polymer electrolyte, such as rate and oxidation resistance.

【0039】すなわち、燐を含む官能基の導入量が多く
なるほど、耐酸化性は向上する。しかし、燐を含む官能
基は弱酸性基であるために、導入量が増大するに伴い、
材料全体の導電率が低下する。従って、耐酸化性のみを
問題とし、高い導電率が要求されないような用途に用い
られる場合には、電解質基及び炭化水素部を有する高分
子化合物に対する、燐を含む化合物の混合比率を増大さ
せればよい。
That is, the oxidation resistance increases as the amount of the functional group containing phosphorus increases. However, since the functional group containing phosphorus is a weakly acidic group, as the amount of introduction increases,
The conductivity of the entire material is reduced. Therefore, when only the oxidation resistance is a problem and it is used for an application in which high conductivity is not required, the mixing ratio of the phosphorus-containing compound to the polymer compound having the electrolyte group and the hydrocarbon part can be increased. I just need.

【0040】一方、燃料電池や水電解のように、高い耐
酸化性に加え、高い導電率特性が要求される場合には、
燐を含む化合物と、スルホン酸基等の強酸基を導入した
炭化水素部を有する高分子化合物とを所定の比率で混合
すればよい。また、食塩電解のように、塩素や高温、高
濃度の水酸化ナトリウム水溶液に対する高い耐性が要求
されると同時に、イオンの逆拡散を防ぐ必要がある場合
には、燐を含む化合物と、スルホン酸基及びカルボン酸
基を導入した炭化水素部を有する高分子化合物とを所定
の比率で混合すればよい。
On the other hand, when high conductivity characteristics are required in addition to high oxidation resistance as in fuel cells and water electrolysis,
The compound containing phosphorus and the high molecular compound having a hydrocarbon moiety into which a strong acid group such as a sulfonic acid group has been introduced may be mixed at a predetermined ratio. When high resistance to chlorine, high temperature, and high concentration sodium hydroxide aqueous solution is required as in the case of salt electrolysis and at the same time it is necessary to prevent reverse diffusion of ions, a compound containing phosphorus and a sulfonic acid What is necessary is just to mix at predetermined ratio the high molecular compound which has the hydrocarbon part which introduce | transduced the group and the carboxylic acid group.

【0041】但し、燐を含む官能基の導入量が全電解質
基の0.1mol%未満になると、耐酸化性向上効果が
十分ではなくなる。従って、燐を含む官能基の導入量
は、全電解質基の0.1mol%以上とする必要があ
る。特に、燃料電池、水電解、食塩電解等、過酷な条件
下で使用される固体高分子電解質の場合には、燐を含む
官能基は5mol%以上が好適である。
However, if the introduction amount of the functional group containing phosphorus is less than 0.1 mol% of the total electrolyte groups, the effect of improving the oxidation resistance becomes insufficient. Therefore, the introduction amount of the functional group containing phosphorus needs to be 0.1 mol% or more of the total electrolyte groups. In particular, in the case of a solid polymer electrolyte used under severe conditions such as fuel cell, water electrolysis, and salt electrolysis, the functional group containing phosphorus is preferably at least 5 mol%.

【0042】以上、詳細に説明したように、本発明に係
る高耐久性固体高分子電解質は、電解質基及び炭化水素
部を有する高分子化合物と、酸化反応を抑制する機能を
持つホスホン酸基等の燐を含む官能基を有する化合物を
混合することにより得られるものである。
As described in detail above, the highly durable solid polymer electrolyte according to the present invention comprises a polymer compound having an electrolyte group and a hydrocarbon moiety, and a phosphonic acid group having a function of suppressing an oxidation reaction. And a compound having a phosphorus-containing functional group.

【0043】固体高分子電解質の耐酸化性を向上させる
目的で燐酸およびホスホン酸化合物を用いた例は、従来
にはない。電解質基及び炭化水素部を有する高分子化合
物と、燐を含む化合物とを混合することにより、炭化水
素部を有する高分子化合物の耐酸化性を向上させること
ができる点は、本願発明者らによって初めて見いだされ
たものである。
There has been no example of using a phosphoric acid or a phosphonic acid compound for the purpose of improving the oxidation resistance of a solid polymer electrolyte. By mixing a polymer compound having an electrolyte group and a hydrocarbon portion with a compound containing phosphorus, the oxidation resistance of the polymer compound having a hydrocarbon portion can be improved. It was found for the first time.

【0044】しかしながら、その機構の詳細は不明であ
る。おそらく、燐を含む官能基を有する化合物を混合す
ることによって、固体高分子電解質全体の耐酸化性が向
上するのは、系中の過酸化物が熱あるいはイオンによっ
て過酸化物ラジカルへと変化する反応を、燐を含む官能
基が阻害しているためと考えられる。
However, the details of the mechanism are unknown. Presumably, by mixing a compound having a functional group containing phosphorus, the oxidation resistance of the entire solid polymer electrolyte is improved because the peroxide in the system is changed to a peroxide radical by heat or ions. It is considered that the reaction was inhibited by a functional group containing phosphorus.

【0045】(実施例1) ポリビニルホスホン酸をド
ープしたスルホン酸型グラフト系電解質膜 初めに、以下の手順に従い、スルホン酸型グラフト系電
解質膜を作製した。すなわち、2MeV、20kGyの
電子線を、厚さ50μm、50mm×50mmの大きさ
のエチレン−テトラフルオロエチレン共重合膜(以下、
これを「ETFE膜」という)にドライアイス冷却下で
照射し、ETFE膜内部にラジカルを生成させた。
(Example 1) Sulfonic acid type graft type electrolyte membrane doped with polyvinyl phosphonic acid First, a sulfonic acid type graft type electrolyte membrane was prepared according to the following procedure. That is, an electron beam of 2 MeV and 20 kGy is applied to an ethylene-tetrafluoroethylene copolymer film having a thickness of 50 μm and a size of 50 mm × 50 mm (hereinafter, referred to as “the film”).
This was referred to as “ETFE film”) under dry ice cooling to generate radicals inside the ETFE film.

【0046】このETFE膜をドライアイス冷却下で保
存し、室温に戻した後に速やかに過剰量のスチレンモノ
マに浸漬して、反応容器内部を窒素置換した後、60℃
で60時間加熱処理してポリスチレングラフト鎖を導入
した。反応後は、クロロホルムを用いて還流処理するこ
とにより非グラフト成分(スチレンモノマおよびホモポ
リマ)を抽出除去し、80℃で減圧乾燥して、グラフト
率85%のポリスチレン−グラフト−ETFE膜(以
下、これを「ETFE−g−PSt膜」という)を得
た。
The ETFE film was stored under cooling with dry ice, returned to room temperature, immediately immersed in an excessive amount of styrene monomer, and the inside of the reaction vessel was replaced with nitrogen.
For 60 hours to introduce a polystyrene graft chain. After the reaction, non-grafted components (styrene monomer and homopolymer) were extracted and removed by reflux treatment with chloroform, and dried under reduced pressure at 80 ° C. to obtain a polystyrene-graft-ETFE membrane (hereinafter, referred to as a “polystyrene-graft-ETFE membrane”) having a graft ratio of 85%. Is referred to as “ETFE-g-PSt film”).

【0047】得られたETFE−g−PSt膜を、クロ
ロスルホン酸30重量部、テトラクロロエタン70重量
部の混合溶液に室温で1時間浸漬し、膜のスチレン単位
に対してクロロスルホン基を導入した。反応後、膜をエ
タノールで洗浄して未反応成分を除去し、クロロスルホ
ン酸基を導入したETFE−g−PSt膜を得た。
The obtained ETFE-g-PSt film was immersed in a mixed solution of 30 parts by weight of chlorosulfonic acid and 70 parts by weight of tetrachloroethane at room temperature for 1 hour to introduce a chlorosulfone group into the styrene unit of the film. . After the reaction, the membrane was washed with ethanol to remove unreacted components to obtain an ETFE-g-PSt membrane into which a chlorosulfonic acid group was introduced.

【0048】この膜を1N水酸化カリウム水溶液に浸漬
し、1時間加熱還流処理することによってクロロスルホ
ン酸基を加水分解した。さらに、1N硫酸を用いて1時
間煮沸することによりスルホン酸基のプロトン交換を行
った。得られた膜を蒸留水で洗浄した後、80℃で減圧
乾燥して、当量重量410g/eqのスルホン酸型ET
FE−g−PSt膜を得た。なお、得られたスルホン酸
型ETFE−g−PSt膜のグラフト率は、次の数1の
式より算出した。
This film was immersed in a 1N aqueous solution of potassium hydroxide and heated under reflux for 1 hour to hydrolyze chlorosulfonic acid groups. Further, the mixture was boiled for 1 hour using 1N sulfuric acid to perform proton exchange of sulfonic acid groups. The obtained membrane was washed with distilled water and dried under reduced pressure at 80 ° C. to obtain an equivalent weight of 410 g / eq sulfonic acid type ET.
An FE-g-PSt film was obtained. In addition, the graft ratio of the obtained sulfonic acid type ETFE-g-PSt film was calculated by the following equation (1).

【0049】[0049]

【数1】グラフト率(%)=(WETFE−g−PSt
−WETFE)x100/W ETFE 但し、WETFE−g−PSt:グラフト化反応後の膜
重量(g)、 WETFE :反応前の膜重量(g)
## EQU1 ## Graft ratio (%) = (WETFE-g-PSt
-WETFE) X100 / W ETFE Where WETFE-g-PSt: Film after grafting reaction
Weight (g), WETFE : Membrane weight before reaction (g)

【0050】また、当量重量EWは、以下の手順により
測定した。すなわち、乾燥した膜0.1〜0.2gを
0.1N水酸化ナトリウム水溶液20mlに室温で12
時間浸漬し、膜中のホスホン酸基をナトリウム交換し
た。同時に、膜を加えない水酸化ナトリウム水溶液も同
様に調製してブランクとした。
The equivalent weight EW was measured according to the following procedure. That is, 0.1 to 0.2 g of the dried film was added to 20 ml of a 0.1 N aqueous sodium hydroxide solution at room temperature.
After immersion for a period of time, the phosphonic acid groups in the membrane were exchanged with sodium. At the same time, an aqueous sodium hydroxide solution to which no membrane was added was similarly prepared and used as a blank.

【0051】浸漬後、水酸化ナトリウム溶液から膜を取
り出し、膜を蒸留水で洗浄して洗液を浸漬液に加えたも
のを滴定用試料とした。自動滴定装置(平沼製 Com
tite T−900)を用いて、0.5N塩酸により
試料およびブランクを滴定し、滴定曲線の変曲点より終
点を求め、次の数2の式により膜のEWを算出した。
After the immersion, the membrane was taken out of the sodium hydroxide solution, the membrane was washed with distilled water, and the washing solution was added to the immersion liquid to obtain a titration sample. Automatic titrator (commercially available from Hiranuma)
The sample and the blank were titrated with 0.5N hydrochloric acid using (Tite T-900), the end point was determined from the inflection point of the titration curve, and the EW of the film was calculated by the following equation (2).

【0052】[0052]

【数2】EW(g/eq)=W/((Qblank−Q
sample)/1000×0.5×FHC ) 但し、W :膜重量(g)、 Qblank :ブランクに対する滴定量(ml)、 Qsample:試料に対する滴定量(ml)、 FHCl :0.5N塩酸の力価
EW (g / eq) = W / ((Q blank −Q
sample) /1000×0.5×F HC l) where, W: weight of the film (g), Q blank: drops against the blank quantitative (ml), Q sample: drops against sample quantifying (ml), F HCl: 0 . 5N hydrochloric acid titer

【0053】次に、得られたスルホン酸型ETFE−g
−PSt膜を、過剰量のポリビニルホスホン酸(ゼネラ
ルサイエンスコーポレーション製)の10%水溶液に浸
漬し、1時間加熱還流処理した。処理後、室温で膜を水
洗し、減圧乾燥してポリビニルホスホン酸を10wt%
ドープしたスルホン酸型ETFE−g−PSt膜を得
た。
Next, the obtained sulfonic acid type ETFE-g
The -PSt film was immersed in an excessive amount of a 10% aqueous solution of polyvinylphosphonic acid (manufactured by General Science Corporation), and heated and refluxed for 1 hour. After the treatment, the membrane is washed with water at room temperature, dried under reduced pressure, and polyvinylphosphonic acid is added at 10 wt%.
A doped sulfonic acid type ETFE-g-PSt film was obtained.

【0054】(比較例1) スルホン酸型グラフト系電
解質膜 ポリビニルホスホン酸のドープを行わなかった以外は、
実施例1と同様の手順に従い、当量重量410g/eq
のスルホン酸型ETFE−g−PSt膜を得た。
(Comparative Example 1) Sulfonic acid-type graft-type electrolyte membrane
Following the same procedure as in Example 1, the equivalent weight was 410 g / eq.
A sulfonic acid type ETFE-g-PSt film was obtained.

【0055】実施例1で得られたポリビニルホスホン酸
をドープしたスルホン酸型ETFE−g−PSt膜、及
び比較例1で得られたスルホン酸型ETFE−g−PS
t膜について、耐酸化性評価を行った。なお、膜の耐酸
化性は、3%過酸化水素水50ml中に約100mgの
膜を加え、塩化第二鉄20ppmを添加して加熱還流処
理し、所定時間後の膜の重量変化を測定することにより
評価した。結果を表1に示す。
The sulfonic acid type ETFE-g-PSt film doped with polyvinyl phosphonic acid obtained in Example 1 and the sulfonic acid type ETFE-g-PS film obtained in Comparative Example 1
The oxidation resistance of the t film was evaluated. The oxidation resistance of the film was determined by adding about 100 mg of the film to 50 ml of 3% hydrogen peroxide solution, adding 20 ppm of ferric chloride, heating and refluxing, and measuring the weight change of the film after a predetermined time. It was evaluated by: Table 1 shows the results.

【0056】[0056]

【表1】 [Table 1]

【0057】スルホン酸型ETFE−g−PSt膜(比
較例1)は、耐酸化試験10分で分解して初期重量の3
8%まで減少した。耐酸化試験後の膜は、酸化劣化によ
って炭化水素鎖部分(ポリスチレングラフト鎖)が完全
に脱離した状態であった。
The sulfonic acid type ETFE-g-PSt film (Comparative Example 1) was decomposed in an oxidation resistance test for 10 minutes and the initial weight was 3%.
It decreased to 8%. The film after the oxidation resistance test was in a state where the hydrocarbon chain portion (polystyrene graft chain) was completely eliminated due to the oxidative deterioration.

【0058】これに対してポリビニルホスホン酸をドー
プしたスルホン酸型ETFE−g−PSt膜(実施例
1)は、同様の条件下で2時間処理を行っても重量変化
をほとんど示さず、透明で均一な膜状態を維持してい
た。
On the other hand, the sulfonic acid type ETFE-g-PSt film doped with polyvinylphosphonic acid (Example 1) shows almost no change in weight even when treated under the same conditions for 2 hours, and is transparent. A uniform film state was maintained.

【0059】以上の結果より、炭化水素系電解質膜に対
してホスホン酸基を有する成分をドープすることによっ
て、炭化水素系電解質膜の耐酸化性が向上することが明
らかになった。
From the above results, it was clarified that the oxidation resistance of the hydrocarbon-based electrolyte membrane was improved by doping the hydrocarbon-based electrolyte membrane with a component having a phosphonic acid group.

【0060】(比較例2) スルホン酸型ポリエーテル
スルホン膜 ポリエーテルスルホン(Scientific Pol
ymer Products, Inc.社製。以下、
これを「PES」という)10gを濃硫酸100mlに
加え、室温、窒素気流下でクロロスルホン酸90g(ポ
リエーテルスルホン単位に対して18倍量)を2時間で
滴下し、さらに室温で1時間反応を行った。反応後、均
一溶液となった反応溶液を3lの蒸留水に滴下してスル
ホン化PESを析出させ、ろ過回収した。
Comparative Example 2 Sulfonic Acid Type Polyether Sulfone Membrane Polyether Sulfone (Scientific Pol)
ymer Products, Inc. Company. Less than,
10 g of this was called "PES") was added to 100 ml of concentrated sulfuric acid, and 90 g of chlorosulfonic acid (18 times the amount of the polyethersulfone unit) was added dropwise at room temperature under a nitrogen stream in 2 hours, and further reacted at room temperature for 1 hour. Was done. After the reaction, the reaction solution that became a homogeneous solution was dropped into 3 liters of distilled water to precipitate sulfonated PES, which was collected by filtration.

【0061】さらに、1N水酸化カリウム水溶液を用い
て1時間加熱還流処理して完全に加水分解し、1N塩酸
を用いて1時間加熱還流処理してプロトン交換を行っ
た。蒸留水で洗浄した後、80℃で減圧乾燥して、スル
ホン化PESを得た。
Further, the mixture was heated and refluxed with a 1N aqueous solution of potassium hydroxide for 1 hour to completely hydrolyze it, and then heated and refluxed with 1N hydrochloric acid for 1 hour to effect proton exchange. After washing with distilled water, it was dried at 80 ° C. under reduced pressure to obtain a sulfonated PES.

【0062】得られたスルホン化PESの5%DMF溶
液をガラス基板状に流延塗布し、150℃で減圧乾燥し
て溶媒を除去して製膜することにより、当量重量200
0g/eqのスルホン酸型PES膜を得た。
A 5% DMF solution of the obtained sulfonated PES was cast-coated on a glass substrate, dried at 150 ° C. under reduced pressure to remove the solvent, and formed into a film.
A sulfonic acid type PES membrane of 0 g / eq was obtained.

【0063】(実施例2) ホスホン酸型ポリエーテル
スルホン/スルホン酸型ポリエーテルスルホンブレンド
膜 PES10gを二硫化炭素100mlに加え、クロロメ
チルメチルエーテル150ml、無水塩化亜鉛10gを
添加して、室温で4時間反応を行い、フェニル単位にク
ロロメチル基を導入した。反応後は、均一溶液となった
反応溶液を3lのメタノールに滴下してクロロメチル化
PESを析出させ、ろ過回収した。この洗浄作業を3回
繰り返した後、80℃で減圧乾燥して、クロロメチル化
PESを得た。
Example 2 10 g of phosphonic acid type polyethersulfone / sulfonic acid type polyethersulfone blend membrane PES was added to 100 ml of carbon disulfide, 150 ml of chloromethyl methyl ether and 10 g of anhydrous zinc chloride were added. Reaction was carried out for a time to introduce a chloromethyl group into the phenyl unit. After the reaction, the reaction solution that had become a homogeneous solution was dropped into 3 liters of methanol to precipitate chloromethylated PES, which was collected by filtration. After repeating this washing operation three times, the resultant was dried under reduced pressure at 80 ° C. to obtain chloromethylated PES.

【0064】クロロメチル化PESの5%ジエチルカル
ビトール(以下、これを「DEC」という)溶液を、ト
リエチルホスファイト(以下、これを「TEP」とい
う)とDECの等量混合液に還流条件下で滴下し、2時
間反応を行った。反応後、反応溶液をヘキサンに滴下
し、ホスホネート化PESを析出させ、ろ過回収した。
10N塩酸を用いて24時間加熱還流処理してホスホネ
ートを加水分解し、蒸留水で洗浄した後、80℃で減圧
乾燥して、ホスホン酸化PESを得た。
A 5% solution of chloromethylated PES in diethyl carbitol (hereinafter referred to as “DEC”) is added to a mixed solution of an equal amount of triethyl phosphite (hereinafter referred to as “TEP”) and DEC under reflux conditions. And reacted for 2 hours. After the reaction, the reaction solution was dropped into hexane to precipitate phosphonated PES, which was collected by filtration.
The phosphonate was hydrolyzed by heating and refluxing with 10 N hydrochloric acid for 24 hours, washed with distilled water, and dried at 80 ° C. under reduced pressure to obtain a phosphonated PES.

【0065】作製した当量重量1000g/eqのホス
ホン酸化PESの5%ジメチルホルムアミド(以下、こ
れを「DMF」という)溶液と、比較例2で得た当量重
量2000g/eqのスルホン酸化PESの5%DMF
溶液とを1:1の割合で混合した後、ガラス基板状に流
延塗布し、150℃で減圧乾燥して溶媒を除去して製膜
することにより、ホスホン酸型ポリエーテルスルホン/
スルホン酸型ポリエーテルスルホンブレンド膜を得た。
A 5% dimethylformamide (hereinafter referred to as "DMF") solution of phosphonated PES having an equivalent weight of 1000 g / eq and a 5% solution of a sulfonated PES having an equivalent weight of 2000 g / eq obtained in Comparative Example 2 were prepared. DMF
After mixing with a solution at a ratio of 1: 1, the mixture was cast and coated on a glass substrate, dried at 150 ° C. under reduced pressure to remove the solvent, and formed into a film.
A sulfonic acid type polyether sulfone blend membrane was obtained.

【0066】(実施例3) ポリビニルホスホン酸/ス
ルホン酸型ポリエーテルスルホンブレンド膜 実施例1で用いたポリビニルホスホン酸の5%DMF溶
液と、比較例2の方法で作製したスルホン酸化PESの
5%DMF溶液とを1:1の割合で混合した後、ガラス
基板状に流延塗布し、150℃で減圧乾燥して溶媒を除
去して製膜することにより、ポリビニルホスホン酸/ス
ルホン酸型ポリエーテルスルホンブレンド膜を得た。
Example 3 Polyvinylsulfonate / Sulfonate Type Polyethersulfone Blend Membrane A 5% solution of polyvinylphosphonic acid in DMF used in Example 1 and a 5% solution of sulfonated PES prepared by the method of Comparative Example 2 After mixing with a DMF solution at a ratio of 1: 1, the mixture was cast and coated on a glass substrate, dried at 150 ° C. under reduced pressure to remove the solvent, and formed into a film to form a polyvinyl phosphonic acid / sulfonic acid type polyether. A sulfone blend membrane was obtained.

【0067】(比較例3) スルホン酸型ポリエーテル
エーテルケトン膜 PESに代えて、ポリエーテルエーテルケトン(以下、
これを「PEEK」という)を用いた他は比較例2とほ
ぼ同様にして、当量重量1900g/eqのスルホン酸
型PEEK膜を得た。
(Comparative Example 3) Sulfonic acid type polyether ether ketone film Instead of PES, polyether ether ketone (hereinafter, referred to as
A sulfonic acid type PEEK membrane having an equivalent weight of 1900 g / eq was obtained in substantially the same manner as in Comparative Example 2 except that this was referred to as “PEEK”.

【0068】(実施例4) ホスホン酸型ポリエーテル
エーテルケトン/スルホン酸型ポリエーテルエーテルケ
トンブレンド膜 PESに代えて、PEEKを用いた他は実施例2とほぼ
同様にして、当量重量1000g/eqのホスホン酸型
PEEK膜を得た。このホスホン酸型PEEKの5%D
MF溶液と、比較例3で得たスルホン酸型PEEKの5
%DMF溶液とを1:1の割合で混合した後、ガラス基
板状に流延塗布し、150℃で減圧乾燥して溶媒を除去
して製膜することにより、ホスホン酸型ポリエーテルエ
ーテルケトン/スルホン酸型ポリエーテルエーテルケト
ンブレンド膜を得た。
Example 4 Phosphonic acid type polyetheretherketone / sulfonic acid type polyetheretherketone blend membrane In substantially the same manner as in Example 2 except that PEEK was used instead of PES, the equivalent weight was 1000 g / eq. Was obtained. 5% D of this phosphonic acid type PEEK
MF solution and 5% of the sulfonic acid type PEEK obtained in Comparative Example 3
% DMF solution at a ratio of 1: 1 and then cast and coated on a glass substrate, dried at 150 ° C. under reduced pressure to remove the solvent and form a film, thereby forming a phosphonic acid type polyether ether ketone / A sulfonic acid type polyether ether ketone blend membrane was obtained.

【0069】(実施例5) ポリビニルホスホン酸/ス
ルホン酸型ポリエーテルエーテルケトンブレンド膜 実施例1で用いたポリビニルホスホン酸の5%DMF溶
液と、比較例3で得たスルホン酸PEEKの5%DM
F溶液とを1:1の割合で混合した後、ガラス基板状に
流延塗布し、150℃で減圧乾燥して溶媒を除去して製
膜することにより、ポリビニルホスホン酸/スルホン酸
型ポリエーテルエーテルケトンブレンド膜を得た。
Example 5 Polyvinylphosphonic acid / sulfonic acid type polyetheretherketone blend membrane 5% DMF solution of polyvinylphosphonic acid used in Example 1 and 5% of sulfonic acid type PEEK obtained in Comparative Example 3 DM
The F solution was mixed at a ratio of 1: 1 and then cast and applied on a glass substrate, dried at 150 ° C. under reduced pressure to remove the solvent, and formed into a film, thereby forming a polyvinyl phosphonic acid / sulfonic acid type polyether. An ether ketone blend membrane was obtained.

【0070】実施例2〜5で得られたホスホン酸基含有
高分子成分をブレンドしたスルホン酸型高分子膜、及
び、比較例2〜3で得られたスルホン酸型高分子膜につ
いて、実施例1と同様の手順に従い、耐酸化性試験を行
った。結果を表2に示す。
The sulfonic acid type polymer membrane obtained by blending the phosphonic acid group-containing polymer components obtained in Examples 2 to 5 and the sulfonic acid type polymer film obtained in Comparative Examples 2 to 3 were prepared. According to the same procedure as in Example 1, an oxidation resistance test was performed. Table 2 shows the results.

【0071】[0071]

【表2】 [Table 2]

【0072】ホスホン酸型高分子成分を全く含んでいな
いスルホン酸型高分子膜(比較例2および3)は、耐酸
化試験2時間で分解して水溶化した。また、ホスホン酸
型高分子成分をブレンドした、ホスホン酸型高分子成分
の含有率が50%であるスルホン酸型高分子膜(実施例
2、3、4及び5)の場合、耐酸化試験2時間経過後の
重量維持率は、80〜95%を示しており、スルホン酸
型高分子膜の場合(比較例2および3)と比較すると高
い耐酸化性を示した。
The sulfonic acid type polymer membrane containing no phosphonic acid type polymer component (Comparative Examples 2 and 3) was decomposed and made water soluble in an oxidation resistance test for 2 hours. Further, in the case of the sulfonic acid type polymer membrane (Examples 2, 3, 4 and 5) in which the phosphonic acid type polymer component content is 50% and the phosphonic acid type polymer component is blended, the oxidation resistance test 2 The weight retention after the lapse of time was 80 to 95%, indicating higher oxidation resistance as compared with the case of the sulfonic acid type polymer membrane (Comparative Examples 2 and 3).

【0073】以上の結果より、炭化水素系電解質膜とホ
スホン酸基を有する成分とをブレンドすることによっ
て、炭化水素系電解質膜の耐酸化性が向上することが明
らかになった。
From the above results, it was revealed that the oxidation resistance of the hydrocarbon-based electrolyte membrane was improved by blending the hydrocarbon-based electrolyte membrane with a component having a phosphonic acid group.

【0074】以上、本発明の実施の形態について詳細に
説明したが、本発明は、上記実施の形態に何ら限定され
るものではなく、本発明の要旨を逸脱しない範囲内で種
々の改変が可能である。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. It is.

【0075】例えば、上記実施の形態では、電解質基及
び炭化水素部を有する高分子化合物として、スルホン酸
基を有するエチレンテトラフルオロエチレンを主鎖とす
るグラフト共重合体、ポリエーテルエーテルケトン、あ
るいはポリエーテルスルホンを用いているが、電解質基
及び炭化水素部を有する高分子化合物はこれに限定され
るものではなく、カルボン酸基等の他の電解質基を有す
る炭化水素系電解質でも良く、あるいは他の炭化水素部
を有する高分子化合物を用いても良い。
For example, in the above embodiment, as the polymer compound having an electrolyte group and a hydrocarbon portion, a graft copolymer having ethylene-tetrafluoroethylene having a sulfonic acid group as a main chain, a polyetheretherketone, or a polyetheretherketone may be used. Although ether sulfone is used, the polymer compound having an electrolyte group and a hydrocarbon portion is not limited thereto, and may be a hydrocarbon-based electrolyte having another electrolyte group such as a carboxylic acid group, or other A high molecular compound having a hydrocarbon portion may be used.

【0076】また、上記実施の形態では、燐を含む化合
物として、ポリビニルホスホン酸、ホスホン酸基を導入
したポリエーテルスルホン、ホスホン酸基を導入したポ
リエーテルエーテルケトンを用いているが、燐を含む化
合物はこれに限定されるものではなく、他の燐を含む官
能基、例えばホスホン酸エステル基、ホスファイト基等
を有する各種の化合物を用いても良い。
In the above embodiment, polyvinylphosphonic acid, polyethersulfone having a phosphonic acid group introduced, and polyetheretherketone having a phosphonic acid group introduced therein are used as the phosphorus-containing compounds. The compound is not limited thereto, and various compounds having another functional group containing phosphorus, such as a phosphonate ester group or a phosphite group, may be used.

【0077】さらに、上記実施の形態では、スルホン酸
基を有する炭化水素系電解質に対して、ホスホン酸基を
有する化合物を均一にドープすることにより、固体高分
子電解質の耐酸化性を向上させているが、実際に使用す
る条件下で最も酸化劣化の激しい部分、例えば、スルホ
ン酸基を有する炭化水素系電解質の表面に、ホスホン酸
基を有する化合物、あるいは、スルホン酸基を有する炭
化水素系電解質とホスホン酸基を有する化合物の混合物
からなる膜状成型物を、ホットプレス等の手段により機
械的にはり合わせても良く、これにより実際に使用する
上で、上記実施の形態と同様の効果を得ることができ
る。
Further, in the above embodiment, the oxidation resistance of the solid polymer electrolyte is improved by uniformly doping the compound having a phosphonic acid group into the hydrocarbon electrolyte having a sulfonic acid group. However, under the conditions of actual use, the most severely oxidative deterioration, for example, a compound having a phosphonic acid group on the surface of a hydrocarbon-based electrolyte having a sulfonic acid group, or a hydrocarbon-based electrolyte having a sulfonic acid group And a film-shaped molded product composed of a mixture of compounds having a phosphonic acid group, may be mechanically bonded to each other by means such as hot pressing, so that the same effect as in the above embodiment can be obtained in actual use. Obtainable.

【0078】[0078]

【発明の効果】本発明に係る高耐久性固体高分子電解質
は、電解質基及び炭化水素部を有する高分子化合物と、
燐を含有する化合物を混合するようにしたので、炭化水
素部の耐酸化性が向上し、高い耐久性を有する固体高分
子電解質が得られるという効果がある。
The high-durability solid polymer electrolyte according to the present invention comprises a polymer compound having an electrolyte group and a hydrocarbon moiety,
Since the compound containing phosphorus is mixed, there is an effect that the oxidation resistance of the hydrocarbon portion is improved and a solid polymer electrolyte having high durability can be obtained.

【0079】また、炭化水素部を有する高分子化合物
は、相対的に安価であるので、電解質基及び炭化水素部
を有する高分子化合物と燐を含む高分子化合物とを混合
することにより、フッ素系電解質と同等以上、もしくは
実用上十分な耐酸化性を有する高耐久性固体高分子電解
質を安価に製造できるという効果がある。
Further, since a polymer compound having a hydrocarbon moiety is relatively inexpensive, a fluorine-containing polymer compound is mixed with a polymer compound having an electrolyte group and a hydrocarbon moiety and a phosphorus-containing polymer compound. There is an effect that a highly durable solid polymer electrolyte having an oxidation resistance equal to or higher than that of an electrolyte or having sufficient oxidation resistance for practical use can be manufactured at low cost.

【0080】そのため、これを例えば固体高分子型燃料
電池用の電解質膜として用いれば、耐久性に優れた固体
高分子型燃料電池が安価に製造可能となるものであり、
産業上その効果の極めて大きい発明である。
Therefore, if this is used as an electrolyte membrane for a polymer electrolyte fuel cell, for example, a polymer electrolyte fuel cell having excellent durability can be manufactured at low cost.
This is an invention that is extremely effective in industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 友 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4J002 BC031 BC032 BC111 BC112 BN031 BN032 BQ002 CC031 CC032 CH091 CH092 CN031 CN032 CP211 CP212 GD00 GQ00 5H026 AA06 EE11 EE15 EE17 EE18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomo Morimoto 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture F-term in Toyota Central R & D Laboratories Co., Ltd. 4J002 BC031 BC032 BC111 BC112 BN031 BN032 BQ002 CC031 CC032 CH091 CH092 CN031 CN032 CP211 CP212 GD00 GQ00 5H026 AA06 EE11 EE15 EE17 EE18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質基及び炭化水素部を有する高分子
化合物と、燐を含む化合物とを混合することにより得ら
れる高耐久性固体高分子電解質。
1. A highly durable solid polymer electrolyte obtained by mixing a polymer containing an electrolyte group and a hydrocarbon moiety with a compound containing phosphorus.
【請求項2】 前記燐を含む化合物が、ホスホン酸基を
有する化合物であることを特徴とする請求項1に記載の
高耐久性固体電解質。
2. The highly durable solid electrolyte according to claim 1, wherein the phosphorus-containing compound is a compound having a phosphonic acid group.
JP10174352A 1998-06-22 1998-06-22 High-durability solid high molecular electrolyte Pending JP2000011756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174352A JP2000011756A (en) 1998-06-22 1998-06-22 High-durability solid high molecular electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174352A JP2000011756A (en) 1998-06-22 1998-06-22 High-durability solid high molecular electrolyte

Publications (1)

Publication Number Publication Date
JP2000011756A true JP2000011756A (en) 2000-01-14

Family

ID=15977141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174352A Pending JP2000011756A (en) 1998-06-22 1998-06-22 High-durability solid high molecular electrolyte

Country Status (1)

Country Link
JP (1) JP2000011756A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343132A (en) * 2001-05-10 2002-11-29 Toyota Central Res & Dev Lab Inc Composite solid high polymer electrolyte, its manufacturing method, and fuel cell
JP2003020308A (en) * 2001-07-10 2003-01-24 Toyota Central Res & Dev Lab Inc Method for producing solid polymeric electrolyte
WO2003034445A1 (en) * 2001-10-11 2003-04-24 Sony Corporation Proton conductor, process for its production and electrochemical devices
JP2003151346A (en) * 2001-08-30 2003-05-23 Sumitomo Chem Co Ltd Polymer electrolyte composition and its application
WO2004017334A1 (en) * 2002-08-12 2004-02-26 Toyota Jidosha Kabushiki Kaisha Solid polyelectrolyte with high durability and solid polyelectrolyte (composite) film comprising the same
US6828407B2 (en) 2002-01-15 2004-12-07 Sumitomo Chemical Company, Limited Polymer electrolyte composition and uses thereof
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2005527075A (en) * 2002-03-06 2005-09-08 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixture containing vinylphosphonic acid, polymer electrolyte membrane containing polyvinylphosphonic acid, and use thereof in fuel cell
US7226987B2 (en) 2001-02-15 2007-06-05 Sumitomo Chemical Company Limited Aromatic polymer phosphonic acid derivative and process for production the same
US7384996B2 (en) 2002-11-28 2008-06-10 Toyota Jidosha Kabushiki Kaisha Phosphorus-containing polymer compound, synthesizing method thereof, antioxidant, high-durability polymer electrolyte composite, electrode, and fuel cell
DE10347457B4 (en) * 2002-10-11 2009-10-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Highly resistant polymer electrolyte composite
WO2010150762A1 (en) 2009-06-24 2010-12-29 東洋紡績株式会社 Solid polymer electrolyte composition, ion-exchange membrane, membrane electrode assembly, and fuel cell
JP2012079415A (en) * 2010-09-30 2012-04-19 Toyobo Co Ltd Polymer electrolyte membrane, and membrane/electrode assembly using the same and fuel cell
CN103000923A (en) * 2007-12-14 2013-03-27 戈尔企业控股股份有限公司 Composition containing polyvinylphosphonic acid and use thereof
WO2013094538A1 (en) 2011-12-20 2013-06-27 東レ株式会社 Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode assembly and solid polymer fuel cell each using same
WO2015155979A1 (en) * 2014-04-07 2015-10-15 Toray Industries, Inc. Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
WO2015156228A1 (en) * 2014-04-07 2015-10-15 東レ株式会社 Polymer electrolyte composition and polymer electrolyte membrane, membrane-electrolyte assembly, and solid polymer fuel cell using same
CN114573934A (en) * 2022-03-04 2022-06-03 国家电投集团氢能科技发展有限公司 Sulfonated polymer/modified polystyrene composite and ion exchange membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188895A (en) * 1995-01-11 1996-07-23 Permelec Electrode Ltd Water electrolyzing method
JPH0987510A (en) * 1995-09-22 1997-03-31 Japan Synthetic Rubber Co Ltd Proton-conductive polymeric solid electrolyte
JPH10101873A (en) * 1996-10-02 1998-04-21 Sony Corp Polyelectrolyte composition and its production
JPH10162846A (en) * 1996-08-28 1998-06-19 Ecr Electro Chem Res Ltd Electrochemical system, manufacture thereof, and reference electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188895A (en) * 1995-01-11 1996-07-23 Permelec Electrode Ltd Water electrolyzing method
JPH0987510A (en) * 1995-09-22 1997-03-31 Japan Synthetic Rubber Co Ltd Proton-conductive polymeric solid electrolyte
JPH10162846A (en) * 1996-08-28 1998-06-19 Ecr Electro Chem Res Ltd Electrochemical system, manufacture thereof, and reference electrode
JPH10101873A (en) * 1996-10-02 1998-04-21 Sony Corp Polyelectrolyte composition and its production

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226987B2 (en) 2001-02-15 2007-06-05 Sumitomo Chemical Company Limited Aromatic polymer phosphonic acid derivative and process for production the same
JP2002343132A (en) * 2001-05-10 2002-11-29 Toyota Central Res & Dev Lab Inc Composite solid high polymer electrolyte, its manufacturing method, and fuel cell
JP2003020308A (en) * 2001-07-10 2003-01-24 Toyota Central Res & Dev Lab Inc Method for producing solid polymeric electrolyte
JP2003151346A (en) * 2001-08-30 2003-05-23 Sumitomo Chem Co Ltd Polymer electrolyte composition and its application
US7128888B2 (en) 2001-10-11 2006-10-31 Sony Corporation Proton conductor and method for manufacturing the same, and electrochemical device
WO2003034445A1 (en) * 2001-10-11 2003-04-24 Sony Corporation Proton conductor, process for its production and electrochemical devices
CN100449831C (en) * 2001-10-11 2009-01-07 索尼株式会社 Proton conductor and method for manufacturing the same, and electrochemical device
KR100933647B1 (en) * 2002-01-15 2009-12-23 스미또모 가가꾸 가부시끼가이샤 Polymer Electrolyte Compositions and Uses thereof
US6828407B2 (en) 2002-01-15 2004-12-07 Sumitomo Chemical Company, Limited Polymer electrolyte composition and uses thereof
JP2005527075A (en) * 2002-03-06 2005-09-08 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixture containing vinylphosphonic acid, polymer electrolyte membrane containing polyvinylphosphonic acid, and use thereof in fuel cell
JP2004079252A (en) * 2002-08-12 2004-03-11 Toyota Motor Corp High ruggedness solid polyelectrolyte and solid polyelectrolyte (composite) membrane using it
WO2004017334A1 (en) * 2002-08-12 2004-02-26 Toyota Jidosha Kabushiki Kaisha Solid polyelectrolyte with high durability and solid polyelectrolyte (composite) film comprising the same
DE10347457B4 (en) * 2002-10-11 2009-10-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Highly resistant polymer electrolyte composite
DE10362101B4 (en) * 2002-10-11 2010-04-08 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Electrode and fuel cell with long service life
US7384996B2 (en) 2002-11-28 2008-06-10 Toyota Jidosha Kabushiki Kaisha Phosphorus-containing polymer compound, synthesizing method thereof, antioxidant, high-durability polymer electrolyte composite, electrode, and fuel cell
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
CN103000923A (en) * 2007-12-14 2013-03-27 戈尔企业控股股份有限公司 Composition containing polyvinylphosphonic acid and use thereof
WO2010150762A1 (en) 2009-06-24 2010-12-29 東洋紡績株式会社 Solid polymer electrolyte composition, ion-exchange membrane, membrane electrode assembly, and fuel cell
CN102483966A (en) * 2009-06-24 2012-05-30 东洋纺织株式会社 Solid polymer electrolyte composition, ion-exchange membrane, membrane electrode assembly, and fuel cell
JP5720568B2 (en) * 2009-06-24 2015-05-20 東洋紡株式会社 Solid polymer electrolyte composition, ion exchange membrane, membrane / electrode assembly, fuel cell
JP2012079415A (en) * 2010-09-30 2012-04-19 Toyobo Co Ltd Polymer electrolyte membrane, and membrane/electrode assembly using the same and fuel cell
WO2013094538A1 (en) 2011-12-20 2013-06-27 東レ株式会社 Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode assembly and solid polymer fuel cell each using same
KR20140105462A (en) 2011-12-20 2014-09-01 도레이 카부시키가이샤 Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode assembly and solid polymer fuel cell each using same
WO2015156228A1 (en) * 2014-04-07 2015-10-15 東レ株式会社 Polymer electrolyte composition and polymer electrolyte membrane, membrane-electrolyte assembly, and solid polymer fuel cell using same
WO2015155979A1 (en) * 2014-04-07 2015-10-15 Toray Industries, Inc. Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
KR20160142289A (en) 2014-04-07 2016-12-12 도레이 카부시키가이샤 Polymer electrolyte composition and polymer electrolyte membrane, membrane-electrolyte assembly, and solid polymer fuel cell using same
KR20160143685A (en) 2014-04-07 2016-12-14 도레이 카부시키가이샤 Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
JPWO2015156228A1 (en) * 2014-04-07 2017-04-13 東レ株式会社 POLYMER ELECTROLYTE COMPOSITION, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND SOLID POLYMER FUEL CELL USING SAME
JP2017518602A (en) * 2014-04-07 2017-07-06 東レ株式会社 POLYMER ELECTROLYTE COMPOSITION AND POLYMER ELECTROLYTE MEMBRANE, ELECTROLYTE MEMBRANE WITH CATALYST LAYER, MEMBRANE ELECTRODE COMPLEX
US10103401B2 (en) 2014-04-07 2018-10-16 Toray Industries, Inc. Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
US10186725B2 (en) 2014-04-07 2019-01-22 Toray Industries, Inc. Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
CN114573934A (en) * 2022-03-04 2022-06-03 国家电投集团氢能科技发展有限公司 Sulfonated polymer/modified polystyrene composite and ion exchange membrane
CN114573934B (en) * 2022-03-04 2023-12-12 国家电投集团氢能科技发展有限公司 Sulfonated polymer/modified polystyrene composite and ion exchange membrane

Similar Documents

Publication Publication Date Title
US6607856B2 (en) Solid polymer electrolyte having high-durability
JP2000011756A (en) High-durability solid high molecular electrolyte
Nasef et al. Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly (tetrafluoroethylene‐co‐hexafluoropropylene) films. II. Properties of sulfonated membranes
Albert et al. Radiation-grafted polymer electrolyte membranes for water electrolysis cells: evaluation of key membrane properties
KR100971640B1 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JP3506213B2 (en) Highly durable solid polymer electrolyte
JP4989226B2 (en) Membrane for fuel cell and manufacturing method thereof
JP6002685B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP4621344B2 (en) Proton conducting membrane or film and fuel cell using them
KR20050010793A (en) Polymer electrolyte membrane, method for the production thereof, and application thereof in fuel cells
EP1110992B1 (en) Solid polymer electrolyte having high-durability
JP2001348439A (en) Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof
JP4467227B2 (en) High durability solid polymer electrolyte (composite) membrane
JP4986219B2 (en) Electrolyte membrane
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
CN114108006A (en) Proton exchange membrane for hydrogen production by water electrolysis and preparation method thereof
JP2001302721A (en) Highly proton-conductive electrolyte
US8232325B2 (en) Separation membrane for direct liquid fuel cell and method for producing same
JP4810726B2 (en) Method for producing solid polymer electrolyte
JP2003346815A (en) Membrane electrode joint body and method for manufacturing the same
JP2000090945A (en) Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
US11180620B2 (en) Proton-conducting inorganic particles, method for the preparation thereof, and use thereof to form a fuel cell membrane
Bassil et al. Plasma-treated phosphonic acid-based membranes for fuel cell
JP4774623B2 (en) Composite solid polymer electrolyte, method for producing the same, and fuel cell