JP3924451B2 - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP3924451B2
JP3924451B2 JP2001356431A JP2001356431A JP3924451B2 JP 3924451 B2 JP3924451 B2 JP 3924451B2 JP 2001356431 A JP2001356431 A JP 2001356431A JP 2001356431 A JP2001356431 A JP 2001356431A JP 3924451 B2 JP3924451 B2 JP 3924451B2
Authority
JP
Japan
Prior art keywords
lead terminal
optical semiconductor
metallized layer
ground lead
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001356431A
Other languages
Japanese (ja)
Other versions
JP2003158329A (en
Inventor
絵美 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001356431A priority Critical patent/JP3924451B2/en
Publication of JP2003158329A publication Critical patent/JP2003158329A/en
Application granted granted Critical
Publication of JP3924451B2 publication Critical patent/JP3924451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子を収容するための光半導体素子収納用パッケージ、およびその光半導体素子収納用パッケージを用いた光半導体装置に関する。
【0002】
【従来の技術】
従来の光半導体素子収納用パッケージ(以下、光半導体パッケージという)を図4に斜視図で示す(特開2001−127371号参照)。この光半導体パッケージは、上面に凹部101aを有する略直方体の絶縁材料から成り、凹部101aの底面に光半導体素子106を載置する載置部を有するとともに、一側部に貫通孔101bが形成された基体101と、貫通孔101bに嵌着されるかまたは基体101外面側開口の周囲に接合された光ファイバ固定部材(以下、固定部材という)102とを有する。
【0003】
また光半導体パッケージは、他の側部の外面の下端に形成された信号リード端子接続用の第一のメタライズ層101cと、第一のメタライズ層101cの周りを一定間隔で囲むように形成された接地リード端子接続用の第二のメタライズ層101dと、第一のメタライズ層101c上に上端が接合された信号リード端子105aと、信号リード端子105aと略平行で略同じ高さとなるように第二のメタライズ層101d上に上端が接合された接地リード端子105bとを具備している。また、基体101の上面には、蓋体104をシーム溶接するための金属製のシールリング103が接合されている。
【0004】
なお、第二のメタライズ層101dが第一のメタライズ層101cの周りを一定間隔で囲んでいることにより、信号リード端子105aに数10GHz程度以上の高周波信号を入出力させた場合、信号リード端子105aの上方側および側方側への高周波信号の放射を有効に防止することができる。即ち、高周波信号が高周波化することによる透過損失の増大を防止することにより、光半導体パッケージへの高周波信号の低損失な入出力を可能するものである。
【0005】
【発明が解決しようとする課題】
しかしながら、10〜100GHz程度の高周波帯域の高周波信号を光半導体パッケージに入出力させる場合に透過損失の増大を防止するために、即ち接地電位(グランド)をより強化するために、第二のメタライズ層101dを第一のメタライズ層101cの周りにより大きな面積で設けることが考えられるが、この場合、第二のメタライズ層101dと接地リード端子105bとをロウ付けする際に、ロウ材が第二のメタライズ層101dの表面で濡れ広がるという問題点があった。
【0006】
即ち、図4の従来構成では、第二のメタライズ層101dと接地リード端子105bとの間にロウ材のメニスカスが形成されて、第二のメタライズ層101dと接地リード端子105bとの接合が強固になっていたが、接地電位をより強化しようとして第二のメタライズ層101dの面積を大きくすると、ロウ材が第二のメタライズ層101dの表面で濡れ広がり、メニスカスが形成されなくなる。その結果、第二のメタライズ層101dと接地リード端子105bとの接合力が低下するという問題があった。
【0007】
従って、本発明は上記従来の問題点に鑑み完成されたものであり、その目的は、接地リード端子の基体への接合を強固にするとともに、10〜100GHz程度の高周波帯域の高周波信号を低損失で入出力できる光半導体パッケージを提供することにある。
【0008】
【課題を解決するための手段】
本発明の光半導体パッケージは、略直方体とされ、上面に形成された凹部の底面に光半導体素子を載置する載置部が設けられているとともに一側部に貫通孔が形成されている絶縁材料から成る基体と、前記貫通孔に嵌着されるかまたは前記貫通孔の前記基体外面側開口の周囲に一端が接合された筒状の光ファイバ固定部材と、前記基体の他の側部の外面の下端に形成された第一のメタライズ層と、該第一のメタライズ層の周りを一定間隔で囲むとともに前記他の側部の外面の略全面に形成された第二のメタライズ層と、前記第一のメタライズ層上に上端が接合され下端が下方に延設された信号リード端子と、前記第二のメタライズ層上に前記信号リード端子と略平行にかつ前記基体の下面からの上端の高さが略同じになるように上端が接合された接地リード端子とを具備して成り、前記接地リード端子の横に、前記接地リード端子の長手方向に沿って幅が0.03〜0.5mmのスリット状の前記第二のメタライズ層の非形成部が前記他の側部の外面の下辺から前記接地リード端子の上端よりも0.1mm以上高い位置まで設けられていることを特徴とする。
【0009】
本発明は、上記の構成により、10〜100GHz程度の非常に高い周波数帯域の高周波信号を光半導体パッケージに入出力させた場合においても、高周波信号の透過損失の増大を防ぐことが可能である。また、第二のメタライズ層と接地リード端子との接合を強固なものとし得る。
【0010】
本発明の光半導体装置は、上記本発明の光半導体パッケージと、前記載置部に載置固定されるとともに前記第一のメタライズ層および前記第二のメタライズ層を介して前記信号リード端子および前記接地リード端子に電気的に接続された光半導体素子と、前記基体の上面に接合された蓋体とを具備したことを特徴とする。
【0011】
本発明は、上記の構成により、光半導体素子に非常に高い周波数帯域の高周波信号を低損失で入出力できるとともに、接地リード端子の接合力が向上した信頼性の高い高性能の光半導体装置を提供できる。
【0012】
【発明の実施の形態】
本発明の光半導体パッケージについて以下に詳細に説明する。図1は本発明の光半導体パッケージについて実施の形態の例を示す。同図において、1は、上面に凹部1aを有する略直方体の絶縁材料から成り、凹部1aの底面に光半導体素子6を載置する載置部を有するとともに、一側部に凹部1aから基体1の外側面にかけて貫通するように形成された貫通孔1bを有する基体である。2は、貫通孔1bの基体1外面側開口の周囲に一端が接合されるかまたは貫通孔1bに嵌着された筒状の固定部材(光ファイバ固定部材)、3は、基体1の上面に接合され蓋体4のシーム溶接を可能とする金属製のシールリング、5a,5bは、基体1の他の側部で対向する側部の外面に被着された第一のメタライズ層1c,第二のメタライズ層1dの上面に接合された信号リード端子,接地リード端子である。これら基体1、固定部材2、シールリング3、信号リード端子5a、接地リード端子5bで、光半導体パッケージが主に構成される。
【0013】
本発明の基体1は、アルミナ(Al23)セラミックスや窒化アルミニウム(AlN)セラミックス等のセラミックスから成る絶縁材料であり、その誘電率や熱膨張係数等の特性と光半導体素子6の特性に応じて適宜選定される。
【0014】
また、基体1の一側部に形成された貫通孔1bは、光ファイバ(図示せず)から出力される光信号または光ファイバに入力される光信号の伝達経路として機能し、貫通孔1bに設けられる固定部材2の内周面には、光を集光するサファイア等から成るレンズ等の透光性部材(図示せず)が接合される。貫通孔1bに嵌着されるかまたは貫通孔1bの基体1外面側開口の周囲に一端が接合される固定部材2は、基体1との熱膨張係数差による熱歪みを有効に防止するものであり、光ファイバを樹脂等で接着固定した金属ホルダ(図示せず)をYAGレーザ溶接するために、基体1の熱膨張係数に近似した金属から成る。その金属としては、鉄(Fe)−ニッケル(Ni)合金やFe−Ni−コバルト(Co)合金等がよく、例えばFe−Ni−Co合金のインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。
【0015】
また、基体1の他の側部で対向する側部の外面には、第一のメタライズ層1cと、第一のメタライズ層1cの周りを一定間隔で囲むように第二のメタライズ層1dとが被着されており、第一のメタライズ層1c上には信号リード端子5aの上端が、第二のメタライズ層1d上には接地リード端子5bの上端が、銀(Ag)ロウ等のロウ材で接合される。そして、図2に示すように、接地リード端子5bの横に、接地リード端子5bの長手方向に沿って幅が0.03〜0.5mmのスリット状の第二のメタライズ層1dの非形成部Aが他の側部の外面の下辺から接地リード端子5bの上端よりも0.1mm以上高い位置(上方の位置)まで設けられている。
【0016】
第二のメタライズ層1dは、接地電位強化をするとともに10〜100GHz程度の高周波信号を光半導体パッケージに低損失で入出力させるために、第一のメタライズ層1cの周りに一定間隔が設けられた部位よりも、基体1の他の側部の上面側に延設される。即ち、第二のメタライズ層1dは他の側部の外面の略全面に形成される。その結果、10〜100GHz程度の高周波信号が伝送された場合にその伝送特性が良好になる。
【0017】
なお、第二のメタライズ層1dと第一のメタライズ層1cとの間隔は0.03〜2mm程度がよく、0.03mm未満では、第二のメタライズ層1dと第一のメタライズ層1cとが短絡し易くなる。2mmを超えると、第二のメタライズ層1dの接地電位による高周波信号の漏洩抑制の効果が小さくなる。従って、この間隔を設けることにより、信号リード端子5aからの高周波信号の放射による漏洩を防ぎ、高周波信号の損失が小さく効率のよい透過特性が得られるという効果がある。
【0018】
この第二のメタライズ層1dは、図3に他の実施の形態を示すように、基体1の他の側部のみに限らず、一側部や基体1の下面に延長されていても良い。図3のように基体1の側部全面に被着すれば、光半導体パッケージ全体をグランドとして機能させることができ、接地電位強化の点で好ましい。また、図3の構成では、第二のメタライズ層1dは金属製のシールリング3に電気的に接続されるため、蓋体4が金属から成る場合光半導体装置自体をグランドとして機能させ得る。
【0019】
また、第二のメタライズ層1dの接地リード端子5bの横にスリット状の非形成部Aを設けることにより、第二のメタライズ層1dに接地リード端子5bを接合したときに、ロウ材が広がるのが非形成部Aで阻止され、接地リード端子5bの接合部の周囲にロウ材の良好なメニスカスが形成される。そのため、接地リード端子5bの接合強度の劣化を有効に防止できるとともに、隣接する端子同士がロウ材によって接続されるのを防止できる。また、第二のメタライズ層1dが他の側部の外面の略全面に形成されているため、接地リード端子5bを接合するためのロウ材は接地リード端子5bの接合部から上方に広がり易くなっており、接地リード端子5bの接合部から上方に大きなロウ材のメニスカスを形成することができる。従って、接地リード端子5bの自由端(下端)側の主面に垂直な外力が加わることが多いが、その場合接地リード端子5bが基体1から剥がれるのを有効に防止することができる。
【0020】
非形成部Aの上端が、接地リード端子5bが接合される上端よりも0.1mm未満の高さに位置する場合、ロウ材が接地リード端子5bの上端部から隣接する端子側(横方向)に流れ出易くなり、大きなロウ材のメニスカスを形成するのが困難になる。また、非形成部Aの幅が0.03mm未満の場合、そのようなきわめて小さい幅の非形成部Aを第二のメタライズ層1dに形成するのは困難である。一方、0.5mmを超える場合、接地導体層としての第二のメタライズ層1dの面積が小さくなるため接地電位強化が難しくなる。
【0021】
第一のメタライズ層1c,第二のメタライズ層1dは、タングステン(W),モリブデン(Mo),マンガン(Mn)等の高融点金属粉末に適当な有機バインダ、溶剤等を添加混合して得た金属ペーストを、基体1となるセラミックグリーンシートに予め従来周知のスクリーン印刷法により所定パターンで印刷塗布し、焼成することによって基体1に被着形成される。
【0022】
第一のメタライズ層1c,第二のメタライズ層1dに接合される信号リード端子5a,接地リード端子5bは、基体1との熱膨張係数差による熱歪みを有効に防止するとともに高周波信号の伝送を可能とするために、基体1の熱膨張係数に近似した金属から成るのがよい。その金属としては、Fe−Ni合金やFe−Ni−Co合金等がよく、例えばFe−Ni−Co合金のインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。
【0023】
また、基体1の上面には、基体1との熱膨張係数差による熱歪みを有効に防止するとともに基体1の上面に接合されて蓋体4のシーム溶接を可能とする金属製のシールリング3が、Agロウ等のロウ材を介して接合される。その金属としてはFe−Ni合金やFe−Ni−Co合金等がよく、例えばFe−Ni−Co合金のインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定形状に形成される。
【0024】
かくして、本発明の光半導体パッケージは、略直方体とされ、上面に形成された凹部1aの底面に光半導体素子6を載置する載置部が設けられているとともに一側部に貫通孔1bが形成されている絶縁材料から成る基体1と、貫通孔1bに嵌着されるかまたは貫通孔1bの基体1外面側開口の周囲に一端が接合された筒状の固定部材2と、基体1の他の側部の外面の下端に形成された第一のメタライズ層1cと、第一のメタライズ層1cの周りを一定間隔で囲むとともに他の側部の外面の略全面に形成された第二のメタライズ層1dと、第一のメタライズ層1c上に上端が接合され下端が下方に延設された信号リード端子5aと、第二のメタライズ層1d上に信号リード端子5aと略平行にかつ基体1の下面からの上端の高さが略同じになるように上端が接合された接地リード端子5bとを具備し、接地リード端子5bの横に、接地リード端子5bの長手方向に沿って幅が0.03〜0.5mmのスリット状の第二のメタライズ層1dの非形成部Aが他の側部の外面の下辺から接地リード端子5bの上端よりも0.1mm以上高い位置まで設けられている。
【0025】
また、本発明の光半導体装置は、本発明の光半導体パッケージと、載置部に載置固定されるとともに第一のメタライズ層1cおよび第二のメタライズ層1dを介して信号リード端子5aおよび接地リード端子5bに電気的に接続された光半導体素子6と、基体1の上面に接合された蓋体4とを具備している。具体的には、光半導体パッケージの載置部に光半導体素子6をガラス,樹脂,ロウ材等の接着剤を介して接着固定するとともに、光半導体素子6の各電極をボンディングワイヤ(図示せず)を介して光半導体パッケージ内部の所定のメタライズ配線層1eに接続し、しかる後、基体1上面に蓋体4をシーム溶接等により接合して封止することにより、光半導体素子6を内部に気密に封止した光半導体装置となる。光半導体パッケージ内部のメタライズ配線層1eは、セラミック層等を多層積層して成る基体1の側部を貫通して形成されることにより、基体1外面の第一のメタライズ層1cおよび第二のメタライズ層1dに電気的に接続されている。そして、光半導体素子6と外部電気回路基板(図示せず)とは、信号リード端子5a,接地リード端子5bを介して電気的に接続されることになる。
【0026】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば非形成部Aは基体1の側部を切り欠いて成るものでも良く、この場合、第二のメタライズ層1dをスクリーン印刷法により所定パターンに形成した際、塗布された第二のメタライズ層1dが非形成部Aを埋めるのを有効に防止できる。即ち、切り欠かれて成る非形成部Aの内面の横方向(幅方向)の距離が増大して、焼成前の第二のメタライズ層1dの滲みによって非形成部Aが埋まるのを有効に防止できる。
【0027】
【発明の効果】
本発明は、接地リード端子の横に、接地リード端子の長手方向に沿って幅が0.03〜0.5mmのスリット状の第二のメタライズ層の非形成部が他の側部の外面の下辺から接地リード端子の上端よりも0.1mm以上高い位置まで設けられていることにより、接地導体層としての第二のメタライズ層が他の側部の外面の略全面に形成されるため、基体の接地電位強化がなされて、10〜100GHz程度の非常に高い周波数帯域の高周波信号を光半導体パッケージに入出力させた場合においても、高周波信号を低損失で入出力することができる。
【0028】
また、第二のメタライズ層と接地リード端子との接合が強固になるとともに、隣接する端子同士がろう材によって接続されるのを防止できる。さらに、第二のメタライズ層が他の側部の外面の略全面に形成されているため、接地リード端子を接合するためのロウ材は接地リード端子の接合部から上方に広がり易くなっており、接地リード端子の接合部から上方に大きなロウ材のメニスカスを形成することができる。従って、接地リード端子の自由端(下端)側の主面に垂直な外力が加わることが多いが、その場合接地リード端子が基体から剥がれるのを有効に防止することができる。
【0029】
本発明の光半導体装置は、本発明の光半導体パッケージと、載置部に載置固定されるとともに第一のメタライズ層および第二のメタライズ層を介して信号リード端子および接地リード端子に電気的に接続された光半導体素子と、基体の上面に接合された蓋体とを具備したことにより、光半導体素子に非常に高い周波数帯域の高周波信号を低損失で入出力できるとともに、接地リード端子の接合力が向上した信頼性の高い高性能の光半導体装置となる。
【図面の簡単な説明】
【図1】本発明の光半導体パッケージについて実施の形態の例を示す斜視図である。
【図2】図1の光半導体パッケージの要部拡大斜視図である。
【図3】本発明の光半導体パッケージについて実施の形態の他の例を示す斜視図である。
【図4】従来の光半導体パッケージの斜視図である。
【符号の説明】
1:基体
1a:凹部
1b:貫通孔
1c:第一のメタライズ層
1d:第二のメタライズ層
2:光ファイバ固定部材
4:蓋体
5a:信号リード端子
5b:接地リード端子
6:光半導体素子
A:非形成部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD), and an optical semiconductor device using the optical semiconductor element housing package.
[0002]
[Prior art]
A conventional package for housing an optical semiconductor element (hereinafter referred to as an optical semiconductor package) is shown in a perspective view in FIG. 4 (see Japanese Patent Application Laid-Open No. 2001-127371). This optical semiconductor package is made of a substantially rectangular parallelepiped insulating material having a concave portion 101a on the upper surface, has a mounting portion for mounting the optical semiconductor element 106 on the bottom surface of the concave portion 101a, and has a through hole 101b on one side. And an optical fiber fixing member (hereinafter referred to as a fixing member) 102 that is fitted into the through hole 101b or joined around the outer surface side opening of the base 101.
[0003]
Further, the optical semiconductor package was formed so as to surround the first metallized layer 101c for connecting the signal lead terminals formed at the lower end of the outer surface of the other side part and the first metallized layer 101c around the first metallized layer 101c at a constant interval. The second metallized layer 101d for connecting the ground lead terminal, the signal lead terminal 105a whose upper end is joined on the first metallized layer 101c, and the second metallized layer 101b so as to be substantially parallel to and substantially the same height as the signal lead terminal 105a. And a ground lead terminal 105b whose upper end is joined to the metallized layer 101d. A metal seal ring 103 for seam welding the lid 104 is joined to the upper surface of the base 101.
[0004]
When the second metallized layer 101d surrounds the first metallized layer 101c at a constant interval, when the signal lead terminal 105a inputs / outputs a high frequency signal of several tens of GHz or more, the signal lead terminal 105a The high-frequency signal can be effectively prevented from being radiated to the upper side and the side side. That is, by preventing an increase in transmission loss due to the high frequency of the high frequency signal, a low loss input / output of the high frequency signal to the optical semiconductor package is possible.
[0005]
[Problems to be solved by the invention]
However, in order to prevent an increase in transmission loss when a high-frequency signal in a high-frequency band of about 10 to 100 GHz is inputted to or outputted from the optical semiconductor package, that is, in order to further strengthen the ground potential (ground), the second metallization layer Although it is conceivable to provide 101d with a larger area around the first metallized layer 101c, in this case, when the second metallized layer 101d and the ground lead terminal 105b are brazed, the brazing material becomes the second metallized layer. There was a problem that the surface of the layer 101d spreads wet.
[0006]
That is, in the conventional configuration of FIG. 4, a brazing meniscus is formed between the second metallized layer 101d and the ground lead terminal 105b, and the second metallized layer 101d and the ground lead terminal 105b are firmly joined. However, if the area of the second metallized layer 101d is increased in order to further strengthen the ground potential, the brazing material spreads on the surface of the second metallized layer 101d, and no meniscus is formed. As a result, there is a problem that the bonding force between the second metallized layer 101d and the ground lead terminal 105b is reduced.
[0007]
Accordingly, the present invention has been completed in view of the above-described conventional problems, and its purpose is to strengthen the bonding of the ground lead terminal to the base and to reduce the high-frequency signal in the high-frequency band of about 10 to 100 GHz with low loss. It is to provide an optical semiconductor package that can be input and output at a high speed.
[0008]
[Means for Solving the Problems]
The optical semiconductor package of the present invention is a substantially rectangular parallelepiped, and is provided with a mounting portion for mounting the optical semiconductor element on the bottom surface of the recess formed on the upper surface and a through hole formed on one side. A base made of a material, a cylindrical optical fiber fixing member fitted into the through-hole or having one end bonded around the base-side outer surface opening of the through-hole, and the other side of the base A first metallized layer formed at the lower end of the outer surface, a second metallized layer surrounding the first metallized layer at a constant interval and formed on substantially the entire outer surface of the other side part, A signal lead terminal having an upper end joined on the first metallization layer and a lower end extending downward, and a height of the upper end from the lower surface of the base body substantially parallel to the signal lead terminal on the second metallization layer The top ends are joined so that the The second metallization layer having a slit shape with a width of 0.03 to 0.5 mm along the longitudinal direction of the ground lead terminal beside the ground lead terminal. The forming portion is provided from the lower side of the outer surface of the other side portion to a position higher than the upper end of the ground lead terminal by 0.1 mm or more.
[0009]
According to the present invention, an increase in transmission loss of a high frequency signal can be prevented even when a high frequency signal in a very high frequency band of about 10 to 100 GHz is input / output to / from the optical semiconductor package. Further, the bonding between the second metallized layer and the ground lead terminal can be strengthened.
[0010]
The optical semiconductor device of the present invention includes the above-described optical semiconductor package of the present invention, the signal lead terminal and the above-described signal lead terminal and the second metallized layer, which are mounted and fixed to the mounting portion. An optical semiconductor element electrically connected to the ground lead terminal and a lid bonded to the upper surface of the base are provided.
[0011]
According to the present invention, a high-performance optical semiconductor device with high reliability in which a high-frequency signal in a very high frequency band can be input / output with low loss to the optical semiconductor element and the bonding strength of the ground lead terminal is improved. Can be provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The optical semiconductor package of the present invention will be described in detail below. FIG. 1 shows an example of an embodiment of an optical semiconductor package of the present invention. In the figure, reference numeral 1 is made of a substantially rectangular parallelepiped insulating material having a recess 1a on the top surface, has a mounting portion for mounting the optical semiconductor element 6 on the bottom surface of the recess 1a, and has a base 1 from the recess 1a on one side. It is a base | substrate which has the through-hole 1b formed so that it might penetrate through to the outer surface. Reference numeral 2 denotes a cylindrical fixing member (optical fiber fixing member) whose one end is joined around the opening on the outer surface side of the base 1 of the through hole 1b or is fitted into the through hole 1b. The metal seal rings 5a and 5b that are joined and enable seam welding of the lid 4 are provided on the first metallized layer 1c, A signal lead terminal and a ground lead terminal joined to the upper surface of the second metallized layer 1d. The base body 1, the fixing member 2, the seal ring 3, the signal lead terminal 5a, and the ground lead terminal 5b mainly constitute an optical semiconductor package.
[0013]
The substrate 1 of the present invention is an insulating material made of ceramics such as alumina (Al 2 O 3 ) ceramics or aluminum nitride (AlN) ceramics, and has characteristics such as dielectric constant and thermal expansion coefficient and characteristics of the optical semiconductor element 6. It is selected as appropriate.
[0014]
The through hole 1b formed on one side of the base 1 functions as a transmission path for an optical signal output from an optical fiber (not shown) or an optical signal input to the optical fiber. A translucent member (not shown) such as a lens made of sapphire or the like that collects light is joined to the inner peripheral surface of the fixing member 2 provided. The fixing member 2 that is fitted into the through hole 1b or is joined at one end to the periphery of the opening on the outer surface of the base body 1 of the through hole 1b effectively prevents thermal distortion due to a difference in thermal expansion coefficient from the base body 1. In order to perform YAG laser welding of a metal holder (not shown) in which an optical fiber is bonded and fixed with resin or the like, it is made of a metal that approximates the thermal expansion coefficient of the substrate 1. As the metal, an iron (Fe) -nickel (Ni) alloy, an Fe-Ni-cobalt (Co) alloy, or the like is preferable. For example, an ingot (lumb) of an Fe-Ni-Co alloy is rolled or punched. These are formed into a predetermined shape by applying a conventionally known metal processing method.
[0015]
Further, on the outer surface of the side portion facing the other side portion of the substrate 1, there are a first metallized layer 1c and a second metallized layer 1d so as to surround the first metallized layer 1c at a constant interval. The upper end of the signal lead terminal 5a is formed on the first metallized layer 1c, and the upper end of the ground lead terminal 5b is formed on the second metallized layer 1d with a brazing material such as silver (Ag) brazing. Be joined. And as shown in FIG. 2, the non-formation part of the slit-like 2nd metallization layer 1d whose width | variety is 0.03-0.5 mm along the longitudinal direction of the ground lead terminal 5b beside the ground lead terminal 5b. A is provided from the lower side of the outer surface of the other side part to a position (upward position) higher by 0.1 mm or more than the upper end of the ground lead terminal 5b.
[0016]
The second metallized layer 1d is provided with a constant interval around the first metallized layer 1c in order to reinforce the ground potential and to input and output a high frequency signal of about 10 to 100 GHz to the optical semiconductor package with low loss. It extends to the upper surface side of the other side portion of the substrate 1 rather than the part. That is, the second metallized layer 1d is formed on substantially the entire outer surface of the other side portion. As a result, when a high frequency signal of about 10 to 100 GHz is transmitted, the transmission characteristics are improved.
[0017]
The interval between the second metallized layer 1d and the first metallized layer 1c is preferably about 0.03 to 2 mm. If the distance is less than 0.03 mm, the second metallized layer 1d and the first metallized layer 1c are short-circuited. It becomes easy to do. If it exceeds 2 mm, the effect of suppressing leakage of high-frequency signals due to the ground potential of the second metallized layer 1d becomes small. Therefore, the provision of this interval has the effect of preventing leakage due to the radiation of the high frequency signal from the signal lead terminal 5a, and obtaining efficient transmission characteristics with low loss of the high frequency signal.
[0018]
The second metallized layer 1d is not limited to the other side portion of the base 1 but may be extended to one side or the lower surface of the base 1 as shown in FIG. If it is attached to the entire side surface of the substrate 1 as shown in FIG. 3, the entire optical semiconductor package can function as a ground, which is preferable in terms of enhancing the ground potential. In the configuration of FIG. 3, the second metallized layer 1d is electrically connected to the metal seal ring 3, so that the optical semiconductor device itself can function as a ground when the lid 4 is made of metal.
[0019]
Further, by providing the slit-shaped non-formed portion A beside the ground lead terminal 5b of the second metallized layer 1d, the brazing material spreads when the ground lead terminal 5b is joined to the second metallized layer 1d. Is blocked by the non-forming portion A, and a good meniscus of brazing material is formed around the joint portion of the ground lead terminal 5b. Therefore, it is possible to effectively prevent the bonding strength of the ground lead terminal 5b from being deteriorated and to prevent adjacent terminals from being connected by the brazing material. Further, since the second metallized layer 1d is formed on substantially the entire outer surface of the other side portion, the brazing material for joining the ground lead terminal 5b tends to spread upward from the joint portion of the ground lead terminal 5b. Thus, a large brazing meniscus can be formed upward from the joint portion of the ground lead terminal 5b. Therefore, an external force perpendicular to the main surface on the free end (lower end) side of the ground lead terminal 5b is often applied. In this case, it is possible to effectively prevent the ground lead terminal 5b from being peeled off from the base 1.
[0020]
When the upper end of the non-formed portion A is located at a height of less than 0.1 mm from the upper end to which the ground lead terminal 5b is joined, the brazing material is adjacent to the upper end of the ground lead terminal 5b on the terminal side (lateral direction). It becomes difficult to form a large braided meniscus. When the width of the non-formed portion A is less than 0.03 mm, it is difficult to form such a non-formed portion A having a very small width on the second metallized layer 1d. On the other hand, if it exceeds 0.5 mm, the area of the second metallized layer 1d as the ground conductor layer becomes small, so that it is difficult to enhance the ground potential.
[0021]
The first metallized layer 1c and the second metallized layer 1d were obtained by adding and mixing an appropriate organic binder, solvent, etc. to a refractory metal powder such as tungsten (W), molybdenum (Mo), manganese (Mn). The metal paste is applied and formed on the substrate 1 by printing and applying in advance in a predetermined pattern to a ceramic green sheet to be the substrate 1 by a well-known screen printing method and baking.
[0022]
The signal lead terminal 5a and the ground lead terminal 5b joined to the first metallized layer 1c and the second metallized layer 1d effectively prevent thermal distortion due to a difference in thermal expansion coefficient from the base 1 and transmit high-frequency signals. In order to make it possible, it is preferable that the base 1 is made of a metal approximating the coefficient of thermal expansion. As the metal, an Fe—Ni alloy, an Fe—Ni—Co alloy, or the like is preferable. For example, a conventionally known metal processing method such as a rolling method or a punching method is applied to an ingot of the Fe—Ni—Co alloy. By this, it is formed in a predetermined shape.
[0023]
In addition, a metal seal ring 3 that effectively prevents thermal distortion due to a difference in thermal expansion coefficient with the base body 1 and is joined to the top face of the base body 1 to enable seam welding of the lid body 4 on the upper surface of the base body 1. Are joined through a brazing material such as Ag brazing. As the metal, Fe-Ni alloy, Fe-Ni-Co alloy, etc. are good. For example, a well-known metal processing method such as a rolling method or a punching method is applied to an ingot of the Fe-Ni-Co alloy. To form a predetermined shape.
[0024]
Thus, the optical semiconductor package of the present invention has a substantially rectangular parallelepiped shape. The mounting portion for mounting the optical semiconductor element 6 is provided on the bottom surface of the concave portion 1a formed on the top surface, and the through hole 1b is provided on one side portion. A base 1 made of an insulating material, a cylindrical fixing member 2 fitted into the through-hole 1b or joined at one end around an opening on the outer surface side of the base 1 of the through-hole 1b, and the base 1 The first metallized layer 1c formed at the lower end of the outer surface of the other side part, and the second metallized layer that surrounds the first metallized layer 1c around the first metallized layer 1c at a constant interval and is formed on substantially the entire outer surface of the other side part. Metal base layer 1d, signal lead terminal 5a whose upper end is joined on first metallization layer 1c and whose lower end extends downward, and signal lead terminal 5a on second metallization layer 1d and substantially parallel to base 1 The height of the upper end from the lower surface of the And a second lead metallized in the form of a slit having a width of 0.03 to 0.5 mm along the longitudinal direction of the ground lead terminal 5b beside the ground lead terminal 5b. The non-formed part A of the layer 1d is provided from the lower side of the outer surface of the other side part to a position higher by 0.1 mm or more than the upper end of the ground lead terminal 5b.
[0025]
In addition, the optical semiconductor device of the present invention includes the optical semiconductor package of the present invention, the signal lead terminal 5a and the ground via the first metallized layer 1c and the second metallized layer 1d while being mounted and fixed on the mounting part. An optical semiconductor element 6 electrically connected to the lead terminal 5b and a lid 4 joined to the upper surface of the base 1 are provided. Specifically, the optical semiconductor element 6 is bonded and fixed to the mounting portion of the optical semiconductor package through an adhesive such as glass, resin, or brazing material, and each electrode of the optical semiconductor element 6 is bonded to a bonding wire (not shown). ) Is connected to a predetermined metallized wiring layer 1e inside the optical semiconductor package, and then the lid 4 is joined to the upper surface of the base 1 by seam welding or the like to seal the optical semiconductor element 6 inside. The optical semiconductor device is hermetically sealed. The metallized wiring layer 1e inside the optical semiconductor package is formed so as to penetrate through the side portion of the base 1 formed by laminating ceramic layers and the like, whereby the first metallized layer 1c and the second metallized on the outer surface of the base 1 are formed. It is electrically connected to the layer 1d. The optical semiconductor element 6 and an external electric circuit board (not shown) are electrically connected via the signal lead terminal 5a and the ground lead terminal 5b.
[0026]
Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, the non-formed part A may be formed by cutting out the side part of the substrate 1, and in this case, when the second metallized layer 1d is formed in a predetermined pattern by a screen printing method, the applied second metallized layer 1d is formed. Can be effectively prevented from filling the non-formed part A. That is, the distance in the lateral direction (width direction) of the inner surface of the non-formed part A formed by the notch is increased, and the non-formed part A is effectively prevented from being buried by bleeding of the second metallized layer 1d before firing. it can.
[0027]
【The invention's effect】
In the present invention, the non-formed portion of the slit-like second metallization layer having a width of 0.03 to 0.5 mm along the longitudinal direction of the ground lead terminal is formed on the outer surface of the other side portion. Since the second metallized layer as the ground conductor layer is formed on substantially the entire outer surface of the other side by being provided from the lower side to a position higher than the upper end of the ground lead terminal by 0.1 mm or more, the base body Even when a high-frequency signal in a very high frequency band of about 10 to 100 GHz is input / output to / from the optical semiconductor package, the high-frequency signal can be input / output with low loss.
[0028]
Further, the bonding between the second metallized layer and the ground lead terminal is strengthened, and adjacent terminals can be prevented from being connected by the brazing material. Furthermore, since the second metallization layer is formed on substantially the entire outer surface of the other side portion, the brazing material for joining the ground lead terminal is likely to spread upward from the joint portion of the ground lead terminal, A large brazing meniscus can be formed upward from the joint of the ground lead terminal. Therefore, an external force perpendicular to the main surface on the free end (lower end) side of the ground lead terminal is often applied, but in this case, it is possible to effectively prevent the ground lead terminal from peeling off from the base.
[0029]
The optical semiconductor device of the present invention is electrically mounted on the signal lead terminal and the ground lead terminal through the first metallized layer and the second metallized layer while being mounted and fixed on the mounting part, the optical semiconductor package of the present invention. Since the optical semiconductor element connected to the substrate and the lid bonded to the upper surface of the substrate, a high frequency signal in a very high frequency band can be input / output to the optical semiconductor element with low loss, and the ground lead terminal A highly reliable high-performance optical semiconductor device with improved bonding force is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of an optical semiconductor package of the present invention.
2 is an enlarged perspective view of a main part of the optical semiconductor package of FIG. 1. FIG.
FIG. 3 is a perspective view showing another example of the embodiment of the optical semiconductor package of the present invention.
FIG. 4 is a perspective view of a conventional optical semiconductor package.
[Explanation of symbols]
1: Base 1a: Recess 1b: Through hole 1c: First metallized layer 1d: Second metallized layer 2: Optical fiber fixing member 4: Cover 5a: Signal lead terminal 5b: Ground lead terminal 6: Optical semiconductor element A : Non-formed part

Claims (2)

略直方体とされ、上面に形成された凹部の底面に光半導体素子を載置する載置部が設けられているとともに一側部に貫通孔が形成されている絶縁材料から成る基体と、前記貫通孔に嵌着されるかまたは前記貫通孔の前記基体外面側開口の周囲に一端が接合された筒状の光ファイバ固定部材と、前記基体の他の側部の外面の下端に形成された第一のメタライズ層と、該第一のメタライズ層の周りを一定間隔で囲むとともに前記他の側部の外面の略全面に形成された第二のメタライズ層と、前記第一のメタライズ層上に上端が接合され下端が下方に延設された信号リード端子と、前記第二のメタライズ層上に前記信号リード端子と略平行にかつ前記基体の下面からの上端の高さが略同じになるように上端が接合された接地リード端子とを具備して成り、前記接地リード端子の横に、前記接地リード端子の長手方向に沿って幅が0.03〜0.5mmのスリット状の前記第二のメタライズ層の非形成部が前記他の側部の外面の下辺から前記接地リード端子の上端よりも0.1mm以上高い位置まで設けられていることを特徴とする光半導体素子収納用パッケージ。A base made of an insulating material having a substantially rectangular parallelepiped shape and provided with a mounting portion for mounting an optical semiconductor element on the bottom surface of a recess formed on the upper surface, and a through hole formed on one side; A cylindrical optical fiber fixing member fitted into a hole or joined at one end to the periphery of the substrate outer surface side opening of the through-hole, and formed at the lower end of the outer surface of the other side portion of the substrate. One metallized layer, a second metallized layer surrounding the first metallized layer at regular intervals and formed on substantially the entire outer surface of the other side, and an upper end on the first metallized layer Are connected to each other and the lower end of the signal lead terminal extends downward, and the upper end of the upper end from the lower surface of the base body is substantially the same on the second metallization layer so as to be substantially parallel to the signal lead terminal. A ground lead terminal having an upper end joined thereto. Next to the ground lead terminal, a slit-like non-formed portion of the second metallization layer having a width of 0.03 to 0.5 mm along the longitudinal direction of the ground lead terminal is formed on the other side portion. A package for housing an optical semiconductor element, wherein the package is provided from a lower side of an outer surface to a position higher by 0.1 mm or more than an upper end of the ground lead terminal. 請求項1記載の光半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記第一のメタライズ層および前記第二のメタライズ層を介して前記信号リード端子および前記接地リード端子に電気的に接続された光半導体素子と、前記基体の上面に接合された蓋体とを具備したことを特徴とする光半導体装置。The package for housing an optical semiconductor element according to claim 1, and placed on and fixed to the mounting portion, and connected to the signal lead terminal and the ground lead terminal through the first metallized layer and the second metallized layer. An optical semiconductor device comprising: an optical semiconductor element electrically connected; and a lid bonded to the upper surface of the base.
JP2001356431A 2001-11-21 2001-11-21 Optical semiconductor element storage package and optical semiconductor device Expired - Lifetime JP3924451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356431A JP3924451B2 (en) 2001-11-21 2001-11-21 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356431A JP3924451B2 (en) 2001-11-21 2001-11-21 Optical semiconductor element storage package and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2003158329A JP2003158329A (en) 2003-05-30
JP3924451B2 true JP3924451B2 (en) 2007-06-06

Family

ID=19167950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356431A Expired - Lifetime JP3924451B2 (en) 2001-11-21 2001-11-21 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3924451B2 (en)

Also Published As

Publication number Publication date
JP2003158329A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP2009158511A (en) Input/output terminal and package for housing semiconductor device
JP4874177B2 (en) Connection terminal, package using the same, and electronic device
JP6082114B2 (en) Device storage package and mounting structure
JP2003152124A (en) High frequency package
JP3924451B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3981645B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3974865B2 (en) Semiconductor element storage package and semiconductor device
JP3771853B2 (en) I / O terminal and semiconductor element storage package
JP3898571B2 (en) Semiconductor element storage package and semiconductor device
JP2004349567A (en) Package for housing semiconductor element and semiconductor device
JP3720726B2 (en) Semiconductor element storage package and semiconductor device
JP2002057239A (en) Input/output terminal and package for housing semiconductor element
JP2004193428A (en) Package for housing semiconductor element and semiconductor device
JP4514597B2 (en) Electronic component mounting board
JP2003224324A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2004134614A (en) Package for housing semiconductor element and semiconductor device
JP2003249584A (en) Package for storing semiconductor element, and semiconductor device
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP3615697B2 (en) Package for storing semiconductor elements
JP2003046180A (en) Input-output terminal, package for housing optical semiconductor element, and optical semiconductor device
JP2004356340A (en) Package for housing semiconductor element, and semiconductor device
JP2006128323A (en) Semiconductor device and storing package thereof
JP3696817B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP4041327B2 (en) Semiconductor element storage package and semiconductor device
JP2003218445A (en) Package for housing optical semiconductor device and optical semiconductor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6