JP3923576B2 - Vapor growth susceptor - Google Patents

Vapor growth susceptor Download PDF

Info

Publication number
JP3923576B2
JP3923576B2 JP33353696A JP33353696A JP3923576B2 JP 3923576 B2 JP3923576 B2 JP 3923576B2 JP 33353696 A JP33353696 A JP 33353696A JP 33353696 A JP33353696 A JP 33353696A JP 3923576 B2 JP3923576 B2 JP 3923576B2
Authority
JP
Japan
Prior art keywords
susceptor
recess
upper edge
counterbore
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33353696A
Other languages
Japanese (ja)
Other versions
JPH10167885A (en
Inventor
博之 平野
敏弘 細川
通男 大河内
雅樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP33353696A priority Critical patent/JP3923576B2/en
Publication of JPH10167885A publication Critical patent/JPH10167885A/en
Application granted granted Critical
Publication of JP3923576B2 publication Critical patent/JP3923576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェハ等の半導体ウェハにCVD法によりエピタキシャル膜を成長させる際に、その半導体ウェハを収納載置するための気相成長用サセプターに関するものである。
【0002】
【従来の技術】
従来、この種の気相成長用サセプター(以下単に「サセプター」という。)は、黒鉛等のカーボンを基材とするサセプター本体に半導体ウェハを収納載置する円形の座ぐり凹部を複数設け、かつサセプター本体の吸蔵ガスがエピタキシャル処理中に放出されて半導体ウェハが汚染されないようにするため、サセプター本体に対し、予めCVD法によるSiC膜を一定の厚み(例えば30〜300μm程度の厚み)にコーティングしたものが使用される。
【0003】
例えば、図4は、従来のサセプターをエピタキシャル成長処理に供した後の要部断面説明図であり、この図において、サセプター21は、黒鉛からなるサセプター本体22の上面に、半導体ウェハ3を収納載置する円形の座ぐり凹部24が複数設けられており、またサセプター21の表面にはSiC膜25がコーティングされている。
【0004】
このサセプター21に半導体ウェハ3をセットし、エピタキシャル成長処理に供することにより、サセプター21の表面から半導体ウェハ3の表面にかけて連続したエピタキシャル成長層(エピタキシャル成長工程で形成された半導体材料層)30が形成される。
【0005】
【発明が解決しようとする課題】
しかし、従来のサセプターでは、半導体ウェハをエピタキシャル成長処理に用いた場合、繰り返し使用される間に、座ぐり凹部24の上縁角部26から側壁周面27にかけての部分に、熱サイクルの繰り返しの影響を受けて、クラック28が発生するという問題があった。そして、クラック28の発生により生じた切欠小片29が半導体ウェハ3の表面に接触すると、その表面のエピタキシャル成長層30に傷がつくという問題があった。またカーボン基材22が露出することにより、サセプター本体21からの放出ガスによって半導体ウェハ3が汚染されるという問題もある。
【0006】
本発明は、かかる事情に鑑みてなされたものであり、その目的とするところは、ウェハ収納載置用座ぐり凹部の上縁角部から側壁周面にかけての部分にクラックが発生しないようにして、半導体ウェハを汚染させることがなく且つ延命化されたサセプターを提供する点にある。
【0007】
【課題を解決するための手段】
本発明者らは、前記クラックが発生する原因について様々な角度から調べた結果、エピタキシャル成長工程で半導体ウェハが収納載置されていない座ぐり凹部の上縁角部の上面全周に、その周囲より厚めの半導体膜(図3の31に相当)が形成され、この環状の厚めの半導体膜の部分に熱サイクルによる応力集中が発生しやすくなっており、これが原因であることを見い出し、本発明を完成した。
【0008】
即ち、本発明のうち請求項1記載の発明は、収納載置されるウェハに対し垂直な側壁周面を有する座ぐり凹部が形成された黒鉛基材の表面に、CVD法により炭化ケイ素膜が被覆された気相成長用サセプターにおいて、前記座ぐり凹部の上縁角部から側壁周面にかけて湾曲面を形成するように面取り加工されており、前記湾曲面が球面の一部であって、かつ球面部の半径をRとしたとき、球面部の形成が、0.1mm≦R≦L/2mm(但し、Lは座ぐり深さ)の条件でなされたものであることを特徴とする。
【0009】
これにより、エピタキシャル成長時において、従来のように座ぐり凹部の上縁角部の上面全周に半導体膜がその周囲よりも盛り上がった状態に厚めに形成されるという現象は発生しなくなるので、熱サイクルによる応力の集中も無くなり、従って座ぐり凹部の上縁角部にクラックが発生するという現象も無くなる。この結果、半導体ウェハにスリップが発生したり、汚染されることは無くなり、またサセプターの延命化を図ることができる。また、座ぐり凹部の上縁角部を周方向に沿って所定の均一な湾曲面としているので、確実に、応力集中の解消を周方向からも完全なものとすることができる。
【0010】
また、請求項記載の発明は、収納載置されるウェハに対し垂直な側壁周面を有する座ぐり凹部が形成された黒鉛基材の表面に、CVD法により炭化ケイ素膜が被覆された気相成長用サセプターにおいて、前記座ぐり凹部の上縁角部から側壁周面にかけてテーパー面を形成するように面取り加工されており、前記テーパー面の形成が、座ぐり凹部底面に対する垂直面とテーパー面とのなす角度をθ、テーパー加工により除去される分に相当する側壁周面に沿った深さをlとしたとき、0.5ラジアン≦θ≦1.3ラジアンであって、かつ0.1mm以上≦l≦L/2mm(但し、Lは座ぐり深さ)の条件でなされたものであることを特徴とする。これにより、エピタキシャル成長時において、従来のように座ぐり凹部の上縁角部の上面全周に半導体膜がその周囲よりも盛り上がった状態に厚めに形成されるという現象は発生しなくなるので、熱サイクルによる応力の集中も無くなり、従って座ぐり凹部の上縁角部にクラックが発生するという現象も無くなる。この結果、半導体ウェハにスリップが発生したり、汚染されることは無くなり、またサセプターの延命化を図ることができる。また、面取り加工が容易な分、加工費を少なくでき、製作コスト全体への影響を最小限に抑えられるという効果も確実に享受することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明に係るサセプターをエピタキシャル成長処理に供した後の要部断面説明図である。図1において、サセプター1は、黒鉛からなるサセプター本体2の上面に、半導体ウェハ3を収納載置する円形の座ぐり凹部4が、座ぐり加工によって底部が凹球面状を呈するように複数設けられている。また、座ぐり凹部4の上縁角部6から側壁周面7にかけては、球面の一部が形成されるように面取り加工されている。さらに、サセプター本体2の全表面にはCVD法により厚さ30〜300μm程度ののSiC膜5をコーティングされている。
【0012】
このサセプター1の座ぐり凹部4内に半導体ウェハ3をセットし、エピタキシャル成長処理に供された後には、サセプター1の表面から半導体ウェハ3の表面にかけて連続したエピタキシャル成長層8が形成されている。この場合において、図3に示す従来のサセプター21における座ぐり凹部24の上縁角部26の上面全周に形成される半導体膜の盛り上がり部31の形成は全く見られない。
【0013】
この結果、エピタキシャル成長層8とサセプター1との間に発生する応力(例えば熱膨張差による応力やエピタキシャル成長層内の残留応力)が、座ぐり凹部4の上縁角部6に集中すること即ち応力集中という事態の発生を回避することができる。従って、従来問題とされていたクラック(図3の28に相当)の発生を防止することができ、半導体ウェハのスリップ発生や汚染という問題を解消することができる。また、クラックの発生防止に伴って、サセプター1自体の寿命を長くすることができる。
【0014】
なお、面取り加工による球面部の形状としては、球面部の半径をRとしたとき、0.1mm≦R≦L/2mm(但し、Lは座ぐり深さ)となるように形成されていることが望ましい。Rが0.1mm未満では、座ぐり凹部4の上縁角部6の上面全周に形成される半導体膜の盛り上がりの解消の度合いが少なく、従ってクラックの発生防止の効果面で不安が残るからである。一方、RがL/2mm(但し、Lは座ぐり深さ)を超えると、座ぐり凹部4の側壁周面7が非常に低くなり、サセプター1が回転又は移動する際に半導体ウェハ3が座ぐり凹部4から飛び出すことも予想され、そのような事態の発生は好ましくないからである。
【0015】
次に、図2は本発明に係るサセプターの他の実施形態を示す図であり、図1に対応する図である。図1と比べて異なるところは、面取り加工がテーパー加工されている点にある。即ち、座ぐり凹部14の上縁角部16から側壁周面17にかけてテーパー加工されている点にある。
【0016】
このサセプター11の座ぐり凹部14内に半導体ウェハ3をセットし、エピタキシャル成長処理に供された後には、サセプター11の表面から半導体ウェハ3の表面にかけて連続したエピタキシャル成長層18が形成されている。この場合においても、図3に示す従来のサセプター21で問題とされていた、座ぐり凹部24の上縁角部26の上面全周に形成される半導体膜の盛り上がり部31の形成は全く認められない。
【0017】
この結果、図2に示すサセプターにおいても、エピタキシャル成長層18とサセプター11との間に発生する応力が、座ぐり凹部14の上縁角部16に集中すること即ち応力集中という事態の発生を回避することができる。従って、従来問題とされていたクラック(図3の28に相当)の発生を防止することができ、半導体ウェハのスリップ防止や汚染という問題を解消することができる。また、クラックの発生防止に伴って、サセプター11自体の寿命を長くすることができる。
【0018】
なお、面取り加工によるテーパー面部の構成としては、図3(図2のA部拡大図)に示すように、座ぐり凹部底面に対する垂直面とテーパー面とのなす角度をθ、テーパー加工により除去される分に相当する側壁周面に沿った深さをlとしたとき、0.5ラジアン≦θ≦1.3ラジアンであって、かつ0.1mm≦l≦L/2mm(但し、Lは座ぐり深さ)となるように形成されていることが望ましい。
【0019】
テーパー加工の条件を上記のように設定した理由は、まずθが0.5ラジアン未満又は1.3ラジアンを超える場合は、座ぐり凹部14の上縁角部16の上面全周に形成される半導体膜の盛り上がりの解消の度合いが少なく、従ってクラックの発生防止の効果面で不安が残るからである。また、lが0.1mm未満の場合も、上記と同様の不安が残る一方、lがL/2mm(但し、Lは座ぐり深さ)を超える場合は、座ぐり凹部14の側壁周面17が非常に低くなり、サセプター11の回転中又は移動中に半導体ウェハ3が座ぐり溝14から飛び出すことも予想され、そのような事態の発生は好ましくないからである。
【0020】
【実施例】
(実施例1)
12.5μΩm(室温時)及び12.0μΩm(1150°C)の固有抵抗を有し、嵩密度が1800kg/m3 の等方性黒鉛を円盤状(直径740mm,厚み18mm)に削り出した後、エンドミルにて直径150mm、深さ0.7mmのウェハ収納載置用座ぐり凹部を複数加工した。その際、図1に示すように上縁角部6から側壁周面7にかけて、座ぐり凹部4ごとに表1に示すように異なったアール加工を行った。さらに、ハロゲン含有ガス雰囲気中2400°Cに加熱して高純度処理した高純度黒鉛基材からなるサセプター本体(図1の2に相当)を得た。このサセプター本体に対して本体支持点を変更しながらCVD法にてSiC膜を55μmづつ2回被覆し、パンケーキタイプのサセプターを得た。CVD条件は、以下▲1▼〜▲3▼のとおりである。
〔CVD条件〕:
▲1▼原料ガス:三塩化シラン(SiHCl3 )、水素ガス及びプロパンガス(C3 8
▲2▼黒鉛基材温度:1050°C
▲3▼炉内圧力:13kPa(ダイアフラム式圧力計にて測定)
【0021】
得られたサセプターの表面上に、三塩化シラン(SiHCl3 )、水素ガス及びプロパンガスを原料としてシリコン膜を800μm成長させ、200〜1200°Cの熱サイクル試験をクラックが発生するまで繰り返して行った。その結果を表1に示す。
【0022】
【表1】

Figure 0003923576
【0023】
表1からも明らかなように、座ぐり凹部の上縁角部から側壁周面にかけての面取り部の球面が0.1mm≦R≦L/2mm=0.7/2=0.35mmの条件を満たすように形成されている場合は、400回の熱サイクル試験においてもクラックは全く発生せず、半導体ウェハのサセプターからの飛び出しもないことが分かる。
【0024】
(実施例2)
実施例1と同じ特性の黒鉛母材より円盤状の黒鉛基材を粗加工し、さらに座ぐり凹部の上縁角部から側壁周面にかけて、座ぐり凹部ごとに表2に示すように条件を変えてエンドミルにてテーパー加工を行った。さらに実施例1と同じ方法で黒鉛基材を高純度処理した。さらにシリコンを同様に被覆した後、1600°Cに水素雰囲気中で加熱してその表層0.2mmをC/SiC複合材に転化しサセプター本体(図2の12に相当)を得た。この本体に対して、本体支持点を変更しながらCVD法にてSiC膜を50μmづつ2回被覆した。CVD条件は以下▲1▼〜▲3▼に示すとおりである。
〔CVD条件〕:
▲1▼原料ガス:トリクロロメチルシラン(CH3 SiCl3 )、および水素ガス
▲2▼黒鉛基材温度:1400°C
▲3▼炉内圧力:50kPa
【0025】
得られたサセプターの表面上に実施例1と同様にしてシリコン膜を800μm成長させ、200〜1200°Cの熱サイクル試験をクラックが発生するまで繰り返して行った。その結果を表2に示す。
【0026】
【表2】
Figure 0003923576
【0027】
表2からも明らかなように、座ぐり凹部の上縁角部から側壁周面にかけての面取り部のテーパー面が、0.5ラジアン≦θ≦1.3ラジアンの条件を満たし、かつ0.1mm≦l≦L/2mm=0.7/2=0.35mmの条件を満たすように形成されている場合は、400回の熱サイクル試験においてもクラックは全く発生していないことが分かる。その一方で、0.5ラジアン≦θ≦1.3ラジアンの条件を満たしても、他の条件、例えば座ぐり溝における側壁周面のテーパー開始位置が深すぎる場合(例えば、表2中のl=0.5mmの場合)は、ウェハのサセプターからの飛び出しにつながり、好ましくないことが分かる。
【0028】
上記の実施例では、パンケーキ型のサセプターを取り上げて説明したが、本発明のサセプターは、このパンケーキ型に限られることなく、バレル型や枚葉型等のサセプターにも有効に適用することができる。
【0029】
【発明の効果】
本発明のうち請求項1記載の発明の気相成長用サセプターによれば、エピタキシャル成長時において、従来のように座ぐり凹部の上縁角部の上面全周に半導体膜がその周囲よりも盛り上がった状態に厚めに形成されるという現象は発生しなくなるので、従来のように、その厚めのエピタキシャル成長層とサセプターとの間に生じていた応力(熱膨張差による応力及び成長層内の残留応力)の集中も無くなり、従って座ぐり凹部の上縁角部にクラックが発生するという現象も無くなる。この結果、半導体ウェハにスリップが発生したり、汚染されることは無くなり、またサセプターの延命化を図ることができる。
【0030】
また、面取り加工された面が湾曲面を形成するようにしたので、座ぐり凹部の上縁角部を周方向に沿って均一な湾曲面とすることにより、確実に、応力集中の解消を周方向からも完全なものとすることができる
【0031】
また、請求項記載の発明においても、エピタキシャル成長時において、従来のように座ぐり凹部の上縁角部の上面全周に半導体膜がその周囲よりも盛り上がった状態に厚めに形成されるという現象は発生しなくなるので、熱サイクルによる応力の集中も無くなり、従って座ぐり凹部の上縁角部にクラックが発生するという現象も無くなる。この結果、半導体ウェハにスリップが発生したり、汚染されることは無くなり、またサセプターの延命化を図ることができる。また、面取り加工が容易な分、加工費を少なくでき、製作コスト全体への影響を最小限に抑えられるという効果も確実に享受することができる。
【図面の簡単な説明】
【図1】本発明の気相成長用サセプターの一実施形態を示す要部断面図である。
【図2】本発明の気相成長用サセプターの他の実施形態を示す要部断面図である。
【図3】図2のA部を拡大して示す図である。
【図4】従来の気相成長用サセプター示す要部断面図である。
【符号の説明】
1,11,21 気相成長用サセプター
2,12,22 サセプター本体
3 半導体ウェハ
4,14,24 座ぐり凹部
5,15,25 SiC膜
6,16,26 上縁角部
7,17,27 側壁周面
8,18,30 エピタキシャル成長層
28 クラック
29,31 半導体膜の盛り上がり部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth susceptor for accommodating and mounting an epitaxial film on a semiconductor wafer such as a silicon wafer by a CVD method.
[0002]
[Prior art]
Conventionally, this type of susceptor for vapor phase growth (hereinafter simply referred to as “susceptor”) is provided with a plurality of circular counterbore recesses for housing and mounting a semiconductor wafer on a susceptor body based on carbon such as graphite, and In order to prevent the stored gas from the susceptor body from being released during the epitaxial process and contaminating the semiconductor wafer, the susceptor body is previously coated with a SiC film by a CVD method to a certain thickness (for example, a thickness of about 30 to 300 μm). Things are used.
[0003]
For example, FIG. 4 is a cross-sectional explanatory view of a main part after subjecting a conventional susceptor to an epitaxial growth process. In this figure, the susceptor 21 houses and mounts the semiconductor wafer 3 on the upper surface of a susceptor body 22 made of graphite. A plurality of circular counterbore recesses 24 are provided, and the surface of the susceptor 21 is coated with a SiC film 25.
[0004]
By setting the semiconductor wafer 3 on the susceptor 21 and subjecting it to an epitaxial growth process, a continuous epitaxial growth layer (semiconductor material layer formed in the epitaxial growth process) 30 is formed from the surface of the susceptor 21 to the surface of the semiconductor wafer 3.
[0005]
[Problems to be solved by the invention]
However, in the conventional susceptor, when a semiconductor wafer is used for an epitaxial growth process, the effect of repeated thermal cycles is exerted on the portion from the upper edge corner portion 26 to the side wall peripheral surface 27 of the spot facing recess 24 during repeated use. As a result, there is a problem that the crack 28 is generated. When the notched piece 29 generated by the generation of the crack 28 comes into contact with the surface of the semiconductor wafer 3, there is a problem that the epitaxial growth layer 30 on the surface is damaged. Moreover, there is also a problem that the semiconductor wafer 3 is contaminated by the gas released from the susceptor body 21 due to the exposure of the carbon substrate 22.
[0006]
The present invention has been made in view of such circumstances, and the object of the present invention is to prevent cracks from occurring in the portion from the upper edge corner portion of the counterbore recess for wafer storage to the side wall peripheral surface. The object of the present invention is to provide a susceptor that does not contaminate the semiconductor wafer and has a prolonged life.
[0007]
[Means for Solving the Problems]
As a result of investigating the cause of the occurrence of the crack from various angles, the inventors have found that the entire periphery of the upper surface of the upper edge corner portion of the counterbore recess where the semiconductor wafer is not housed and placed in the epitaxial growth process is more A thick semiconductor film (corresponding to 31 in FIG. 3) is formed, and stress concentration due to thermal cycling is likely to occur in the annular thick semiconductor film portion, and it is found that this is the cause, and the present invention is completed.
[0008]
That is, in the invention according to claim 1 of the present invention, a silicon carbide film is formed on the surface of a graphite base material having a counterbore recess having a side wall peripheral surface perpendicular to a wafer to be placed and placed by a CVD method. In the coated vapor phase growth susceptor, chamfered so as to form a curved surface from the upper edge corner portion of the counterbore recess to the side wall peripheral surface, and the curved surface is a part of a spherical surface, and When the radius of the spherical portion is R, the spherical portion is formed under the condition of 0.1 mm ≦ R ≦ L / 2 mm (where L is a counterbore depth) .
[0009]
As a result, during epitaxial growth, the phenomenon that the semiconductor film is formed thicker than the surroundings on the entire upper surface of the upper edge corner portion of the counterbore recess as in the prior art does not occur. Therefore, the concentration of stress due to the occurrence of cracks is eliminated, and therefore, the phenomenon that cracks occur at the upper edge corners of the spot facing recess is also eliminated. As a result, the semiconductor wafer is not slipped or contaminated, and the life of the susceptor can be extended. In addition, since the upper edge corner portion of the spot facing recess is a predetermined uniform curved surface along the circumferential direction, it is possible to reliably eliminate the stress concentration from the circumferential direction.
[0010]
According to a second aspect of the present invention, there is provided an air-conditioner in which a silicon carbide film is coated by a CVD method on a surface of a graphite substrate having a counterbore recess having a side wall surface perpendicular to a wafer to be placed and placed. In the susceptor for phase growth, chamfering is performed so as to form a tapered surface from the upper edge corner portion of the counterbore recess to the side wall peripheral surface, and the formation of the taper surface is perpendicular to the bottom surface of the counterbore recess and the tapered surface. Is 0.5 radians ≦ θ ≦ 1.3 radians, and 0.1 mm, where θ is the angle formed by θ and the depth along the side wall peripheral surface corresponding to the amount removed by taper processing is l. This is characterized in that it is made under the condition of ≦ l ≦ L / 2 mm (where L is the counterbore depth) . As a result, during epitaxial growth, the phenomenon that the semiconductor film is formed thicker than the surroundings on the entire upper surface of the upper edge corner portion of the counterbore recess as in the prior art does not occur. Therefore, the concentration of stress due to the occurrence of cracks is eliminated, and therefore, the phenomenon that cracks occur at the upper edge corners of the spot facing recess is also eliminated. As a result, the semiconductor wafer is not slipped or contaminated, and the life of the susceptor can be extended. Further, since the chamfering process is easy, the processing cost can be reduced, and the effect that the influence on the entire manufacturing cost can be minimized can be surely enjoyed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional explanatory view of a main part after the susceptor according to the present invention is subjected to an epitaxial growth process. In FIG. 1, a plurality of susceptors 1 are provided on the upper surface of a susceptor main body 2 made of graphite so that a circular counterbore recess 4 for accommodating and mounting a semiconductor wafer 3 is formed so that the bottom has a concave spherical shape by counterbore processing. ing. Further, chamfering is performed so that a part of the spherical surface is formed from the upper edge corner portion 6 to the side wall peripheral surface 7 of the spot facing recess 4. Further, the entire surface of the susceptor body 2 is coated with a SiC film 5 having a thickness of about 30 to 300 μm by a CVD method.
[0012]
After setting the semiconductor wafer 3 in the counterbored recess 4 of the susceptor 1 and subjecting it to an epitaxial growth process, a continuous epitaxial growth layer 8 is formed from the surface of the susceptor 1 to the surface of the semiconductor wafer 3. In this case, the formation of the raised portion 31 of the semiconductor film formed on the entire upper surface of the upper edge corner portion 26 of the counterbore recess 24 in the conventional susceptor 21 shown in FIG. 3 is not seen at all.
[0013]
As a result, stress generated between the epitaxial growth layer 8 and the susceptor 1 (for example, stress due to thermal expansion difference or residual stress in the epitaxial growth layer) concentrates on the upper edge corner portion 6 of the counterbore recess 4, that is, stress concentration. Can be avoided. Therefore, it is possible to prevent the occurrence of cracks (corresponding to 28 in FIG. 3), which has been regarded as a problem in the past, and to solve the problems of slipping and contamination of the semiconductor wafer. Further, the life of the susceptor 1 itself can be extended along with the prevention of cracks.
[0014]
The shape of the spherical portion by chamfering is such that 0.1 mm ≦ R ≦ L / 2 mm (where L is the counterbore depth) when the radius of the spherical portion is R. Is desirable. If R is less than 0.1 mm, the degree of cancellation of the bulge of the semiconductor film formed on the entire upper surface of the upper edge corner portion 6 of the counterbore recess 4 is small, and therefore there remains anxiety in terms of preventing the occurrence of cracks. It is. On the other hand, when R exceeds L / 2 mm (where L is the counterbore depth), the side wall peripheral surface 7 of the counterbore recess 4 becomes very low, and the semiconductor wafer 3 sits when the susceptor 1 rotates or moves. This is because it is also expected to jump out of the recess 4 and such a situation is not preferable.
[0015]
Next, FIG. 2 is a figure which shows other embodiment of the susceptor based on this invention, and is a figure corresponding to FIG. The difference from FIG. 1 is that the chamfering is tapered. That is, the counterbore 14 is tapered from the upper edge corner 16 to the side wall peripheral surface 17.
[0016]
After the semiconductor wafer 3 is set in the counterbored recess 14 of the susceptor 11 and subjected to the epitaxial growth process, a continuous epitaxial growth layer 18 is formed from the surface of the susceptor 11 to the surface of the semiconductor wafer 3. Even in this case, the formation of the raised portion 31 of the semiconductor film formed on the entire upper surface of the upper edge corner portion 26 of the counterbore recess 24, which has been a problem in the conventional susceptor 21 shown in FIG. Absent.
[0017]
As a result, also in the susceptor shown in FIG. 2, the stress generated between the epitaxial growth layer 18 and the susceptor 11 is concentrated on the upper edge corner 16 of the counterbore recess 14, that is, the stress concentration is avoided. be able to. Therefore, it is possible to prevent the occurrence of cracks (corresponding to 28 in FIG. 3), which has been regarded as a problem in the past, and to solve the problems of slip prevention and contamination of the semiconductor wafer. Further, the life of the susceptor 11 itself can be extended along with the prevention of cracks.
[0018]
As shown in FIG. 3 (enlarged view of portion A in FIG. 2), the angle formed between the vertical surface and the tapered surface with respect to the bottom surface of the counterbore recess is θ, and the tapered surface portion is removed by tapering. When the depth along the side wall peripheral surface corresponding to 1 is taken as l, 0.5 radians ≦ θ ≦ 1.3 radians and 0.1 mm ≦ l ≦ L / 2 mm (where L is It is desirable to be formed so as to have a counterbore depth.
[0019]
The reason for setting the taper processing conditions as described above is that when θ is less than 0.5 radians or exceeds 1.3 radians, it is formed on the entire upper surface of the upper edge corner 16 of the counterbore recess 14. This is because the degree of elimination of the bulge of the semiconductor film is small, and thus there remains anxiety in terms of preventing cracks from occurring. Further, when l is less than 0.1 mm, the same anxiety as above remains, while when l exceeds L / 2 mm (where L is the counterbore depth), the side wall peripheral surface 17 of the counterbore recess 14 is increased. This is because it is expected that the semiconductor wafer 3 jumps out of the counterbore groove 14 while the susceptor 11 is rotating or moving, and such a situation is not preferable.
[0020]
【Example】
Example 1
After cutting isotropic graphite having a specific resistance of 12.5 μΩm (at room temperature) and 12.0 μΩm (1150 ° C.) and a bulk density of 1800 kg / m 3 into a disk shape (diameter 740 mm, thickness 18 mm) A plurality of counterbore recesses for wafer storage and mounting having a diameter of 150 mm and a depth of 0.7 mm were processed by an end mill. At that time, as shown in FIG. 1, different rounding processes were performed for each counterbore recess 4 from the upper edge corner 6 to the side wall circumferential surface 7 as shown in FIG. 1. Furthermore, a susceptor body (corresponding to 2 in FIG. 1) made of a high-purity graphite base material heated to 2400 ° C. in a halogen-containing gas atmosphere and subjected to high-purity treatment was obtained. A SiC film was coated twice by 55 μm by the CVD method while changing the support point of the susceptor body to obtain a pancake type susceptor. The CVD conditions are as follows (1) to (3).
[CVD conditions]:
(1) Source gas: silane trichloride (SiHCl 3 ), hydrogen gas and propane gas (C 3 H 8 )
(2) Graphite base material temperature: 1050 ° C
(3) Furnace pressure: 13 kPa (measured with a diaphragm pressure gauge)
[0021]
On the surface of the obtained susceptor, a silicon film is grown to 800 μm using silane trichloride (SiHCl 3 ), hydrogen gas, and propane gas as raw materials, and a thermal cycle test at 200 to 1200 ° C. is repeated until cracks are generated. It was. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003923576
[0023]
As is apparent from Table 1, the spherical surface of the chamfered portion from the upper edge corner portion of the counterbore recess to the side wall peripheral surface satisfies the condition of 0.1 mm ≦ R ≦ L / 2 mm = 0.7 / 2 = 0.35 mm. When it is formed so as to satisfy, it can be seen that cracks do not occur at all even in 400 thermal cycle tests, and there is no protrusion of the semiconductor wafer from the susceptor.
[0024]
(Example 2)
A disk-shaped graphite base material is roughly processed from the graphite base material having the same characteristics as in Example 1, and the conditions are set as shown in Table 2 for each counterbore recess from the upper edge corner portion to the side wall peripheral surface of the counterbore recess. The taper was processed with an end mill. Further, the graphite substrate was subjected to high purity treatment in the same manner as in Example 1. Further, silicon was coated in the same manner, and then heated to 1600 ° C. in a hydrogen atmosphere to convert a surface layer of 0.2 mm into a C / SiC composite material to obtain a susceptor body (corresponding to 12 in FIG. 2). The main body was coated twice with a 50 μm thick SiC film by the CVD method while changing the main body support point. The CVD conditions are as shown in (1) to (3) below.
[CVD conditions]:
(1) Raw material gas: trichloromethylsilane (CH 3 SiCl 3 ) and hydrogen gas (2) Graphite base material temperature: 1400 ° C
(3) Furnace pressure: 50kPa
[0025]
A silicon film was grown to 800 μm on the surface of the obtained susceptor in the same manner as in Example 1, and a thermal cycle test at 200 to 1200 ° C. was repeated until cracks occurred. The results are shown in Table 2.
[0026]
[Table 2]
Figure 0003923576
[0027]
As apparent from Table 2, the taper surface of the chamfered portion from the upper edge corner portion of the counterbore recess to the side wall peripheral surface satisfies the condition of 0.5 radians ≦ θ ≦ 1.3 radians, and 0.1 It can be seen that cracks are not generated at all even in the 400 thermal cycle tests when formed so as to satisfy the condition of mm ≦ l ≦ L / 2 mm = 0.7 / 2 = 0.35 mm. On the other hand, even if the condition of 0.5 radians ≦ θ ≦ 1.3 radians is satisfied, the taper start position of the side wall surface of the counterbore groove is too deep even if other conditions are satisfied (for example, l in Table 2). = 0.5 mm) leads to jumping out of the wafer susceptor, which is not preferable.
[0028]
In the above embodiment, the pancake type susceptor has been described. However, the susceptor of the present invention is not limited to this pancake type, but can be effectively applied to a susceptor such as a barrel type or a single wafer type. Can do.
[0029]
【The invention's effect】
According to the susceptor for vapor phase growth of the invention described in claim 1 of the present invention, during epitaxial growth, the semiconductor film swells around the entire upper surface of the upper edge corner portion of the counterbored recess as in the prior art. Since the phenomenon of thick formation in the state does not occur, the stress (stress due to thermal expansion difference and residual stress in the growth layer) generated between the thick epitaxial growth layer and the susceptor as in the past Concentration is also eliminated, so that the phenomenon of cracks occurring at the upper edge corners of the spot facing recess is also eliminated. As a result, the semiconductor wafer is not slipped or contaminated, and the life of the susceptor can be extended.
[0030]
Further, since the processed surface faces up was made to form a curved surface, by a uniform curved surface along the upper edge corner of the pocket recess in the circumferential direction, reliably, eliminating stress concentration It can also be perfect from the circumferential direction .
[0031]
Further, in the invention according to claim 2, the phenomenon that the semiconductor film is formed thicker on the entire upper surface of the upper edge corner portion of the counterbore recess at the time of epitaxial growth than in the conventional case. Therefore, the stress concentration due to the thermal cycle is eliminated, and therefore, the phenomenon that the upper edge corner portion of the counterbore recess is cracked is eliminated. As a result, the semiconductor wafer is not slipped or contaminated, and the life of the susceptor can be extended. Further, since the chamfering process is easy, the processing cost can be reduced, and the effect that the influence on the entire manufacturing cost can be minimized can be surely enjoyed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing one embodiment of a susceptor for vapor phase growth of the present invention.
FIG. 2 is a cross-sectional view of an essential part showing another embodiment of the susceptor for vapor phase growth of the present invention.
FIG. 3 is an enlarged view showing a portion A in FIG. 2;
FIG. 4 is a cross-sectional view of a main part showing a conventional susceptor for vapor phase growth.
[Explanation of symbols]
1,11,21 Vapor growth susceptor 2,12,22 susceptor body 3 semiconductor wafer 4,14,24 counterbored recess 5,15,25 SiC film 6,16,26 upper edge corner 7,7,27 side wall Peripheral surface 8, 18, 30 Epitaxial growth layer 28 Crack 29, 31 Swelled portion of semiconductor film

Claims (2)

収納載置されるウェハに対し垂直な側壁周面を有する座ぐり凹部が形成された黒鉛基材の表面に、CVD法により炭化ケイ素膜が被覆された気相成長用サセプターにおいて、前記座ぐり凹部の上縁角部から側壁周面にかけて湾曲面を形成するように面取り加工されており、前記湾曲面が球面の一部であって、かつ球面部の半径をRとしたとき、球面部の形成が、0.1mm≦R≦L/2mm(但し、Lは座ぐり深さ)の条件でなされたものである気相成長用サセプター。In the susceptor for vapor phase growth in which a silicon carbide film is coated on the surface of a graphite base material on which a countersunk recess having a peripheral wall surface perpendicular to a wafer to be placed is formed, the countersink recess Chamfered so as to form a curved surface from the upper edge corner to the side wall peripheral surface . When the curved surface is a part of a spherical surface and the radius of the spherical surface is R, formation of the spherical portion Is a susceptor for vapor phase growth that is made under the condition of 0.1 mm ≦ R ≦ L / 2 mm (where L is the counterbore depth) . 収納載置されるウェハに対し垂直な側壁周面を有する座ぐり凹部が形成された黒鉛基材の表面に、CVD法により炭化ケイ素膜が被覆された気相成長用サセプターにおいて、前記座ぐり凹部の上縁角部から側壁周面にかけてテーパー面を形成するように面取り加工されており、前記テーパー面の形成が、座ぐり凹部底面に対する垂直面とテーパー面とのなす角度をθ、テーパー加工により除去される分に相当する側壁周面に沿った深さをlとしたとき、0.5ラジアン≦θ≦1.3ラジアンであって、かつ0.1mm以上≦l≦L/2mm(但し、Lは座ぐり深さ)の条件でなされたものである気相成長用サセプター。 In the susceptor for vapor phase growth in which a silicon carbide film is coated on the surface of a graphite base material on which a countersunk recess having a peripheral wall surface perpendicular to a wafer to be placed is formed, the countersink recess Chamfered so as to form a tapered surface from the upper edge corner to the side wall peripheral surface, and the formation of the tapered surface is θ by the angle between the vertical surface and the tapered surface with respect to the bottom surface of the counterbored recess. When the depth along the side wall peripheral surface corresponding to the amount to be removed is defined as l, 0.5 radians ≦ θ ≦ 1.3 radians and 0.1 mm or more ≦ l ≦ L / 2 mm (provided that L is a vapor phase growth susceptor made under the condition of counterbore depth) .
JP33353696A 1996-12-13 1996-12-13 Vapor growth susceptor Expired - Lifetime JP3923576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33353696A JP3923576B2 (en) 1996-12-13 1996-12-13 Vapor growth susceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33353696A JP3923576B2 (en) 1996-12-13 1996-12-13 Vapor growth susceptor

Publications (2)

Publication Number Publication Date
JPH10167885A JPH10167885A (en) 1998-06-23
JP3923576B2 true JP3923576B2 (en) 2007-06-06

Family

ID=18267154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33353696A Expired - Lifetime JP3923576B2 (en) 1996-12-13 1996-12-13 Vapor growth susceptor

Country Status (1)

Country Link
JP (1) JP3923576B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387159B2 (en) 2003-10-28 2009-12-16 東洋炭素株式会社 Graphite material, carbon fiber reinforced carbon composite material, and expanded graphite sheet
JP2009071210A (en) * 2007-09-18 2009-04-02 Covalent Materials Tokuyama Corp Susceptor and epitaxial growth system
TWI410516B (en) * 2008-09-11 2013-10-01 Lu Sheng Hong Graphite protective film and manufacturing method thereof
US8535445B2 (en) 2010-08-13 2013-09-17 Veeco Instruments Inc. Enhanced wafer carrier
US8562746B2 (en) 2010-12-15 2013-10-22 Veeco Instruments Inc. Sectional wafer carrier
US10316412B2 (en) 2012-04-18 2019-06-11 Veeco Instruments Inc. Wafter carrier for chemical vapor deposition systems
US10167571B2 (en) 2013-03-15 2019-01-01 Veeco Instruments Inc. Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems
TWI650832B (en) 2013-12-26 2019-02-11 維克儀器公司 Wafer carrier having thermal cover for chemical vapor deposition systems
US10145013B2 (en) 2014-01-27 2018-12-04 Veeco Instruments Inc. Wafer carrier having retention pockets with compound radii for chemical vapor desposition systems
JP6562546B2 (en) * 2015-07-14 2019-08-21 昭和電工株式会社 Wafer support, wafer support, chemical vapor deposition equipment
US20210040643A1 (en) * 2017-05-12 2021-02-11 Toyo Tanso Co., Ltd. Susceptor, method for producing epitaxial substrate, and epitaxial substrate
USD860146S1 (en) 2017-11-30 2019-09-17 Veeco Instruments Inc. Wafer carrier with a 33-pocket configuration
USD866491S1 (en) 2018-03-26 2019-11-12 Veeco Instruments Inc. Chemical vapor deposition wafer carrier with thermal cover
USD858469S1 (en) 2018-03-26 2019-09-03 Veeco Instruments Inc. Chemical vapor deposition wafer carrier with thermal cover
USD863239S1 (en) 2018-03-26 2019-10-15 Veeco Instruments Inc. Chemical vapor deposition wafer carrier with thermal cover
USD860147S1 (en) 2018-03-26 2019-09-17 Veeco Instruments Inc. Chemical vapor deposition wafer carrier with thermal cover
USD854506S1 (en) 2018-03-26 2019-07-23 Veeco Instruments Inc. Chemical vapor deposition wafer carrier with thermal cover

Also Published As

Publication number Publication date
JPH10167885A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP3923576B2 (en) Vapor growth susceptor
JP3887052B2 (en) Vapor growth susceptor
EP2165358B1 (en) Susceptor for improving throughput and reducing wafer damage
US20050016470A1 (en) Susceptor and deposition apparatus including the same
JPH0758041A (en) Susceptor
KR102417528B1 (en) Susceptor and method for manufacturing same
JP4599816B2 (en) Manufacturing method of silicon epitaxial wafer
US5785764A (en) Susceptor for a gas phase growth apparatus
JP3004846B2 (en) Susceptor for vapor phase growth equipment
JPH07335572A (en) Susceptor for heat treatment of semiconductor wafer and its manufacture
JP7233361B2 (en) Susceptor, epitaxial substrate manufacturing method, and epitaxial substrate
JP3958397B2 (en) Method for producing chemical vapor deposition silicon carbide material
JPH08277193A (en) Susceptor for vapor phase growth apparatus
JPH0758029A (en) Susceptor
JP3853453B2 (en) Vertical susceptor for vapor phase growth
JPH0268922A (en) Susceptor for vapor growth
JP6587354B2 (en) Susceptor
JP6493982B2 (en) Susceptor
JP2732393B2 (en) Cylinder type silicon epitaxial layer growth equipment
WO2021245741A1 (en) Method for evaluating outer peripheral distortion of wafer
JP2005235906A (en) Wafer holding jig and vapor phase growing apparatus
JPH03246931A (en) Susceptor
JP4453140B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JPH0758035A (en) Heat treatment jig for semiconductor wafer
JPH04199614A (en) Vertical type vapor growth susceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term