JP3923471B2 - 半導体基板の光学ビームを位相変移するための方法と装置 - Google Patents

半導体基板の光学ビームを位相変移するための方法と装置 Download PDF

Info

Publication number
JP3923471B2
JP3923471B2 JP2003546163A JP2003546163A JP3923471B2 JP 3923471 B2 JP3923471 B2 JP 3923471B2 JP 2003546163 A JP2003546163 A JP 2003546163A JP 2003546163 A JP2003546163 A JP 2003546163A JP 3923471 B2 JP3923471 B2 JP 3923471B2
Authority
JP
Japan
Prior art keywords
floating charge
charge
regions
adjustment regions
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003546163A
Other languages
English (en)
Other versions
JP2005536766A (ja
JP2005536766A5 (ja
Inventor
ディーン サマラ−ルビオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of JP2005536766A publication Critical patent/JP2005536766A/ja
Publication of JP2005536766A5 publication Critical patent/JP2005536766A5/ja
Application granted granted Critical
Publication of JP3923471B2 publication Critical patent/JP3923471B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded

Description

本発明は、広義には光学デバイスに関し、より詳細には、移送装置に関する。
インターネット・データ・トラフィックの成長率が音声トラフィックを追随するにつれて、高速で効率的な光スイッチの必要が増加しており、光通信の必要性を後押ししている。通常用いられるものとして、2つの種類の光学デバイスが公知である。なお、本出願の国際調査において、下記の文献が発見されている。
米国特許出願公開第2002/93717号明細書 米国特許第6298177号明細書
スイッチング・デバイスのような機械的なデバイスは、光ファイバ間の光路に配置される物理的な構成要素を一般に備える。これらの構成要素はスイッチング動作を引き起こすために移動させられる。最近、マイクロ・エレクトロ・メカニカル・システム(MEMS)が、小型の機械的なスイッチ用に用いられている。MEMSは、シリコンベースであり、多かれ少なかれ従来のシリコン処理技術を使用して加工されるので広く普及している。しかしながら、通常のMEMS技術は、物理的な部品や構成要素の実際の機械的動作に依存するので、例えばミリ秒のオーダーの応答時間のアプリケーションのような、より低速の光学アプリケーションへの利用が通常は制限されてしまう。
スイッチング・デバイス、干渉計、移相器等のような公知の電気光学デバイスにおいて、デバイス内に電界を形成するためにデバイス中の選択された部品に電圧が連続的に印加される。電界は、デバイス中の選択された材料の光学的性質と、光線の電気光学効果を変化させる。通常、電気光学デバイスは、電圧可変の光学的挙動と光学的透明度を組み合わせる電気光学材料を利用する。
幾つかの公知の電気光学デバイスの速度は、例えばナノ秒のオーダーと非常に高速であるが、公知の電気光学デバイスの1つの欠点は、これらのデバイスが作動するために一般に比較的高電圧を必要とするということである。従って、高電圧を生成し、かつ大量の電力消費に対応するために、公知の電気光学デバイスを制御するために利用される外部回路が特別に製作される。さらに、デバイスの寸法がスケールダウンし続け、回路の密度が増加するにつれて、今日の電気光学スイッチの外部高電圧制御回路の統合化はますます興味深い課題となっている。
公知の電気光学デバイスの別の欠点は、これらのデバイスが作動するためには連続的に電圧が印加されなければならない、という事である。従って、これらの公知のデバイスを操作するために、電力が連続的に消費されてしまう。さらに、電力不足がある場合、これらのデバイスは最早全く機能しなくなる。その結果、例えばこれらの公知の電気工学デバイスを使用する光通信システムの保全性は、このような電力不足の場合には危険にさらされる。
添付の図面は、本発明を例示するものであり、本発明を限定するものではない。
半導体ベースの光学移相装置のための方法および装置が開示される。以下の説明において、多数の具体的な詳細が、本発明の完全な理解を提供するために記載される。しかしながら、具体的な詳細が本発明を実践するために必ずしも使用される必要が無いという事が、当業者にとって明らかである。更に、周知の材料または方法は、本発明を不明瞭にすることを避けるために詳述しなかった。
本願明細書の全体に亘る「一実施形態」あるいは「実施形態」への参照は、該実施形態に関して記載された特定の特徴、構造あるいは特性が本発明の少なくとも1つの実施形態に含まれることを意味する。従って、本願明細書の全体に亘る「一実施形態」あるいは「実施形態」と言う語句の出現は、必ずしも同一の実施形態の事を言及しているとは限らない。更に、複数の特定の特徴、構造あるいは特性は、1つ以上の実施形態において、任意の適切な方法において統合化され得る。
本発明の様々な実施形態の概要として、半導体ベースの光学移相装置が光学アプリケーションに供給される。様々な実施形態において、光学移相装置のセッティングは、二重ポリシリコン構造によって実質的にラッチされ得る。従って、開示された光学移相装置の実施形態は、電力を連続的に供給する事無く、光線の移送を連続的に変化させる。開示された光学の移相装置の実施形態は、例えば干渉計、光通信スイッチ、位相アレイまたは同種のもののような波長分割多重(WDM)波長管理デバイスのような、様々な光学アプリケーション用の有用な構成部分で有り得る。
例証するために、図1は、本発明の教示における光学移相装置101の一実施形態の側面図の一例である。一実施形態において、光学移相装置101は、複数の複数の浮動充電調節領域123が配置された半導体基板103を備える。一実施形態において、半導体基板103はシリコンを備え、また、複数の浮動充電調節領域123は、ポリシリコンを備える。図示された実施形態中で示されるように、複数の浮動充電調節領域123は、複数のトンネル絶縁層117によって半導体基板103から絶縁される。一実施形態において、光学移相装置101は、これらは複数のブロック絶縁層119を横切って複数の浮動充電調節領域123のそれぞれの近傍に配置される複数の複数の制御ノード121を更に備える。一実施形態において、複数の制御ノード121はポリシリコンを備える。一実施形態において、半導体基板103はP型シリコンと浮動充電調節領域の123とを備え、また、複数の制御ノード121はN形ポリシリコンを備える。他の実施形態において、極性が逆転し、半導体基板103がN形シリコンおよび複数の浮動充電調節領域123を備え、複数の複数の制御ノード121がP形ポリシリコンを備えても良い、と言う事が認識される。
半導体基板103、複数のトンネル絶縁層117、複数の浮動充電調節領域123、複数のブロック絶縁層119および複数の制御ノード121の開示された構造が、半導体ベースの光導波路の光路に沿って配置された複数の二重積層型コンデンサと比較され得る事が認識される。この例を仮定し、二重積層型コンデンサのそれぞれが3枚の「プレート」を備え、そのそれぞれが絶縁層によって分離される。第1プレートは、接地されて、半導体基板103であって良い。第2即ち浮動中心プレートは複数の浮動充電調節領域123であって良い。第3プレートは電源に切り替え可能に接続される複数の制御ノード121であって良い。後に議論されるように、自由な電荷の濃度が格納・調節されるような、少なくとも中心プレート即ち複数の浮動充電調節領域123を貫通する光線を導く事によって、本発明の教示における移相または調節が実現される。
図1の中で示されるように、一実施形態における光学移送装置は可変電源125を備え、可変電源125は接地され、導体129によって基板103に接続され、導体131によって複数の制御ノード121に接続される。一実施形態において、電源125は電圧源、電流源あるいはその他同種のもので、スイッチ127でON/OFFされて良い。一実施形態において、スイッチ127は電気式であっても良いし、機械式、または同種のものであっても良い。従って、図示された実施形態中で示されるように、複数の制御ノード121は電源125によって調整可能な制御電圧Vに設定されるために切り替え可能に接続される。具体的に、スイッチ127が投入即ちクローズされる場合、電源125が投入され、複数の制御ノード121がVに設定されるように接続される。スイッチ127が切断即ちオープンされる場合、電源125は切断され、複数の制御ノード121は電源125に接続されず、従って、浮動し得ない。一実施形態において、Vは、例えば5〜15ボルトの範囲の比較的低い電圧範囲である事が考慮される。
一実施形態において、半導体基板103は導波管135を備え、導波管135は、半導体基板103と複数の浮動充電調節領域123を貫通して導かれる光路113を備える。一実施形態において、光路113は複数の制御ノード121を貫通して導かれる。後に議論されるように、一実施形態中の導波管135はリブ導波管である。一実施形態において、光路113に沿った光線115は、半導体基板103および複数の浮動充電調節領域123を貫通する。一実施形態において、光線115は複数の制御ノード121を更に貫通して導かれる。一実施形態において、光線115は赤外線あるいは近赤外線光を含む。当業者に公知であるように、半導体基板103、複数の浮動充電調節領域123および複数の制御ノード121の一実施形態におけるシリコンおよびポリシリコンは、赤外線または近赤外線光に対して部分的に透過性を有する。光学移送装置101が光通信中で利用される実施形態において、光線115は、およそ1.55あるいは1.3マイクロメートル程度の1つ以上のチャネルあるいは波長を有する。
一実施形態において、光学移送装置101は、シリコン・オン・インシュレーター(SOI)ウェーハ111に含まれている。図1に示された実施形態中で示されるように、SOIウェーハ111は、複数の半導体および絶縁層を備える。図1は、半導体基板103が絶縁層105と107との間に配置され、絶縁層107が半導体基板103と別の半導体基板109との間に配置されることを示す。一実施形態において、絶縁層107は、SOIウェーハ111の埋設酸化物層を備え、また、絶縁層105は、SOIウェーハ111の層間絶縁膜を備える。
一実施形態において、絶縁層105および107は、光学移送装置101の光封止層として機能する。具体的には、光線115からの光学エネルギー即ち光が、半導体基板103と絶縁層105および107との間の界面から反射される。例えば、光線115からの光は、半導体基板103と絶縁層105あるいは107の間の界面に対して入射角θを有するであろう。この開示の目的のために、入射角θは、入射点における表面と直交する想像線と光線が成す角度である。図1に示された実施形態において、光線115は、全内反射のために、半導体基板103と絶縁層105あるいは107の間の界面を離れて偏向する。
一実施形態において、絶縁層105および107は酸化シリコンまたは同種のものを含んでおり、およそnoxide=1.5の屈折率を有する。半導体基板103はシリコンを含んでおり、およそnSi=3.5の屈折率を有する。光線115の全内反射を有するために、半導体基板103と絶縁層105または107と間の界面に対する光線115の入射角θは次の関係を満たす。
Figure 0003923471
全内反射の結果、一実施形態における光線115は、図1に示されるような光路113に沿って、半導体基板103中に封止され、複数の浮動充電調節領域123を貫通する。
上に要約されるように、複数の浮動充電調節領域123は、複数のトンネル絶縁層117および複数のブロック絶縁層119によって半導体103および複数の制御ノード121からそれぞれ絶縁される。従って、複数の浮動充電調節領域123は電荷即ち自由電荷キャリヤを蓄積するので、複数の浮動充電調節領域123は不揮発性である。後に議論されるように、この特長によって、光学移送装置101が、本発明の教示において、電源125によって連続的に電力が供給されなくても、また、電力不足の際にも作動する事が出来る。
一般的に、光学移送装置101の実施形態は、3つの基本動作モードを含んでいる。即ち、プログラミングモード、ラッチングモード、チューニングモードである。プログラミングモードにおいて、電源125が投入される、および(または)スイッチ127がクローズされる(投入される)。光学移送装置101をプログラムする場合、電源125は第1閾値電圧VTH より大きな制御電圧Vを提供するために調節されて良い。即ち、次式の通りである。
Figure 0003923471
がVTH より大きい場合、図1に示される実施形態中で示されるように、自由電荷キャリヤ133は複数のトンネル絶縁層117を貫通して、半導体基板103から複数の浮動充電調節領域123の中へと取り出される。従って、半導体基板103および複数の制御ノード121を横切って印加されたVに起因する電界が、プログラミング用の閾値を超過する場合、複数のトンネル絶縁層117は、複数の浮動充電調節領域123上のネットの電流の流れおよび電荷のビルドアップを許可する。
光学移送装置101をプログラムする場合、電源125は第2閾値電圧VTH 未満の制御電圧VCを提供するために調節されて良い。即ち、次式の通りである。
Figure 0003923471
がVTH 未満である場合、図1に示された実施形態中で示されるように、自由電荷キャリヤ133は、複数の浮動充電調節領域123から複数のトンネル絶縁層117を貫通して半導体基板103へと駆動される。従って、制御電圧Vが第2閾値電圧VTH 未満である場合、複数のトンネル絶縁層117は複数の浮動充電調節領域123から半導体基板103へのネットの電流の流れおよび放電を可能にする。
図1に示される例において、簡潔さを保つために、図1の複数の浮動充電調節領域123の左端のみの入力および(または)出力として自由電荷キャリヤ133が示されている、と言う事が認識される。本発明の教示において、自由電荷キャリヤ133は、複数のトンネル酸化物層117のそれぞれを横切って、複数の浮動充電調節領域123の全てから半導体基板103へ出力され、また、半導体基板103から全ての複数の浮動充電調節領域123へと入力される、と言う事が認識される。
ラッチングモードにおいて、電源125は切断されている。即ちスイッチ127がオープン(切断)である。ラッチングモードは、電力不足の場合、および電源125が連続的に切断された状態の際に自動的に開始される、という事が認識される。この運転モードでは、複数のトンネル絶縁層117および複数のブロック絶縁層119が、半導体基板103および複数の制御ノード121に出入りする自由電荷キャリヤ133のフローを実質的にブロックするので、複数の浮動充電調節領域123中の自由電荷キャリヤ133の濃度が実質的に固定される。実際、ラッチングモードにおいて、複数の浮動充電調節領域123上の電荷は固定され、α粒子インパクト、熱放出等の様なメカニズムによる消散は非常に遅い。
チューニングモードにおいて、電源125は投入されており、および(または)スイッチ127はクローズ(投入)である。光学移送装置101を同調する場合、電源125は第1および第2閾値電圧VTH とVTH との間である制御電圧Vを提供するために調節される。
Figure 0003923471
がVTH とVTH との間である場合、複数の浮動充電調節領域123中の自由電荷キャリヤ133の濃度は実質的に固定される。しかしながら、半導体基板103および(または)複数の制御ノード121中の光路に沿った自由電荷キャリヤ133の分配および(または)濃度は、Vに応じて微調整されて良い。説明のため、自由電荷キャリヤ133が電子であると仮定した場合、Vがよりポジティブ側になり、複数の制御ノード121もまたよりポジティブになる。従って、自由電荷キャリヤ133の電子は、複数の制御ノード121の近傍により集中するように、複数の浮動充電調節領域123中で再分配される。反対に、Vがそれ程ポジティブでなくなるにつれて、複数の制御ノード121はそれほどポジティブでなくなる。従って、自由電荷キャリヤ133の電子は、複数の制御ノード121の近傍にあまり集中しないように、複数の浮動充電調節領域123中で再分配される。半導体基板103中の電荷キャリヤの濃度は、同様に光路113に沿って影響される。従って、複数の制御ノード121に印加された制御電圧Vを調節または同調することによって、自由電荷キャリヤ133は、電界をスクリーニングするために複数の浮動充電調節領域123中で再分配され、また、複数のトンネル絶縁層117および複数のブロック絶縁層119上の収支の平衡を保つために、電荷キャリヤは電源125接地端子およびV端子によって供給される。従って、上述されるようなチューニングモードにおける複数の浮動充電調節領域123中の自由電荷キャリヤ133の再分配で、半導体基板103および(または)複数の制御ノード121中の光路113に沿った自由電荷キャリヤ133の分配は、複数のトンネル絶縁層117、複数のブロック絶縁層119を横切ってそれぞれ影響される。
上述されたプログラミング、ラッチングおよびチューニングモードの実施形態において、複数の浮動充電調節領域123と複数の制御ノード121との間の複数のブロック絶縁層119を貫通するトンネル電流がもし存在していたとしても些細であると言う事が認識される。さらに、自由電荷キャリヤ133として電子即ち陰電荷を用いて自由電荷キャリヤ133が記述されたのは説明目的のためであると言う事に注目されたい。他の実施形態において、これらの電荷の極性、シリコンおよびポリシリコンのドーピングおよび電源125の電圧は逆転していても良いという事が認識される。従って、このような実施形態において、正孔即ち陽電荷キャリヤが、本発明の教示において、複数の浮動充電調節領域123へスイープされるか、複数の浮動充電調節領域123から駆動される。
一実施形態において、光線115の位相は、プラズマ光学効果によって光路113に沿って自由電荷キャリヤ133を貫通して伝播するにつれて応答し、変化し、調整される。具体的に、プラズマ光学効果は、半導体基板103、複数の浮動充電調節領域123および複数の制御ノード121を貫通する光線115の光路113に沿って存在する光学電界ベクトルおよび自由電荷キャリヤ133の間の相互作用によって発生する。光線115の電界は自由電荷キャリヤ133を極性化する。また、これは、媒体の局所比誘電率に有効に乱れを与える。従って、これによって光線115の光波の伝搬速度の乱れが生じ、屈折率は媒体中の真空における光速度の比率であるので、従って光の屈折率の乱れが生じる。光学エネルギーが使い果たされると、自由電荷キャリヤ133は電界によって加速され、電磁波の吸収へと導かれる。一般に、屈折率の摂動は複素数であり、その実数部は速度変化を引き起こし、虚数部は自由電荷キャリヤの吸収に関連する。移相量φは、以下の式で与えられる。
Figure 0003923471
ただし、λは光学波長であり、Lは相互作用長さである。シリコン中のプラズマ光学効果の場合には、電子(ΔN)および正孔(ΔN)の濃度の変化に起因する屈折率の変化Δnが、次の式より与えられる。
Figure 0003923471
ただし、nはシリコンの公称屈折率であり、eは電子の電荷であり、cは光速であり、εは真空の誘電率であり、m およびm はそれぞれ電子と正孔の実効質量であり、bおよびbはフィッティング・パラメタである。
図2は、本発明の教示における、光学移送装置101の一実施形態の断面図である。図2に示される光学移送装置101の断面は、図1に示されるA−A’断面と対応する。図示されるように、光学移送装置101の導波管135の断面は、絶縁層105と107の間に配置された半導体基板103を備える。制御ノード121および浮動充電調節領域123は導波管135内に配置される。トンネル絶縁層117は、半導体基板103から浮動充電調節領域123を絶縁し、ブロック絶縁層119は、浮動充電調節領域123および制御ノード121を相互に絶縁する。図示された実施形態において、電源125は導体129によって半導体基板103に接続される。電源125は、導体131およびスイッチ127によって制御ノード121へと更に接続される。
図示されるように、リブ導波管135は、リブ領域239およびスラブ領域237を備える。図2に示された実施形態において、単一モード光線115の強度分布はリブ導波管135を貫通して伝播するように示される。図示されるように、光線115の強度分布は、大多数の光線115がリブ領域239の一部分を貫通してリブ導波管135の内部へ向かって伝播している状態である。さらに、光線115の一部分は、スラブ領域237の一部分を貫通してリブ導波管135の内部へと伝播する。さらに、光線115の強度分布で示されるように、リブ領域239の「上部の2角」およびスラブ領域237の「両サイド」において、ビーム115の伝播光学モードの強度は無視出来るほど小さい。従って、浮動充電調節領域123が、図示されるようにリブ導波管135の内側部分に配置されるので、大多数の光線115は浮動充電調節領域123を貫通して導かれる。従って、本発明の教示において、光線115の移相は浮動充電調節領域123中の自由電荷キャリヤの電荷濃度の調節によって実現される。
前述の詳細な説明において、本発明の方法と装置は、特定の典型的な実施形態に関して記載された。しかしながら、様々な変更態様と改変が本発明のより広い趣旨および範囲から逸脱すること無く為され得る事は明白である。従って、本願明細書および図面は、制限的であるというよりはむしろ例示的であると認識される。なお、半導体基板103は、III−V半導体材料を含んでもよい。
本発明の教示における、半導体基板に配置された浮動充電調節領域を含む光学移相装置の一実施形態の側面図である。 本発明の教示における、半導体基板に配置された制御ノードおよび浮動充電調節領域の一実施形態の断面図である。

Claims (29)

  1. 半導体基板に配置された光路によって光線を導くステップと、
    光路に沿って配置された複数の浮動充電調節領域を貫通する光線を導くステップと、
    前記複数の浮動充電調節領域中の電荷濃度に応じて光線の位相を移相するステップと、
    電源によって前記複数の浮動充電調節領域中の電荷濃度を調節するステップと、
    前記電源を切断する事により、前記複数の浮動充電調節領域の電荷濃度を実質的に固定するステップと
    を備え、
    前記電源によって複数の浮動充電調節領域中の電荷濃度を調節するステップが、
    前記電源に接続されたスイッチを投入するステップと、
    前記電源の出力電圧を調節するステップと
    有し、
    前記電源を切断する事により、前記複数の浮動充電調節領域の電荷濃度を実質的に固定するステップが、前記スイッチを切断するステップを有する方法。
  2. 前記電源の出力電圧を調節するステップが、前記複数の浮動充電調節領域と前記半導体基板の間に配置されたトンネル絶縁層を横切って、前記半導体基板から複数の浮動充電調節領域へ電荷キャリヤを誘引するために必要な第1閾値電圧より大きな値に出力電圧を調節するステップを含む、請求項1に記載の方法。
  3. 前記電源の出力電圧を調節するステップが、前記複数の浮動充電調節領域と前記半導体基板の間に配置されたトンネル絶縁層を横切って、前記複数の浮動充電調節領域から前記半導体基板へと電荷キャリヤを導くために必要な第2閾値電圧より小さな値に出力電圧を調節するステップを含む、請求項1に記載の方法。
  4. 前記電源の出力電圧を調節するステップが、光路に沿った前記複数の浮動充電調節領域の近傍における前記半導体基板中の電荷濃度を同調するために、前記複数の浮動充電調節領域と前記半導体基板との間に配置されたトンネル絶縁層を横切って、前記半導体基板から前記複数の浮動充電調節領域へ電荷キャリヤを誘引するために必要な第1閾値電圧と、前記複数の浮動充電調節領域と前記半導体基板との間に配置されたトンネル絶縁層を横切って、前記複数の浮動充電調節領域から前記半導体基板へ電荷キャリヤを導くために必要な第2閾値電圧との間の値に出力電圧を調節するステップを含み、
    光線の位相が光路に沿った半導体基板中の電荷の濃度に応答する、請求項1に記載の方法。
  5. 前記電源の出力電圧を調節するステップが、電源に接続され、光路に沿った少なくとも1つの制御ノードの電荷濃度を同調するために、前記複数の浮動充電調節領域と前記半導体基板との間に配置されたトンネル絶縁層を横切って、前記半導体基板から前記複数の浮動充電調節領域へ電荷キャリヤを誘引するために必要な第1閾値電圧と、前記複数の浮動充電調節領域と前記半導体基板との間に配置されたトンネル絶縁層を横切って、前記複数の浮動充電調節領域から前記半導体基板へ電荷キャリヤを導くために必要な第2閾値電圧との間の値に出力電圧を調節するステップを含み、
    制御ノードが、ブロック絶縁層を横切って前記複数の浮動充電調節領域の少なくとも1つに容量結合され、
    光線の位相が、光路に沿った制御ノード中の電荷濃度に応答する、請求項1に記載の方法。
  6. 光路に沿って導かれる光線が貫通する半導体基板と、
    光路に沿って配置された複数の浮動充電調節領域と、
    前記複数の浮動充電調節領域のそれぞれと前記半導体基板との間に配置された複数のトンネル絶縁層と、
    前記複数の浮動充電調節領域の近傍に配置された複数の制御ノードと、
    前記複数の制御ノードのそれぞれと前記複数の浮動充電調節領域との間に配置された複数のブロック絶縁層と
    を備え、
    前記複数の浮動充電調節領域のそれぞれにおいて、光線の位相が電荷濃度に応答し、
    前記複数の制御ノードの各々が、前記複数の浮動充電調節領域の各々の電荷濃度を制御する、装置。
  7. 前記半導体基板に配置される光導波路を更に備え、光路が前記光導波路を貫通して導かれる、請求項6に記載の装置。
  8. 前記光導波路が光学リブ導波管である、請求項7に記載の装置。
  9. 前記複数の浮動充電調節領域のそれぞれの電荷濃度を制御するために、前記複数の制御ノードの少なくとも1つに選択的に接続された可変電源を更に備える、請求項6に記載の装置。
  10. 前記可変電源と前記複数の制御ノードの少なくとも1つを接続するスイッチを更に備え、
    前記スイッチが投入されている場合、前記複数の浮動充電調節領域中のそれぞれの電荷濃度が前記可変電源に応じて変化し、
    前記スイッチが切断されている場合、前記複数の浮動充電調節領域中のそれぞれの電荷濃度が実質的に固定される、請求項9に記載の装置。
  11. 前記スイッチが投入されている場合、光路に沿った前記半導体基板中の電荷濃度が、前記可変電源に応答し、
    前記スイッチが切断されている場合、光路に沿った前記半導体基板中の電荷濃度が、前記可変電源に依存しない、請求項10に記載の装置。
  12. 前記複数の制御ノードが光路に沿って配置され、
    前記スイッチが投入されている場合、光路に沿った前記複数の制御ノード中の電荷濃度が、前記可変電源に応答し、
    前記スイッチが切断されている場合、光路に沿った前記複数の制御ノード中の電荷濃度が、前記可変電源に依存しない、請求項10に記載の装置。
  13. 前記可変電源が、可変電圧源を備える、請求項10に記載の装置。
  14. 前記半導体基板がシリコンを含む、請求項6に記載の装置。
  15. 前記複数の浮動充電調節領域がポリシリコンを含む、請求項6に記載の装置。
  16. 複数の制御ノードがポリシリコンを含む、請求項6に記載の装置。
  17. 前記半導体基板がシリコン・オン・インシュレーター(SOI)ウェーハに含まれる、請求項6に記載の装置。
  18. 前記半導体基板が、III−V半導体材料を含む、請求項6に記載の装置。
  19. 前記複数の浮動充電調節領域のそれぞれの電荷濃度が、前記複数の浮動充電調節領域の電子の濃度である、請求項6に記載の装置。
  20. 前記複数の浮動充電調節領域のそれぞれの電荷濃度が、前記複数の浮動充電調節領域の正孔の濃度である、請求項6に記載の装置。
  21. 複数の絶縁層と、前記複数の絶縁層のうちの2つの間に配置される第1半導体層を含む複数の半導体層とを備えるシリコン・オン・インシュレーター(SOI)ウェーハと、
    前記複数の絶縁層の前記2つ間の前記第1半導体層に配置された光導波路と、
    前記第1半導体層の中の前記光導波路に沿って配置された複数の浮動充電調節領域と、
    前記複数の浮動充電調節領域の電荷濃度を制御するために、前記複数の浮動充電調節領域の近傍に配置された複数の制御ノードと、
    前記複数の浮動充電調節領域の電荷濃度を制御するために、前記複数の制御ノードの少なくとも1つに切り替え可能に接続される可変電源と
    を備え、
    前記光導波路を貫通して導かれる光線が、前記複数の浮動充電調節領域を貫通して導かれ、
    前記複数の浮動充電調節領域のそれぞれが、トンネル絶縁層と相対して前記第1半導体層から離間し、
    前記複数の制御ノードの各々が、ブロック絶縁層と相対して前記複数の浮動充電調節領域から離間し、
    光線の位相が、前記複数の浮動充電調節領域の電荷濃度に応答する、装置。
  22. 前記電源が電圧源を備える、請求項21に記載の装置。
  23. 前記電源と前記複数の制御ノードの少なくとも1つとの間に接続されたスイッチを更に備える、請求項21に記載の装置。
  24. 前記スイッチが投入されている場合、前記複数の浮動充電調節領域中の電荷濃度が電源に応答する、請求項23に記載の装置。
  25. 前記スイッチが切断されている場合、前記複数の浮動充電調節領域中の電荷濃度は実質的に固定される、請求項23に記載の装置。
  26. 前記複数の浮動充電調節領域中の電荷濃度が、前記複数の浮動充電調節領域中の電子濃度を含む、請求項21に記載の装置。
  27. 前記複数の浮動充電調節領域中の電荷濃度が、前記複数の浮動充電調節領域中の正孔濃度を含む、請求項21に記載の装置。
  28. 半導体基板に配置された光路によって光線を導くステップと、
    光路に沿って配置され、前記半導体基板から絶縁された複数の浮動充電調節領域を貫通する光線を導くステップと、
    前記複数の浮動充電調節領域中の電荷濃度に応じて光線の位相を移相するステップと、
    電源によって、前記複数の浮動充電調節領域中の電荷濃度を調節するステップと
    を備え、
    複数の制御ノードが前記複数の浮動充電調節領域の近傍に配置され、複数のブロック絶縁層が前記複数の制御ノードのそれぞれと前記複数の浮動充電調節領域との間に配置され、複数のトンネル絶縁層が前記複数の浮動充電調節領域のそれぞれと前記半導体基板との間に配置されており、
    前記電源によって前記複数の浮動充電調節領域中の電荷濃度を調節するステップは、前記複数の制御ノードと前記半導体基板とに接続された前記電源により前記トンネル絶縁層を横切って前記半導体基板と複数の浮動充電調節領域との間で電荷キャリヤを移動させることによって、前記複数の浮動充電調節領域の電荷濃度を調節する方法。
  29. 複数の絶縁層と、前記複数の絶縁層のうちの2つの間に配置される第1半導体層を含む複数の半導体層とを備えるシリコン・オン・インシュレーター(SOI)ウェーハと、
    前記複数の絶縁層の前記2つ間の前記第1半導体層に配置された光導波路と、
    前記第1半導体層の中の前記光導波路に沿って配置された複数の浮動充電調節領域と、
    前記複数の浮動充電調節領域の電荷濃度を制御するために、前記複数の浮動充電調節領域の近傍に配置された複数の制御ノードと、
    前記複数の浮動充電調節領域の電荷濃度を制御するために、前記複数の制御ノードの少なくとも1つ及び前記第1半導体層に切り替え可能に接続される可変電源と
    を備え
    前記複数の浮動充電調節領域のそれぞれがトンネル絶縁層と相対して前記第1半導体層から離間し、前記複数の制御ノードの各々がブロック絶縁層と相対して前記複数の浮動充電調節領域から離間することによって、前記複数の浮動充電調節領域は、前記第1半導体層及び前記複数の制御ノードからそれぞれ絶縁される装置。
JP2003546163A 2001-11-15 2002-11-08 半導体基板の光学ビームを位相変移するための方法と装置 Expired - Fee Related JP3923471B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/011,216 US6628450B2 (en) 2001-11-15 2001-11-15 Method and apparatus for phase-shifting an optical beam in a semiconductor substrate
PCT/US2002/035948 WO2003044590A1 (en) 2001-11-15 2002-11-08 Method and apparatus for phase-shifting an optical beam in a semiconductor substrate

Publications (3)

Publication Number Publication Date
JP2005536766A JP2005536766A (ja) 2005-12-02
JP2005536766A5 JP2005536766A5 (ja) 2006-11-02
JP3923471B2 true JP3923471B2 (ja) 2007-05-30

Family

ID=21749361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003546163A Expired - Fee Related JP3923471B2 (ja) 2001-11-15 2002-11-08 半導体基板の光学ビームを位相変移するための方法と装置

Country Status (7)

Country Link
US (1) US6628450B2 (ja)
EP (1) EP1446696A1 (ja)
JP (1) JP3923471B2 (ja)
AU (1) AU2002360360A1 (ja)
CA (1) CA2465830C (ja)
TW (1) TWI258026B (ja)
WO (1) WO2003044590A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698769B2 (en) * 1999-04-01 2004-03-02 Heeling Sports Limited Multi-wheel heeling apparatus
US6853671B2 (en) * 2001-06-13 2005-02-08 Intel Corporation Method and apparatus for tuning a laser with a Bragg grating in a semiconductor substrate
US7088877B2 (en) 2001-06-13 2006-08-08 Intel Corporation Method and apparatus for tuning a bragg grating in a semiconductor substrate
US6856732B2 (en) * 2001-06-13 2005-02-15 Intel Corporation Method and apparatus for adding/droping optical signals in a semiconductor substrate
US6788727B2 (en) * 2002-06-13 2004-09-07 Intel Corporation Method and apparatus for tunable wavelength conversion using a bragg grating and a laser in a semiconductor substrate
US6950577B2 (en) * 2002-07-01 2005-09-27 Intel Corporation Waveguide-based Bragg gratings with spectral sidelobe suppression and method thereof
US7245792B2 (en) * 2002-08-16 2007-07-17 Intel Corporation Silicon-based tunable single passband optical filter
DE102004007251A1 (de) * 2004-02-10 2005-09-08 Infineon Technologies Ag Elektrooptischer Modulator
WO2005096076A1 (en) * 2004-03-30 2005-10-13 Ecole Polytechnique Federale De Lausanne (Epfl) Light phase modulator
US20060198008A1 (en) * 2005-03-07 2006-09-07 Micron Technology, Inc. Formation of micro lens by using flowable oxide deposition
DE102006039390B3 (de) * 2006-08-22 2007-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klassifikation auftreffender Körper
US7880201B2 (en) * 2006-11-09 2011-02-01 International Business Machines Corporation Optical modulator using a serpentine dielectric layer between silicon layers
TW200951603A (en) * 2008-01-16 2009-12-16 Ibm Electro-optical device
US7933483B2 (en) * 2008-01-16 2011-04-26 International Business Machines Corporation Electro-optical memory cell
WO2010098248A1 (ja) * 2009-02-25 2010-09-02 日本電気株式会社 光変調構造および光変調器
WO2013146620A1 (ja) 2012-03-30 2013-10-03 日本電気株式会社 光機能素子及びその製造方法
US9766484B2 (en) 2014-01-24 2017-09-19 Cisco Technology, Inc. Electro-optical modulator using waveguides with overlapping ridges
FR3034879B1 (fr) * 2015-04-13 2018-06-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Guide d'onde pour modulateur electro-optique de type capacitif.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348293A (en) * 1999-03-25 2000-09-27 Bookham Technology Ltd Optical phase modulator
US6463193B2 (en) * 2000-12-06 2002-10-08 Intel Corporation Method and apparatus for switching an optical beam using a phase array disposed in a higher doped well region

Also Published As

Publication number Publication date
CA2465830C (en) 2008-04-01
EP1446696A1 (en) 2004-08-18
TW200301381A (en) 2003-07-01
US6628450B2 (en) 2003-09-30
CA2465830A1 (en) 2003-05-30
WO2003044590A1 (en) 2003-05-30
JP2005536766A (ja) 2005-12-02
AU2002360360A1 (en) 2003-06-10
US20030090286A1 (en) 2003-05-15
TWI258026B (en) 2006-07-11

Similar Documents

Publication Publication Date Title
JP3923471B2 (ja) 半導体基板の光学ビームを位相変移するための方法と装置
JP4603362B2 (ja) 電荷変調領域を有するリング共振器を有する光ビーム変調方法および装置
JP4648041B2 (ja) 制御可能な屈折特性を備えた媒質
US11269236B2 (en) Tunable optical structures
US6891653B2 (en) Method and apparatus for steering an optical beam in a semiconductor substrate
US6313803B1 (en) Monolithic millimeter-wave beam-steering antenna
US20080069509A1 (en) Microcircuit using electromagnetic wave routing
JP4448859B2 (ja) 光デバイスにおける光ビームをフォトニック結晶格子により調整するための装置および方法
US6469677B1 (en) Optical network for actuation of switches in a reconfigurable antenna
US20090263076A1 (en) Charge-Based Memory Cell For Optical Resonator Tuning
JPH06250593A (ja) 静電駆動マイクロシャッターおよびシャッターアレイ
US6603893B1 (en) Method and apparatus for switching an optical beam in a semiconductor substrate
US20170176780A1 (en) Semiconductor waveguide structure
US6600864B2 (en) Method and apparatus for switching an optical beam using an optical rib waveguide
US6463193B2 (en) Method and apparatus for switching an optical beam using a phase array disposed in a higher doped well region
US6912334B2 (en) Optical switch
US6483954B2 (en) Method and apparatus for coupling to regions in an optical modulator
US6421473B1 (en) Method and apparatus for switching an optical beam in an integrated circuit die
US7013070B2 (en) Method and apparatus for switching an optical beam between first and second waveguides in a semiconductor substrate layer
JPH11330503A (ja) 信号処理の光電子工学方法、その実施装置と用途
US20050017829A1 (en) Shutter switch for millimeter wave beams and method for switching
US6650802B1 (en) Method and apparatus for switching an optical beam
US7142761B2 (en) Method and apparatus for isolating an active region in an optical waveguide
US6470104B2 (en) Method and apparatus for switching an optical beam by modulating the phase of a portion of the optical beam in a semiconductor substrate
US6449405B1 (en) Method and apparatus for switching a plurality of optical beams in an optical switch

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees