JP3923121B2 - Method for producing 4,4'-azobis-4-cyanovaleric acid - Google Patents

Method for producing 4,4'-azobis-4-cyanovaleric acid Download PDF

Info

Publication number
JP3923121B2
JP3923121B2 JP03299497A JP3299497A JP3923121B2 JP 3923121 B2 JP3923121 B2 JP 3923121B2 JP 03299497 A JP03299497 A JP 03299497A JP 3299497 A JP3299497 A JP 3299497A JP 3923121 B2 JP3923121 B2 JP 3923121B2
Authority
JP
Japan
Prior art keywords
azobis
acid
cyanovaleric acid
crystals
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03299497A
Other languages
Japanese (ja)
Other versions
JPH10218852A (en
Inventor
望 渋谷
了紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP03299497A priority Critical patent/JP3923121B2/en
Publication of JPH10218852A publication Critical patent/JPH10218852A/en
Application granted granted Critical
Publication of JP3923121B2 publication Critical patent/JP3923121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水溶性ラジカル発生剤として有用な4,4′−アゾビス−4−シアノ吉草酸の製造法に関する。
【0002】
【従来の技術】
下記式
【化1】

Figure 0003923121
で示されるレブリン酸水溶液にヒドラジン(NH2NH2)とシアン化水素(HCN)を順次反応させ、下記式
【化2】
Figure 0003923121
で示されるヒドラゾ化合物を得、これを水中で塩素酸化することにより4,4′−アゾビス−4−シアノ吉草酸スラリーを得る方法が知られている(米国特許2520338号参照)。
【0003】
しかし、この方法では、塩素酸化と同時に4,4′−アゾビス−4−シアノ吉草酸が晶析されるため、得られる結晶は1〜2μの針状結晶が中心から放射状に成長してあたかも毬栗のような結晶集合体(以下、毬栗状結晶と略す。)となり、しかもその毬栗状結晶全体も10μより相当小さいという非常に微細な結晶となり、この毬栗状結晶は各針状結晶同士の隙間に液が浸入した状態で結晶集合体となる。このような毬栗状結晶は、遠心濾過による固液分離、純水によるスプレー洗浄を行っても、毬栗状結晶の中に入り込んだ液は除去、純水による置換が困難で、そのため不純物が抜け難く、製品品質を高めることが困難であるという問題があった。
【0004】
そこで、工業的には、(1)前記方法によって得られた毬栗状結晶をスラリーから固液分離した後、これを多量の純水中に溶解した後、例えば酸で再び結晶化させる再結晶法がとられている。
【0005】
しかしこの方法では、精製工程が煩雑となる上、再結晶用の設備も必要となり、二度以上の固液分離が必要となるため収率も低下せざるを得ないという問題があった。
【0006】
また、特開昭60−222451号公報には、レブリン酸水溶液にヒドラジンとシアン化水素を順次反応させて得られたヒドラゾ化合物の水溶液に大量の有機溶媒を添加した後塩素ガスを吹き込んで4,4′−アゾビス−4−シアノ吉草酸を生成させることにより、この有機溶媒に溶解し難い中和塩等を析出させた後、この溶媒を蒸発させて4,4′−アゾビス−4−シアノ吉草酸を得る方法が記載されている。
【0007】
しかし、この方法は有機溶媒を大量に必要とし、更にこの溶媒を蒸発させる使用後の有機溶媒の回収装置又は処理装置を必要とすること、中和塩の分離工程が追加されることなど、工程が大幅に増加するという不便がある。
【0008】
【発明が解決しようとする課題】
そこで、本発明の目的は、再結晶工程を必要とせず、また大量の有機溶媒を使用することもなく、高収率でかつ純度の高い4,4′−アゾビス−4−シアノ吉草酸を製造する方法を提供する点にある。
【0009】
【課題を解決するための手段】
一般に、前記の方法で生成した毬栗状結晶を含むスラリーに再びアルカリを加えて結晶を溶解させた後、酸を加えて酸析する方法は、他の不純物はそのままにして更に酸とアルカリで生成する塩を増大させるのみで、むしろ製品純度を低下させるため不都合と考えられていたため、一旦析出した結晶を遠心濾過などにより固液分離することにより液中の不純物を系外に排出した後、この結晶を純水中に分散させた後アルカリ等により溶解し、次いで酸で再度結晶化させるという操作が必要と考えられていた。
【0010】
ところが、本発明者らの研究によれば、驚くことに前記毬栗状結晶を含むスラリーにアルカリを加えて結晶を溶解させた後、酸を加えて酸析する方法は、不純物も除かず、かつ不純物である酸とアルカリにより生成する塩が系中に存在するにもかかわらず、4,4′−アゾビス−4−シアノ吉草酸が柱状結晶でより純度の高い、しかも平均直径30μ以上と大きな結晶として得られることを見出し本発明に到達した。
【0011】
すなわち、本発明は、レブリン酸のアルカリ金属水溶液にヒドラジンとシアン化水素を順次作用させた後、塩素酸化して得られた4,4′−アゾビス−4−シアノ吉草酸スラリーにアルカリ水溶液を加えて、少なくとも4,4′−アゾビス−4−シアノ吉草酸を全て溶解した後、鉱酸で酸析させて、柱状結晶を生成させることを特徴とする4,4′−アゾビス−4−シアノ吉草酸の製造法に関する。
【0012】
本発明において、レブリン酸のアルカリ金属水溶液にヒドラジンとシアン化水素を加えて行なう反応および得られたヒドラゾ化合物を水中で塩素酸化させる反応は特に特殊な条件を採用する必要はなく、公知の方法で行なえばよく、前記アルカリ金属としては、ナトリウム、カリウムあるいはリチウムなどを挙げることができる。
【0013】
このようにして得られた4,4′−アゾビス−4−シアノ吉草酸スラリーは前述のように不純物除去工程を何ら経ることなく、このスラリーにアルカリ水溶液を加えて毬栗状結晶を一旦溶解させる。
【0014】
ここで用いるアルカリ水溶液としては、格別の制限はなく、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどの無機系のアルカリ水溶液を用いることができる。アルカリ水溶液の濃度は特に限定されるものではないが、5〜12規定の水溶液を用いることが好ましい。
アルカリ水溶液の添加時の温度は、40℃以下であることが好ましく、10〜30℃であることがより好ましい。
アルカリ水溶液の添加はスラリーを撹拌しながら行なうのが好ましく、その添加量は毬栗状結晶が全て溶解できるだけ添加すればよい。
【0015】
こうして得られた4,4′−アゾビス−4−シアノ吉草酸水溶液に鉱酸を加えて4,4′−アゾビス−4−シアノ吉草酸の柱状結晶を晶析させるが、ここで用いる鉱酸としては、通常用いられる鉱酸であればどれでも用いることができ、例えば塩酸、硫酸、燐酸が好ましく用いられる。鉱酸は水溶液として添加するのが好ましい。
鉱酸水溶液としては1〜2規定のものを用いることが好ましく、添加時の温度は40℃以下であることが好ましく、10〜30℃であることがより好ましい。
【0016】
鉱酸水溶液は4,4′−アゾビス−4−シアノ吉草酸の結晶成長をより助長するためにゆっくりと、例えば2〜10時間かけて滴下することが好ましい。
鉱酸の添加量は、先に添加したアルカリをほぼ中和して、液のpHが2以下になる程度添加すればよい。
【0017】
このような方法を採用することにより析出した4,4′−アゾビス−4−シアノ吉草酸結晶は平均直径30μ以上であり、しかも柱状結晶という毬栗状結晶ではない結晶を得ることができる。平均直径は晶析条件によっては50〜100μあるいはそれ以上のものとすることも可能である。
こうして得られた結晶は、毬栗状結晶でないため、従来の毬栗状結晶に比べて不純物含有量が少なく、高純度のものとなる。
【0018】
こうして得られた結晶は更に高純度とするため、滴下終了後、固液分離し、純水で洗浄すればよい。
【0019】
【実施例】
以下に実施例を用いて本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
実施例1
温度計、pH電極、塩素ガス吹き込み管、液状シアン化水素供給管、滴下ロート、シール付き撹拌翼を備えたジャケット付きの2リットルセパラブルフラスコに85重量%レブリン酸水溶液478.6gと純水863.7gとを入れ、撹拌混合した。ついで、48%水酸化ナトリウム水溶液294.4gを加えてレブリン酸を中和した。ついで、60.3%ヒドラジン1水和物水溶液145.4gを滴下し、滴下終了後、2時間25℃で熟成した。
【0021】
熟成終了後、液状のシアン化水素109gを20分かけて供給し、25℃で
12時間熟成した。熟成終了後、純水1219gを加え、15℃で6時間かけて塩素ガス144.2gを吹き込んで4,4′−アゾビス−4−シアノ吉草酸スラリーを得た。この時の4,4′−アゾビス−4−シアノ吉草酸結晶は10μ以下の細かい毯栗状結晶であった。
【0022】
25℃でこのスラリーに12規定水酸化ナトリウム水溶液347.9gを30分かけて滴下し、4,4′−アゾビス−4−シアノ吉草酸の結晶を完全に溶解させた。ついで、この溶液に、25℃で2規定塩酸2063.9gを5時間かけて滴下し、4,4′−アゾビス−4−シアノ吉草酸結晶を再び析出させた。この結晶を含有するスラリーを5℃まで冷却して、遠心濾過により固液分離した後、純水で洗浄して4,4′−アゾビス−4−シアノ吉草酸の湿結晶を得た。これを乾燥後、目視および液体クロマトグラフィーで分析した。
【0023】
ここで得られた結晶は毯栗状結晶とは異なる斜柱状結晶(トランプのダイヤを立体化したような形)で、直径が50μ以上の大きな結晶であった。この4,4′−アゾビス−4−シアノ吉草酸結晶の純度は99.9%以上であった。
この結晶の収量は457.1gであり、レブリン酸からの収率は93%という高収率であった。
【0024】
比較例1
実施例1と同様にして塩素酸化まで行い、4,4′−アゾビス−4−シアノ吉草酸のスラリーを得た。
このスラリーをそのまま遠心濾過で固液分離後、純水で洗浄して4,4′−アゾビス−4−シアノ吉草酸の湿結晶を得た。この結晶は直径10μ以下の細かい毯栗状結晶であった。これを液体クロマトグラフィーで分析したところ、純度は76.8%であった。収率は90.0%で、収量は476.7gであった。
【0025】
この微細結晶167gに水300gを加え、これに5規定水酸化ナトリウム水溶液122gを加えて溶解し、ついで318.1gの1.0規定硫酸318.1gで再結晶化して4,4′−アゾビス−4−シアノ吉草酸のスラリーを得た。これを5℃に冷却して遠心濾過して4,4′−アゾビス−4−シアノ吉草酸の湿結晶を得た。これを乾燥して4,4′−アゾビス−4−シアノ吉草酸結晶116.8gを得た。レブリン酸からの収率を計算すると82.0%となり、実施例1と較べて収率が10%以上低い結果となった。この結晶を液体クロマトグラフィーで分析したところ、99.9%であった。
【0026】
比較例2
実施例1と同様にして塩素酸化まで行い、4,4′−アゾビス−4−シアノ吉草酸のスラリーを得た。
このスラリーをそのまま遠心濾過で固液分離して毯栗状4,4′−アゾビス−4−シアノ吉草酸の湿結晶741.8gを得た。これは収率95%に該当する。これを液体クロマトグラフィーで分析したところ、純度は52.1%(比較例1のように、純水で洗浄していないため)であった。この結晶162.5gに水300gを加え、5N水酸化ナトリウム水溶液120gを加えて溶解し、これを1規定の硝酸320gで再結晶化して4,4′−アゾビス−4−シアノ吉草酸のスラリーを得た。これを5℃に冷却して遠心濾過して4,4′−アゾビス−4−シアノ吉草酸の湿結晶を得、これを乾燥して4,4′−アゾビス−4−シアノ吉草酸結晶80.3gを得た。収率は90.3%であったが、液体クロマトグラフィーで測定した純度は61.5%と、低いものであった。
【0027】
【発明の効果】
本発明の方法によれば、従来の4,4′−アゾビス−4−シアノ吉草酸の結晶固液分離後の再結晶工程を経由して得られた結晶と同等の高純度を維持しながら、固液分離工程が1回省略され、しかも1つの反応槽内で結晶化工程が終了して湿潤精結晶が得られるので、工程も簡素化され、固液分離に伴う回収率の低下を抑えることができる。
また、有機溶媒も使用しないので、有機溶媒回収精製の必要もなく、有機溶媒取り扱いに絡む煩雑な操作を必要としないという利点を有する。
【0028】
以下に、本発明の実施態様項を列記する。
(1)レブリン酸のアルカリ金属水溶液にヒドラジンとシアン化水素を順次作用させた後、塩素酸化して得られた4,4′−アゾビス−4−シアノ吉草酸スラリーにアルカリ水溶液を加えて、少なくとも4,4′−アゾビス−4−シアノ吉草酸を全て溶解した後、鉱酸で酸析させて、柱状結晶を生成させることを特徴とする4,4′−アゾビス−4−シアノ吉草酸の製造法。
(2)4,4′−アゾビス−4−シアノ吉草酸スラリーにアルカリ水溶液を添加するときの温度が40℃以下である前項(1)記載の4,4′−アゾビス−4−シアノ吉草酸の製造法。
(3)前記アルカリ水溶液の濃度が5〜12規定のものである前項(1)または(2)記載の4,4′−アゾビス−4−シアノ吉草酸の製造法。
(4)4,4′−アゾビス−4−シアノ吉草酸スラリーにアルカリ水溶液を添加した後、鉱酸を添加するときの温度が40℃以下である前項(1)、(2)または(3)記載の4,4′−アゾビス−4−シアノ吉草酸の製造法。
(5)前記鉱酸は1〜2規定の水溶液として用いるものである前項(1)、
(2)、(3)または(4)記載の4,4′−アゾビス−4−シアノ吉草酸の製造法。
(6)前記鉱酸水溶液の添加は6ml/分以下とする前項(5)記載の4,4′−アゾビス−4−シアノ吉草酸の製造法。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 4,4'-azobis-4-cyanovaleric acid useful as a water-soluble radical generator.
[0002]
[Prior art]
The following formula [Chemical formula 1]
Figure 0003923121
Hydrazine (NH 2 NH 2 ) and hydrogen cyanide (HCN) are sequentially reacted with the levulinic acid aqueous solution represented by the following formula:
Figure 0003923121
There is known a method of obtaining a hydrazo compound represented by formula (4) and chlorinating it in water to obtain a 4,4′-azobis-4-cyanovaleric acid slurry (see US Pat. No. 2,520,338).
[0003]
However, in this method, 4,4'-azobis-4-cyanovaleric acid is crystallized simultaneously with the chlorination, so that the obtained crystals are as if needle crystals of 1 to 2 .mu. In addition, the whole chestnut-shaped crystal becomes a very fine crystal that is considerably smaller than 10 μm. The chestnut-shaped crystal is located in the gap between the needle-shaped crystals. A crystal aggregate is formed when the liquid has entered. Even if such a chestnut-like crystal is subjected to solid-liquid separation by centrifugal filtration and spray washing with pure water, the liquid that has entered the chestnut-like crystal is difficult to remove and replace with pure water, and thus impurities are difficult to escape. There was a problem that it was difficult to improve product quality.
[0004]
Thus, industrially, (1) a recrystallization method in which the chestnut-like crystals obtained by the above method are solid-liquid separated from the slurry, dissolved in a large amount of pure water, and then recrystallized with, for example, an acid. Has been taken.
[0005]
However, this method has a problem that the purification process is complicated and recrystallization equipment is required, and solid-liquid separation is required twice or more, so that the yield must be reduced.
[0006]
JP-A-60-222451 discloses that a large amount of an organic solvent is added to an aqueous solution of a hydrazo compound obtained by sequentially reacting a levulinic acid aqueous solution with hydrazine and hydrogen cyanide, and then chlorine gas is blown to 4,4 ′. -By forming azobis-4-cyanovaleric acid, a neutralized salt which is difficult to dissolve in this organic solvent is precipitated, and then the solvent is evaporated to give 4,4'-azobis-4-cyanovaleric acid. The method of obtaining is described.
[0007]
However, this method requires a large amount of an organic solvent, further requires a recovery device or a processing device for the organic solvent after use to evaporate the solvent, and a step of separating a neutralized salt is added. There is an inconvenience that increases significantly.
[0008]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to produce 4,4'-azobis-4-cyanovaleric acid with high yield and high purity without the need for a recrystallization step and without using a large amount of organic solvent. The point is to provide a way to do.
[0009]
[Means for Solving the Problems]
Generally, after adding alkali to the slurry containing chestnut-like crystals produced by the above method and dissolving the crystals, acid precipitation is performed by adding acid and leaving the other impurities as they are. It is thought that it is inconvenient to reduce the purity of the product by simply increasing the amount of salt to be produced.So, once the precipitated crystals are solid-liquid separated by centrifugal filtration or the like, the impurities in the liquid are discharged out of the system. It has been considered necessary to perform an operation in which crystals are dispersed in pure water, dissolved with an alkali or the like, and then recrystallized with an acid.
[0010]
However, according to the study by the present inventors, surprisingly, the method of adding an acid to the slurry containing the chestnut-like crystals to dissolve the crystals and then adding acid to the acid precipitation does not remove impurities, and Despite the presence of salt formed by impurities and alkali as impurities in the system, 4,4'-azobis-4-cyanovaleric acid is a columnar crystal with higher purity and an average diameter of 30 μm or more. As a result, the present invention was found.
[0011]
That is, in the present invention, hydrazine and hydrogen cyanide were allowed to act sequentially on an alkali metal aqueous solution of levulinic acid, and then chlorinated to add 4,4'-azobis-4-cyanovaleric acid slurry to the alkaline aqueous solution. At least 4,4'-azobis-4-cyanovaleric acid is dissolved and then acidified with a mineral acid to form columnar crystals. 4,4'-azobis-4-cyanovaleric acid It relates to the manufacturing method.
[0012]
In the present invention, the reaction performed by adding hydrazine and hydrogen cyanide to an alkali metal aqueous solution of levulinic acid and the reaction for chlorinating the obtained hydrazo compound in water do not have to employ special conditions, and can be performed by a known method. The alkali metal may be sodium, potassium or lithium.
[0013]
The 4,4'-azobis-4-cyanovaleric acid slurry thus obtained is once subjected to an aqueous solution of alkali added to the slurry without any impurity removal step as described above to temporarily dissolve the chestnut crystals.
[0014]
The alkaline aqueous solution used here is not particularly limited, and for example, an inorganic alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, or sodium carbonate can be used. The concentration of the aqueous alkaline solution is not particularly limited, but it is preferable to use a 5 to 12 normal aqueous solution.
The temperature at the time of addition of the aqueous alkali solution is preferably 40 ° C. or less, and more preferably 10 to 30 ° C.
It is preferable to add the aqueous alkali solution while stirring the slurry, and the addition amount may be added as much as possible to dissolve all the chestnut-like crystals.
[0015]
A mineral acid is added to the aqueous solution of 4,4'-azobis-4-cyanovaleric acid thus obtained to crystallize columnar crystals of 4,4'-azobis-4-cyanovaleric acid. Any of the commonly used mineral acids can be used, and for example, hydrochloric acid, sulfuric acid, and phosphoric acid are preferably used. The mineral acid is preferably added as an aqueous solution.
As the mineral acid aqueous solution, one having 1 to 2 N is preferably used, and the temperature at the time of addition is preferably 40 ° C. or less, and more preferably 10 to 30 ° C.
[0016]
The aqueous mineral acid solution is preferably added slowly, for example, over 2 to 10 hours in order to further promote the crystal growth of 4,4′-azobis-4-cyanovaleric acid.
The mineral acid may be added in such an amount that the alkali added earlier is almost neutralized and the pH of the solution is 2 or less.
[0017]
By adopting such a method, 4,4′-azobis-4-cyanovaleric acid crystals precipitated have an average diameter of 30 μm or more, and crystals that are not chestnut-like crystals called columnar crystals can be obtained. The average diameter may be 50 to 100 μm or more depending on the crystallization conditions.
Since the crystals thus obtained are not potato chestnut crystals, they have a lower impurity content and higher purity than conventional potato chestnut crystals.
[0018]
In order to further increase the purity of the crystals obtained in this way, after the completion of the dropping, it may be separated into solid and liquid and washed with pure water.
[0019]
【Example】
EXAMPLES The present invention will be further described below using examples, but the present invention is not limited to these examples.
[0020]
Example 1
A jacketed 2 liter separable flask equipped with a thermometer, pH electrode, chlorine gas blowing tube, liquid hydrogen cyanide supply tube, dropping funnel, and sealed stirring blade, 858.6% by weight levulinic acid aqueous solution and 863.7 g of pure water Were mixed with stirring. Then, 294.4 g of 48% aqueous sodium hydroxide solution was added to neutralize levulinic acid. Subsequently, 145.4 g of 60.3% hydrazine monohydrate aqueous solution was added dropwise, and after completion of the dropwise addition, the mixture was aged at 25 ° C. for 2 hours.
[0021]
After completion of aging, 109 g of liquid hydrogen cyanide was supplied over 20 minutes, and aging was carried out at 25 ° C. for 12 hours. After completion of ripening, 1219 g of pure water was added, and 144.2 g of chlorine gas was blown in at 15 ° C. over 6 hours to obtain 4,4′-azobis-4-cyanovaleric acid slurry. The 4,4′-azobis-4-cyanovaleric acid crystals at this time were fine carpet chestnut crystals of 10 μm or less.
[0022]
At 25 ° C., 347.9 g of 12N aqueous sodium hydroxide solution was added dropwise to the slurry over 30 minutes to completely dissolve 4,4′-azobis-4-cyanovaleric acid crystals. Next, 2063.9 g of 2N hydrochloric acid was added dropwise to this solution at 25 ° C. over 5 hours to precipitate 4,4′-azobis-4-cyanovaleric acid crystals again. The slurry containing the crystals was cooled to 5 ° C., separated into solid and liquid by centrifugal filtration, and then washed with pure water to obtain wet crystals of 4,4′-azobis-4-cyanovaleric acid. After drying, this was analyzed visually and by liquid chromatography.
[0023]
The crystal obtained here was an oblique columnar crystal (a shape obtained by three-dimensionalizing a playing card diamond) different from the chestnut-shaped crystal, and was a large crystal having a diameter of 50 μm or more. The purity of the 4,4′-azobis-4-cyanovaleric acid crystals was 99.9% or higher.
The yield of this crystal was 457.1 g, and the yield from levulinic acid was as high as 93%.
[0024]
Comparative Example 1
Chlorine oxidation was performed in the same manner as in Example 1 to obtain a slurry of 4,4′-azobis-4-cyanovaleric acid.
This slurry was subjected to solid-liquid separation by centrifugal filtration as it was, and then washed with pure water to obtain wet crystals of 4,4′-azobis-4-cyanovaleric acid. This crystal was a fine carpet chestnut crystal having a diameter of 10 μm or less. When analyzed by liquid chromatography, the purity was 76.8%. The yield was 90.0% and the yield was 476.7 g.
[0025]
To 167 g of these fine crystals, 300 g of water was added, and 122 g of 5N aqueous sodium hydroxide solution was added to dissolve it, and then recrystallized with 318.1 g of 318.1 g of 1.0 N sulfuric acid to give 4,4'-azobis- A slurry of 4-cyanovaleric acid was obtained. This was cooled to 5 ° C. and subjected to centrifugal filtration to obtain wet crystals of 4,4′-azobis-4-cyanovaleric acid. This was dried to obtain 116.8 g of 4,4′-azobis-4-cyanovaleric acid crystals. The yield from levulinic acid was calculated to be 82.0%, which was 10% or more lower than that of Example 1. When this crystal was analyzed by liquid chromatography, it was 99.9%.
[0026]
Comparative Example 2
Chlorine oxidation was performed in the same manner as in Example 1 to obtain a slurry of 4,4′-azobis-4-cyanovaleric acid.
This slurry was directly solid-liquid separated by centrifugal filtration to obtain 741.8 g of wet crystals of carpet chestnut-like 4,4′-azobis-4-cyanovaleric acid. This corresponds to a yield of 95%. When this was analyzed by liquid chromatography, the purity was 52.1% (since it was not washed with pure water as in Comparative Example 1). 300 g of water is added to 162.5 g of this crystal, 120 g of 5N aqueous sodium hydroxide solution is added and dissolved, and this is recrystallized with 320 g of 1N nitric acid to obtain a slurry of 4,4′-azobis-4-cyanovaleric acid. Obtained. This was cooled to 5 ° C. and centrifugally filtered to obtain 4,4′-azobis-4-cyanovaleric acid wet crystals, which were dried to give 4,4′-azobis-4-cyanovaleric acid crystals. 3 g was obtained. The yield was 90.3%, but the purity measured by liquid chromatography was as low as 61.5%.
[0027]
【The invention's effect】
According to the method of the present invention, while maintaining the high purity equivalent to the crystal obtained through the recrystallization step after the conventional crystal solid-liquid separation of 4,4′-azobis-4-cyanovaleric acid, Since the solid-liquid separation step is omitted once, and the crystallization step is completed in one reaction tank and wet fine crystals are obtained, the process is simplified and the reduction in the recovery rate due to the solid-liquid separation is suppressed. Can do.
Further, since no organic solvent is used, there is no need for organic solvent recovery and purification, and there is an advantage that a complicated operation related to handling of the organic solvent is not required.
[0028]
The embodiment items of the present invention are listed below.
(1) After allowing hydrazine and hydrogen cyanide to act sequentially on an alkali metal aqueous solution of levulinic acid, and then chlorinating, 4,4'-azobis-4-cyanovaleric acid slurry is added with an alkaline aqueous solution, and at least 4, A method for producing 4,4'-azobis-4-cyanovaleric acid, wherein all 4'-azobis-4-cyanovaleric acid is dissolved and then acidified with a mineral acid to form columnar crystals.
(2) The temperature of the 4,4′-azobis-4-cyanovaleric acid slurry when the aqueous alkali solution is added is 40 ° C. or less; Manufacturing method.
(3) The method for producing 4,4′-azobis-4-cyanovaleric acid according to the above (1) or (2), wherein the concentration of the alkaline aqueous solution is 5 to 12 N.
(4) After adding the alkaline aqueous solution to the 4,4′-azobis-4-cyanovaleric acid slurry, the temperature when the mineral acid is added is 40 ° C. or lower (1), (2) or (3) A process for producing the described 4,4'-azobis-4-cyanovaleric acid.
(5) The above-mentioned (1), wherein the mineral acid is used as a 1 to 2 N aqueous solution.
(2) The method for producing 4,4'-azobis-4-cyanovaleric acid according to (3) or (4).
(6) The method for producing 4,4′-azobis-4-cyanovaleric acid according to (5) above, wherein the mineral acid aqueous solution is added at 6 ml / min or less.

Claims (1)

レブリン酸のアルカリ金属水溶液にヒドラジンとシアン化水素を順次作用させた後、塩素酸化して得られた4,4′−アゾビス−4−シアノ吉草酸スラリーにアルカリ水溶液を加えて、少なくとも4,4′−アゾビス−4−シアノ吉草酸を全て溶解した後、鉱酸で酸析させて、柱状結晶を生成させることを特徴とする4,4′−アゾビス−4−シアノ吉草酸の製造法。A hydrazine and hydrogen cyanide are allowed to act on an alkaline metal aqueous solution of levulinic acid in turn, and then the alkaline aqueous solution is added to a slurry of 4,4'-azobis-4-cyanovaleric acid obtained by chlorination, so that at least 4,4'- A method for producing 4,4'-azobis-4-cyanovaleric acid, comprising dissolving all azobis-4-cyanovaleric acid and then acidifying with mineral acid to form columnar crystals.
JP03299497A 1997-01-31 1997-01-31 Method for producing 4,4'-azobis-4-cyanovaleric acid Expired - Lifetime JP3923121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03299497A JP3923121B2 (en) 1997-01-31 1997-01-31 Method for producing 4,4'-azobis-4-cyanovaleric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03299497A JP3923121B2 (en) 1997-01-31 1997-01-31 Method for producing 4,4'-azobis-4-cyanovaleric acid

Publications (2)

Publication Number Publication Date
JPH10218852A JPH10218852A (en) 1998-08-18
JP3923121B2 true JP3923121B2 (en) 2007-05-30

Family

ID=12374416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03299497A Expired - Lifetime JP3923121B2 (en) 1997-01-31 1997-01-31 Method for producing 4,4'-azobis-4-cyanovaleric acid

Country Status (1)

Country Link
JP (1) JP3923121B2 (en)

Also Published As

Publication number Publication date
JPH10218852A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
JP4114200B2 (en) Method for producing nateglinide crystals
CN112543751B (en) One-pot preparation method of intermediate organic iodinated compound for synthesizing ioversol
CZ303984B6 (en) Purification process of 2-nitro-4-methylsulfonylbenzoic acid
JPS6351358A (en) Production of ditertiary butyl dicarbonate
JP3923121B2 (en) Method for producing 4,4'-azobis-4-cyanovaleric acid
JP2011098975A (en) Chiral pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and method for producing crystal structure transformation product thereof
JP4545911B2 (en) Method for producing camostat mesylate
JP3235914B2 (en) Method for producing 4,5-dichlorophthalic acid or a salt thereof
JP2915515B2 (en) Process for producing O-methylisourea sulfate
JPH10316646A (en) Production of high-purity crystalline o-methyliso urea acetate and crystalline o-methylisourea acetate obtained by the same
JP3848714B2 (en) Process for producing ethylenediamine-N, N'-disuccinic acid and its ferric complex salt
JP3503115B2 (en) Method for producing free hydroxylamine aqueous solution
JPS624249A (en) Production of high-purity 6-nitro-3-chlorobenzoic acid
JP4083526B2 (en) High concentration N, N-dialkylglycine aqueous solution and method for producing the same
JP3908794B2 (en) Process for producing N-substituted unsaturated amides
JP2001270868A (en) Method for producing 5,5'-bi-1h-tetrazole-diammonium salt using hydrazine hydrate and dicyan as raw materials
JP2717842B2 (en) Aminocarbonyl-substituted pyridinesulfinic acid or a salt thereof
JP3471442B2 (en) Method for producing high-purity choline carbonate or choline bicarbonate
JP3316917B2 (en) New phenylalanine salt crystals and their production
JP3259196B2 (en) Method for producing 2-hydrazino-4,6-dimethoxypyrimidine
JPS6125713B2 (en)
JPS58192862A (en) Cis-beta-(trimethylammonium)-acrylonitriltosylate
JP3487067B2 (en) Method for producing 3-amino-2-hydroxyacetophenone salt
JPS629522B2 (en)
JPH0796537B2 (en) Method for purifying 3- (3,4-dihydroxyphenyl) serine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term