JPS6125713B2 - - Google Patents

Info

Publication number
JPS6125713B2
JPS6125713B2 JP8627580A JP8627580A JPS6125713B2 JP S6125713 B2 JPS6125713 B2 JP S6125713B2 JP 8627580 A JP8627580 A JP 8627580A JP 8627580 A JP8627580 A JP 8627580A JP S6125713 B2 JPS6125713 B2 JP S6125713B2
Authority
JP
Japan
Prior art keywords
ammonia
cyanopyrazine
reaction
pyrazine
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8627580A
Other languages
Japanese (ja)
Other versions
JPS5711971A (en
Inventor
Hiromichi Obara
Masami Shiroyama
Akira Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUWAKA JUNYAKU KENKYUSHO KK
Original Assignee
MITSUWAKA JUNYAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUWAKA JUNYAKU KENKYUSHO KK filed Critical MITSUWAKA JUNYAKU KENKYUSHO KK
Priority to JP8627580A priority Critical patent/JPS5711971A/en
Publication of JPS5711971A publication Critical patent/JPS5711971A/en
Publication of JPS6125713B2 publication Critical patent/JPS6125713B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は2―シアノピラジンを原料とし、これ
をアンモニヤ水の中で60℃〜90℃の反応温度で撹
拌しながら反応せしめ、ピラジンアミドを製造す
ることを特徴とするピラジンアミドの製造方法に
関するものである。
[Detailed Description of the Invention] The present invention is characterized in that 2-cyanopyrazine is used as a raw material and is reacted in aqueous ammonia with stirring at a reaction temperature of 60°C to 90°C to produce pyrazinamide. The present invention relates to a method for producing pyrazinamide.

従来、ピラジンアミドの製造にあつては、(a)ピ
ラジンカルボン酸エステルをアンモニヤ水の中で
撹拌反応せしめ、ピラジンアミドとアルコールに
する方法が最も一般的であり(日本薬局方第9改
訂版)、他には(b)ピラジンとホルムアミドを濃硫
酸の存在下、過酸化物と鉄塩で反応せしめる方法
(特公昭47―4457)、(c)2―シアノピラジンをアン
モニヤで処理する方法(Acta.Polon.Pharm.33.
Nr1.1976.55頁)等が知られているが、(a)のピラ
ジンカルボン酸エステルを原料とする方法は原料
のピラジンカルボン酸の製造が多数の工程を経て
製造されるものであり、ピラジンアミドの製造法
としては複雑であり、(b)のピラジンとホルムアミ
ドを反応せしめる方法は爆発の危険性の高い過酸
化物を使用し、又、濃硫酸及び鉄塩は製造作業上
扱いにくい欠点を有する。又(c)の2―シアノピラ
ジンを出発原料とする方法は上記(a),(b)の方法に
比較し液体原料であり、取り扱いも容易であるこ
とより優れた方法であるが、ただ単純にアンモニ
ヤと撹拌混合することによつて反応を行なうと生
成したピラジンアミドは熱水に不溶性の副生成物
を伴ない、ピラジンアミドの品質を著しくそこな
い、又収率も悪いという欠点を有する。そこで本
発明者等はこの点を改善すべく研究した結果、反
応温度を60〜90℃に保ちながら反応すると非常に
純度の高いピラジンアミドが2―シアノピラジン
より得られることを発見し、本発明に到つた。
Conventionally, in the production of pyrazine amide, the most common method is (a) stirring and reacting pyrazine carboxylic acid ester in aqueous ammonia to form pyrazine amide and alcohol (Japanese Pharmacopoeia, 9th revised edition). Other methods include (b) a method in which pyrazine and formamide are reacted with peroxide and iron salt in the presence of concentrated sulfuric acid (Japanese Patent Publication No. 47-4457), and (c) a method in which 2-cyanopyrazine is treated with ammonia (Acta). .Polon.Pharm.33.
However, in the method (a) using pyrazine carboxylic acid ester as a raw material, the raw material pyrazine carboxylic acid is produced through a number of steps, and the pyrazine amide The manufacturing method is complicated, and the method (b) of reacting pyrazine and formamide uses peroxides with a high risk of explosion, and concentrated sulfuric acid and iron salts have the drawback of being difficult to handle in the manufacturing process. In addition, the method (c) using 2-cyanopyrazine as a starting material is superior to the methods (a) and (b) above because it is a liquid raw material and is easier to handle, but it is simply simpler. When the reaction is carried out by stirring and mixing with ammonia, the pyrazine amide produced is accompanied by by-products that are insoluble in hot water, which significantly impairs the quality of the pyrazine amide and has the disadvantage that the yield is also poor. As a result of research to improve this point, the present inventors discovered that extremely pure pyrazine amide can be obtained from 2-cyanopyrazine by maintaining the reaction temperature at 60 to 90°C. I reached it.

一般に有機化合物中に置換基として存在するニ
トリル基を種々の触媒を使用してアミド基に変え
ることはしばしば行なわれているが、その際、通
常用いられる触媒は硫酸、又は水酸化ナトリウム
であり、アンモニヤは余り用いられない。実際、
ベンゾニトリル、フタロニトリルとアンモニヤ水
を反応させても、通常の条件では殆んど反応は進
行しないし、シアノピラジンにおいてもアミド基
への変換はかなり困難である。しかるに、ピラジ
ン核に置換しているニトリル基は、硫酸、水酸化
ナトリウムの触媒でアミド基に変化しようとして
も殆んど目的とするピラジンアミドは生成せず、
アンモニヤを触媒とする時には反応条件を限定す
ることによりはじめて好収率でピラジンアミドを
生成するという特異性を有していることが研究の
結果判明した。
Generally, nitrile groups that exist as substituents in organic compounds are often converted into amide groups using various catalysts, but the catalysts usually used are sulfuric acid or sodium hydroxide. Ammonia is rarely used. actual,
Even when benzonitrile, phthalonitrile and aqueous ammonia are reacted, the reaction hardly proceeds under normal conditions, and it is quite difficult to convert cyanopyrazine into an amide group. However, even if the nitrile group substituted on the pyrazine nucleus is attempted to be converted into an amide group with a catalyst of sulfuric acid or sodium hydroxide, the desired pyrazine amide is hardly produced;
Research has revealed that when ammonia is used as a catalyst, it has the specificity of producing pyrazine amide in good yield only by limiting the reaction conditions.

前記ACTA.POLON.PHARM.Nr1.1976に記載
されているI.Sawlewicz博士の研究結果ではアン
モニヤ水とシアノピラジンを反応させると、N,
N―ジピラジノイミドアミンが生成し、このN,
N―ジピラジノイミドアミンを更にアンモニヤ水
と反応せしめるとピラジンアミドが生成すること
が示されている。この研究はシアノピラジンをア
ンモニヤ水と反応せしめると、ピラジンアミドが
生成することを暗示するものであるが、我々が目
的とするピラジンアミドを製造するにあたつて
は、この公知事実のみでは不明確で実施の運びと
ならない。そこで、本発明者等は更に詳細にシア
ノピラジンをアンモニヤ水と反応させる研究を行
ない、N,N―ジピラジノイミドアミンを経るこ
となく一段でシアノピラジンからピラジンアミド
を生成せしめる反応条件を発見し、工業的に有利
な製造方法を成立させるに到つたものである。
According to the research results of Dr. I. Sawlewicz described in the above ACTA.POLON.PHARM.Nr1.1976, when ammonia water and cyanopyrazine are reacted, N,
N-dipyrazinoimidoamine is produced, and this N,
It has been shown that pyrazinamide is produced when N-dipyrazinoimidoamine is further reacted with aqueous ammonia. This research suggests that pyrazinamide is produced when cyanopyrazine is reacted with ammonia water, but it is unclear from this known fact alone when producing the pyrazinamide that we are aiming for. Therefore, there is no progress towards implementation. Therefore, the present inventors conducted more detailed research on the reaction of cyanopyrazine with aqueous ammonia, and discovered reaction conditions that allow pyrazinamide to be produced from cyanopyrazine in one step without going through N,N-dipyrazinoimide amine. This led to the establishment of an industrially advantageous manufacturing method.

以下本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明に使用される主原料は2―シアノピラジ
ンであり、副原料として水、触媒としてアンモニ
ヤを用いる。目的とするピラジンアミドは2―シ
アノピラジンのニトリル基に水が一分子附加した
形のものであり、アンモニヤはこの水加反応の触
媒として働くにすぎない。本発明の方法は主原料
のシアノピラジンと2〜17%のアンモニヤ水をア
ンモニヤ吹込管を附した容器に入れ撹拌しながら
温度を上げていき、60〜90℃の反応温度に保ち、
アンモニヤガスを吹込みながら約1時間撹拌反応
せしめるとピラジンアミドの溶液ができる。この
溶液を冷却していくとピラジンアミドの結晶が析
出してくる。この結晶を濾過して分離した後、濾
液を濃縮すると更に残存溶解していたピラジンア
ミドが析出してくる。この濾液採取したピラジン
アミドの結晶を水洗乾燥してピラジンアミドを製
造するというものである。収率はシアノピラジン
とアンモニヤ水の割合によつて変化するが、80〜
90%に達する好収率を得ることができる。収得し
たピラジンアミドの純度は98%以上である。
The main raw material used in the present invention is 2-cyanopyrazine, water is used as an auxiliary raw material, and ammonia is used as a catalyst. The target pyrazine amide is a nitrile group of 2-cyanopyrazine with one molecule of water added, and ammonia only acts as a catalyst for this water addition reaction. In the method of the present invention, the main raw material, cyanopyrazine, and 2 to 17% ammonia water are placed in a container equipped with an ammonia blowing pipe, and the temperature is raised while stirring, and the reaction temperature is maintained at 60 to 90°C.
A solution of pyrazine amide is obtained by stirring and reacting for about 1 hour while blowing ammonia gas. As this solution is cooled, pyrazine amide crystals begin to precipitate. After the crystals are filtered and separated, the filtrate is concentrated, and the remaining dissolved pyrazine amide precipitates out. The pyrazine amide crystals collected from the filtrate are washed with water and dried to produce pyrazine amide. The yield varies depending on the ratio of cyanopyrazine and aqueous ammonia, but it is
Good yields up to 90% can be obtained. The purity of the obtained pyrazinamide is more than 98%.

本発明において使用されるアンモニヤ水の濃度
は当該反応温度における飽和溶解度を示す濃度で
あり、それ以下の濃度は勿論使用できるが反応速
度が遅くなり、反応時間が長びくため不利とな
る。従つて飽和溶解度を保持するために反応容器
の中にアンモニヤガスを少しづつ吹込んで反応す
るのが好ましい。
The concentration of ammonia water used in the present invention is the concentration that indicates saturation solubility at the reaction temperature, and a concentration lower than that can of course be used, but it is disadvantageous because the reaction rate becomes slow and the reaction time becomes longer. Therefore, in order to maintain saturated solubility, it is preferable to blow ammonia gas into the reaction vessel little by little during the reaction.

シアノピラジンに対するアンモニヤ水の使用量
は常圧下では5〜100倍が使用されうるが反応後
に生成したピラジンアミドが完全に溶解している
ことが不純物の生成を抑制する条件として好まし
く、又、100倍近くになるとピラジンアミドの収
率が低くなり、かつ濃縮して取り出すピラジンア
ミドの量が増加するので好ましくない。従つて、
最も好ましい量比は6〜20倍である。
The amount of ammonia water to be used can be 5 to 100 times that of cyanopyrazine under normal pressure, but it is preferable that the pyrazine amide produced after the reaction is completely dissolved as a condition to suppress the formation of impurities. If the concentration is too close, the yield of pyrazine amide will decrease and the amount of pyrazine amide to be concentrated and extracted will increase, which is not preferable. Therefore,
The most preferred ratio is 6 to 20 times.

本反応における反応温度は常温から90℃まで使
用できるが、常温から40℃位まではN,N―ジピ
ラジノイミドアミンの生成は速やかであるがその
後のピラジンアミドへの反応の進行が遅く工業的
製造法としては非常に不利である。又、40℃から
60℃の間の反応温度でのピラジンアミドの生成は
60℃に近くなる程すみやかに起るが相当長時間を
要し、かつ収得したピラジンアミド中に熱水に不
溶の不純物が含まれて高純度のピラジンアミドを
得るには再結晶することにより精製する必要が生
じる。従つて、本反応における反応温度とし最適
な範囲は60℃〜90℃である。
The reaction temperature in this reaction can be used from room temperature to 90°C, but from room temperature to about 40°C, N,N-dipyrazinoimide amine is rapidly produced, but the subsequent reaction to pyrazinamide is slow and difficult to use. This is a very disadvantageous manufacturing method. Also, from 40℃
The formation of pyrazinamide at reaction temperatures between 60 °C is
It occurs more quickly as the temperature approaches 60°C, but it takes a considerable amount of time, and the obtained pyrazine amide contains impurities that are insoluble in hot water, so in order to obtain high purity pyrazine amide, purification is required by recrystallization. The need arises. Therefore, the optimum range for the reaction temperature in this reaction is 60°C to 90°C.

次に、本発明を更に詳しく説明するために実施
例を記載する。
Next, Examples will be described to explain the present invention in more detail.

実施例 1 撹拌器、温度計、アンモニヤガス吹込管、の附
いた500c.c.の四つ口フラスコに28%アンモニヤ水
150c.c.と2―シアノピラジン15gを入れ、油浴
上、80〜90℃に加熱する。オフガスに殆んどアン
モニヤが排出しない程度にアンモニヤガスを吹込
みながら強い撹拌下、1.5時間反応せしめる。次
いで、油浴を取り除き、氷水で冷却すると、針状
の結晶が析出してくる。これを濾過採取し、水洗
後乾燥すると13.2gの結晶を得た。濾液を減圧蒸
留して濃縮し26gにまでもつていくと更に結晶が
析出し乾燥後1.1gの結晶を得た。得られた白色
結晶の融点は188〜190℃で文献値の189〜191℃と
良い一致を示し、KBr法により測定した赤外吸収
スペクトルでもピラジンアミドであることを示し
ている。
Example 1 Add 28% ammonia water to a 500 c.c. four-necked flask equipped with a stirrer, thermometer, and ammonia gas blowing tube.
Add 150 c.c. and 15 g of 2-cyanopyrazine and heat to 80-90°C on an oil bath. The reaction was allowed to proceed for 1.5 hours under strong stirring while blowing ammonia gas into the off-gas to the extent that almost no ammonia was discharged. Next, the oil bath is removed and the mixture is cooled with ice water to precipitate needle-shaped crystals. This was collected by filtration, washed with water, and dried to obtain 13.2 g of crystals. When the filtrate was concentrated by distillation under reduced pressure to 26 g, further crystals were precipitated, and after drying, 1.1 g of crystals were obtained. The melting point of the obtained white crystals was 188-190°C, which is in good agreement with the literature value of 189-191°C, and the infrared absorption spectrum measured by the KBr method also indicates that it is a pyrazine amide.

本法によるピラジンアミドの収量14.3gは原料
シアノピラジンに対して81.3%であつた。
The yield of pyrazine amide by this method was 14.3 g, which was 81.3% of the raw material cyanopyrazine.

実施例 2 実施例1の装置に2―シアノピラジン15gと28
%アンモニヤ水250c.c.を入れ、内容物を60〜70℃
に加熱し、この温度を保ちながら撹拌下、アンモ
ニヤガスを吹込み、3時間反応せしめた後、氷水
で冷却すると、結晶が析出する。この結晶を濾過
採取し、濾液を減圧蒸留して25gにまで濃縮した
際に晶出した結晶を濾過して得たものと合わせて
乾燥すると16.2g(収率92.2%)あつた。この結
晶の融点は187〜189℃で赤外吸収スペクトルでピ
ラジンアミドであることを確認した。
Example 2 In the apparatus of Example 1, 15 g of 2-cyanopyrazine and 28
% ammonia water and bring the contents to 60-70℃.
Ammonia gas was blown in while maintaining this temperature with stirring, and the mixture was allowed to react for 3 hours, and then cooled with ice water to precipitate crystals. The crystals were collected by filtration, and the filtrate was distilled under reduced pressure to concentrate to 25 g. The crystals crystallized were combined with the crystals obtained by filtration and dried to yield 16.2 g (yield: 92.2%). The melting point of this crystal was 187-189°C, and it was confirmed by infrared absorption spectrum that it was pyrazine amide.

実施例 3 実施例1の装置に2―シアノピラジン30gと28
%アンモニヤ水200c.c.を入れ40℃に保ちながら撹
拌下、アンモニヤガスを吹込み、1時間反応せし
めると白色結晶が析出した。これを濾過採取し水
洗後乾燥すると30.7gの結晶を得た。この物質の
融点は175〜189℃で赤外吸収スペクトルで分析し
た結果、ピルジンアミドではなく、イミド化合物
を推定させるものであつた。濾液を減圧蒸留にて
濃縮し生成する少量の結晶を赤外吸収スペクトル
で分析するとピラジンアミドであることが確認で
きた。
Example 3 In the apparatus of Example 1, 30 g of 2-cyanopyrazine and 28
% ammonia water was added, ammonia gas was blown in while stirring while maintaining the temperature at 40°C, and when the reaction was allowed to proceed for 1 hour, white crystals were precipitated. This was collected by filtration, washed with water, and dried to obtain 30.7 g of crystals. The melting point of this substance was 175-189°C, and as a result of infrared absorption spectrum analysis, it was estimated that it was an imide compound, not pyrzinamide. The filtrate was concentrated by vacuum distillation, and a small amount of crystals produced was analyzed by infrared absorption spectroscopy and confirmed to be pyrazinamide.

Claims (1)

【特許請求の範囲】[Claims] 1 2―シアノピラジンをアンモニヤ水の中で60
℃〜90℃の反応温度で反応せしめることを特徴と
するピラジンアミドの製造方法。
1 2-cyanopyrazine in ammonia water for 60 minutes
A method for producing pyrazine amide, which comprises reacting at a reaction temperature of 90°C to 90°C.
JP8627580A 1980-06-25 1980-06-25 Preparation of pyrazinamide Granted JPS5711971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8627580A JPS5711971A (en) 1980-06-25 1980-06-25 Preparation of pyrazinamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8627580A JPS5711971A (en) 1980-06-25 1980-06-25 Preparation of pyrazinamide

Publications (2)

Publication Number Publication Date
JPS5711971A JPS5711971A (en) 1982-01-21
JPS6125713B2 true JPS6125713B2 (en) 1986-06-17

Family

ID=13882268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8627580A Granted JPS5711971A (en) 1980-06-25 1980-06-25 Preparation of pyrazinamide

Country Status (1)

Country Link
JP (1) JPS5711971A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625170B2 (en) * 1985-11-12 1994-04-06 広栄化学工業株式会社 Process for producing pyrazinamide
JP5824616B2 (en) * 2012-03-14 2015-11-25 パナソニックIpマネジメント株式会社 Bread dough producing machine and bread making machine using the dough
JP5617871B2 (en) * 2012-04-20 2014-11-05 パナソニック株式会社 Automatic bread machine

Also Published As

Publication number Publication date
JPS5711971A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
EP1377544B1 (en) Purification of 2-nitro-4-methylsulphonylbenzoic acid
JPS6125713B2 (en)
JP2021536481A (en) How to prepare lenvatinib
JPS5829305B2 (en) Marei Midono Seizouhou
WO2021085468A1 (en) High purity 2-naphthylacetonitrile and method for producing same
US4751314A (en) Preparation of tetrachloro-3-iminoisoindolin-1-one
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
SU1728228A1 (en) Method of 9,9-bis-(4-aminophenyl)-fluorene synthesis
JP4668393B2 (en) Method for producing 4-aminourazole
JPH09255644A (en) Production of adipic acid dihydrazide
US2738352A (en) Purification of pyridine compounds
US4062860A (en) Process for preparing 3,4-dicyano-1,2,5-thiadiazole
SU539879A1 (en) The method of purification of sulfadimezina
JPS59227844A (en) Production of aminomalonamide
JP4032825B2 (en) Method for producing 3,4-dihydroxybenzonitrile
JPS6053021B2 (en) Production method of hydantoin
JPH07165687A (en) Production of 5-fluoroanthranilic acid
US4190585A (en) Process for the production of indolyl lactic acid
JP3757478B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid
JPS5910656B2 (en) Method for producing 1-amino-naphthalene-7-sulfonic acid
KR800001550B1 (en) Preparing process for 5-(4-hyroxy phenyl)hydantoins
JPH0335308B2 (en)
JPH11310558A (en) Production of 2-amino-4,5,3',4'-tetramethoxybenzophenone
JPH0412265B2 (en)
JPH0161105B2 (en)