JP3922845B2 - Seamless belt manufacturing method - Google Patents

Seamless belt manufacturing method Download PDF

Info

Publication number
JP3922845B2
JP3922845B2 JP25720799A JP25720799A JP3922845B2 JP 3922845 B2 JP3922845 B2 JP 3922845B2 JP 25720799 A JP25720799 A JP 25720799A JP 25720799 A JP25720799 A JP 25720799A JP 3922845 B2 JP3922845 B2 JP 3922845B2
Authority
JP
Japan
Prior art keywords
mold
seamless belt
polymer material
material solution
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25720799A
Other languages
Japanese (ja)
Other versions
JP2001079862A (en
Inventor
智 小田嶋
利行 川口
登代次 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP25720799A priority Critical patent/JP3922845B2/en
Publication of JP2001079862A publication Critical patent/JP2001079862A/en
Application granted granted Critical
Publication of JP3922845B2 publication Critical patent/JP3922845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真式の複写機やレーザプリンタ等に使用されるシームレスベルトに関し、より詳しくは、中間転写用、用紙搬送用、現像用、あるいは定着用のシームレスベルトの製造方法に関するものである。
【0002】
【従来の技術】
従来、厚いシームレスベルトを製造する場合には、図示しないが、先ず、円筒形で片持ちの金型を低速回転させ、この金型内に進退動可能な供給装置のノズルを進出させ、このノズルから高分子材料溶液を回転する金型の内周面一端部から他端部にかけて2kgf/cm2以上の圧力で噴射塗布してレベリングし、材料を乾燥させてシームレスベルトを遠心成形する。そして、シームレスベルトを加熱、冷却し、その後、シームレスベルトを所定の長さとして完成させるようにしている。
【0003】
【発明が解決しようとする課題】
従来の厚いシームレスベルトの製造方法は、以上のように金型の内周面一端部から他端部にかけて高分子材料溶液を高い圧力で供給して飛翔塗布するので、金型への接触時に高分子材料溶液の波打ち飛散を生じ、この結果、シームレスベルトの肉厚が不均一化してしまうという大きな問題があった。
【0004】
本発明は、上記問題に鑑みなされたもので、金型内で高分子材料溶液が波打ったり、表面に風紋状の模様が生じるのを抑制防止し、厚さ50μm以上、特には80μm以上、通常1mm以下の厚いシームレスベルトの肉厚の均一化を図ることのできるシームレスベルトの製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明においては上記課題を達成するため、高分子材料溶液を円筒形で横長の金型に供給してシームレスベルトを成形する製造方法であって、
金型の両端部にそれぞれ着脱自在に嵌め合わされるリング形を呈した一対の蓋と、各蓋の外周面下部一側を接触支持する複数の駆動輪と、各蓋の外周面下部他側を接触支持し、金型の回転に伴い回転する複数の従動輪とを含み、
複数の駆動輪に対して複数の従動輪を水平横方向にスライド可能とするとともに、複数の駆動輪と従動輪の外周面を、30°Hs〜90°Hsの硬度を有する耐熱性の弾性エラストマーでそれぞれ被覆し、
金型を回転させてその周囲から加熱し、粘度の高い線条の高分子材料溶液を金型内の長手方向一端部から他端部にかけて連続的に吐き出して金型の内周面に均一にレベリングし、金型の加熱を継続してシームレスベルトを遠心成形することを特徴としている。
【0006】
本発明によれば、材料溶液を飛び散らせるのではなく、吐出ノズルから高分子材料溶液を連続して垂れ落とし、安定した状態で塗布するので、金型内で高分子材料溶液が波打ち飛散したり、シームレスベルトの肉厚が不均一化するのを抑制あるいは防止することができる。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態におけるシームレスベルトの製造方法は、図1に示すように、供給装置1の吐出ノズル2から高分子材料溶液4を成形装置6の金型7内の長手方向一端部から他端部にかけて所定の吐出圧力で連続して垂らしながら吐出塗布するようにしている。
【0008】
供給装置1は、図1に示すように、細長い吐出ノズル2を水平に備えた各種のポンプ3と、このポンプ3に高分子材料溶液4を供給するホッパ5とから構成されている。そして、図示しない歯車機構やベルト機構の駆動に基づき、矢印で示すように金型7の軸方向に対して進退動し、吐出ノズル2の先端部から20〜30mm離れた金型7の内周面に粘度の高い(常温時で1ポイズ以上、100ポイズ以下)液状の高分子材料溶液4を筋状、線条に連続して垂らしながら塗布する。
【0009】
高分子材料溶液4は、NMP等の各種溶剤にPESやPET等の高分子材料を溶解させ、カーボン等を配合等させたものである。高分子材料としては、これらの他にも、PBT、PEN等のポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、フッ素樹脂、ポリサルフォン、ポリカーボネート、アラミド樹脂、又はポリエーテルエーテルケトン等があげられるが、これらの中でも耐熱性、抗張力、耐クリープ特性に優れるPAIやPESが好ましい。高分子材料は、熱可塑性や熱硬化性のいずれでも良く、実施する製造方法により適当なものを選択することができる。
【0010】
成形装置6は、図2や図3に示すように、シームレスベルト20を遠心成形する金型7と、この金型7を回転させる駆動装置8と、この駆動装置8に対して接離可能な従動装置9とから構成されている。金型7は、各種金属を使用して横長の円筒形に形成され、シームレスベルト20を容易に脱型できるよう内周面に滑らかな鏡面加工、フッ素加工、あるいはシリコーン樹脂加工等が施されるとともに、外周面には図示しないつや消しの黒色が塗布されており、この黒色が外部ヒータからの熱を効率的に吸収する。金型7の両端部には高分子材料溶液4の漏洩を防止するリング形の蓋10がそれぞれ着脱自在に嵌合され、蓋10の中心部には高分子材料溶液4用の注入孔が設けられている。
【0011】
駆動装置8は、各種のモータ11と、このモータ11の駆動で回転する駆動軸12と、この駆動軸12に嵌着される複数の駆動輪13と、各駆動輪13の外周面に覆着され、蓋10の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー14とから構成されている。弾性エラストマー14は、例えば耐油性、耐溶剤性、耐薬品性、耐候性、耐熱性等に優れるシリコーンゴム、クロロプレンゴム、又はフッ素ゴム等からなり、90°Hs以下、好ましくは30°Hs〜90°Hsの硬度を有している。これは、30°Hs未満だと圧縮永久歪み特性が悪化し、90°Hsを超えると制振性が乏しくなるからである。
【0012】
従動装置9は、図2に示すように、駆動軸12に対して水平横方向にスライドするフリーの従動軸15と、この従動軸15に嵌着される複数の従動輪16と、各従動輪16の外周面に覆着され、蓋10の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー14Aとから構成されている。弾性エラストマー14Aについては、駆動装置8の弾性エラストマー14と同様であるので説明を省略する。
【0013】
次に、シームレスベルト20の具体的な製造方法を説明すると、先ず、駆動装置8を駆動して水平状態の金型7を高速(例えば、900〜1,000rpm)で回転させるとともに、この金型7を外部ヒータで所定の温度(特に制約はないが、70℃〜100℃程度)に加熱し、供給装置1を回転する金型7に対し適宜進退動させて金型7の内周面一端部から他端部にかけて高分子材料溶液4を0.5kgf/cm2以下の吐出圧力で吐出ノズル2の先端部から連続して垂下させながら徐々に吐出塗布(吐出量は、例えば10秒で50g〜500gから選択された範囲)し、金型7の内周面に高分子材料溶液4を均一にレベリングする。
【0014】
吐出圧力が0.5kgf/cm2以下なのは、0.5kgf/cm2を超えると、波打ちが生じ始め、しかも、高分子材料溶液4の粘度にもよるが、おおよそ0.8kgf/cm2を超えると、飛散を招くからである。こうして高分子材料溶液4を完全にレベリングしたら、金型7を外部ヒータで周囲から継続加熱して高分子材料溶液4の粘度低減や溶剤の蒸発を促進する。
【0015】
金型7を所定時間加熱したら、成形装置6を停止させて金型7を取り外し、金型7を乾燥機にセットして残留溶剤を蒸発・乾燥させ、乾燥機から金型7を取り外して室温で空冷する。すると、金型7と遠心成形されたシームレスベルト20の熱膨張差により、金型7の内周面からシームレスベルト20が自然に剥離する。金型7とシームレスベルト20とが強く密着して離れない場合には、シームレスベルト20の端部から徐々に剥がせば、金型7からシームレスベルト20を脱型することができる。そしてその後、シームレスベルト20の両端部をそれぞれ所定の長さで切断すれば、可撓性を有する円筒形で厚肉のシームレスベルト20を得ることができる。
【0016】
上記方法によれば、高粘度の高分子材料溶液4を吐出ノズル2の先端部から連続して吐出塗布するので、金型7内で高分子材料溶液4が波打ったり、得られるシームレスベルト20の表面に風紋状の模様が生じるのをきわめて有効に抑制防止し、シームレスベルト20の肉厚を著しく均一化することができる。したがって、厚さ50μm以上、特には80μm以上、通常1mm以下の高精度の厚いシームレスベルト20を短時間に好適に製造することができる。また、不安定な片持ちではなく、駆動装置8と従動装置9とで金型7を安定状態に搭載するので、小径のみならず、200mm以上の大径のシームレスベルト20をも容易に遠心成形することが可能となる。また、低速回転ではなく、高速回転中の金型7に高分子材料溶液4を塗布するので、迅速なレベリングが非常に容易になる。
【0017】
また、駆動装置8の駆動輪13のみで金型7を回転させ、従動輪16を従わせて回転させるので、駆動輪13と従動輪16との間に速度差の発生することがなく、簡易な構成で金型7の上下動や微小なスリップをきわめて有効に防止することができる。さらに、駆動装置8に対して従動装置9が図2の矢印方向に接近又は離隔するので、金型7のメンテナンスや交換の便宜を図ったり、異なる使用の金型7に簡単に対処することが期待できる。さらにまた、弾性エラストマー14・14Aが耐熱性に優れるので、金型7を加熱しても、長時間の連続使用が大いに期待できる。
【0018】
なお、上記実施形態では駆動装置8と従動装置9とを使用したが、従動装置9を省略し、一対の駆動装置8を使用することもできる。また、駆動装置8に対して従動装置9を接離可能としたが、従動装置9に対して駆動装置8を接離可能としたり、駆動装置8と従動装置9とを相互に接離可能としても良い。また、蓋10の外周面下部に駆動輪13や従動輪16の弾性エラストマー14・14Aを接触させたが、金型7の外周面下部に駆動輪13や従動輪16の弾性エラストマー14・14Aを接触させても良い。また、シームレスベルト20は、半導電性でも良いし、そうでなくても良い。さらに、高分子材料溶液4を完全にレベリングした後、高速回転する金型7を乾燥時に低速回転(例えば、200〜250rpm)させて溶剤を遠心力から解放し、排出するようにすれば、乾燥時間を短縮し、シームレスベルト20の肉厚をさらに均一化することができる。
【0019】
【実施例】
以下、本発明に係るシームレスベルトの製造方法の高分子材料溶液、実施例、比較例、及び評価について順次説明する。
高分子材料溶液の調整
先ず、トリメリット酸無水物と4,4′−ジアミノジフェニルメタンとの当量をジメチルアセトアミドに溶解し、加熱反応して固形分濃度(実質的全閉環のポリアミドイミド)28重量%の芳香族ポリアミドイミドを調整した。これにジメチルアセトアミドを加え、固形分濃度15重量%、固形分の比重1.2のポリアミドイミド溶液を得た。
次いで、カーボンフィラーとして、ジメチルアセトアミドにキャボット製「Special Black MONARCH120」を15重量%となるよう混合した。そして、ビーズミルで1時間分散処理したカーボンフィラー混合液をポリアミドイミド溶液100重量部に対し、カーボンフィラー混合液を20重量部加え、ビーズミルで1時間混合処理してポリアミドイミド−カーボンブラック混合溶液を得た。
【0020】
実施例
先ず、金型(内径200mm、外径220mm、長さ400mm)7に蓋(内径170mm、外径220mm)10を嵌合し、この金型7を成形装置6に搭載支持させた。こうして金型7を搭載したら、駆動装置8を駆動して水平の金型7を1,000rpmの高速で回転させ、供給装置1を回転する金型7に対し適宜移動させて金型7の内周面一端部から他端部にかけてポリアミドイミド−カーボンブラック混合溶液からなる高分子材料溶液4を吐出ノズル(φ5mm)2の先端部から吐出圧力0.1kgf/cm2で連続して垂下させながら吐出塗布し、金型7の内周面に高分子材料溶液4を均一にレベリングした。この場合の高分子材料溶液4の供給量は215gである。
【0021】
次いで、熱風温風機により金型7の雰囲気温度を80℃に維持し、高分子材料溶液4の粘度低減や溶剤の蒸発を促進させた。80℃の雰囲気温度を30分保ったら、成形装置6を停止させて金型7を取り外し、金型7を180℃のオーブンにセットして残留溶剤を蒸発・乾燥させ、45分後にオーブンから金型7を取り外して室温で空冷した。そして、金型7とシームレスベルト20の熱膨張差を利用して金型7の内周面からシームレスベルト20を剥離し、幅260mmにカットして厚さ約100μmのシームレスベルト20を得た。
【0022】
比較例
先ず、実施例と同様の金型7に同様の蓋10をセットし、この金型7を成形装置6に搭載支持させた。金型7を搭載したら、駆動装置8を駆動して水平の金型7を1,000rpmの高速で回転させ、供給装置1を回転する金型7に対し適宜移動させて金型7の内周面一端部から他端部にかけてポリアミドイミド−カーボンブラック混合溶液からなる高分子材料溶液4を吐出ノズル(φ0.2mm)2の先端部から吐出圧力2.0kgf/cm2で連続して飛翔させながら吐出塗布し、金型7の内周面に高分子材料溶液4をレベリングした。この場合の高分子材料溶液4の供給量は215gである。
【0023】
次いで、熱風温風機により金型7の雰囲気温度を80℃に保ち、高分子材料溶液4の粘度低減や溶剤の蒸発を促進させた。80℃の雰囲気温度を30分保ったら、成形装置6を停止させて金型7を取り外し、金型7を180℃のオーブンにセットして残留溶剤を蒸発・乾燥させ、45分後にオーブンから金型7を取り外して室温で冷却した。そして、金型7とシームレスベルト20の熱膨張差を利用して金型7の内周面からシームレスベルト20を剥離し、幅260mmにカットして厚さ約100μmのシームレスベルト20を得た。
【0024】
評 価
実施例で得られたシームレスベルト20の周壁の厚さを縦横10mm間隔で測定したところ、シームレスベルト20の周壁の厚さの平均値は100.1μm、最小値は98.6μm、最大値は101.3μmであった。また、外観上の欠点も認められなかった。
これに対し、比較例で得られたシームレスベルト20の周壁の厚さを縦横10mm間隔で計測したところ、シームレスベルト20の周壁の厚さの平均値は99.7μm、最小値は95.2μm、最大値は110.3μmであり、大きなばらつきが確認された。さらに、シームレスベルト20の内周面に、高分子材料溶液4の飛び散りに起因すると見られる凸部が無数に認められた。
【0025】
以上のように本発明によれば、金型内に高分子材料溶液を単に塗布するのではなく、高粘度の高分子材料溶液を線条に連続して吐出塗布するので、金型内で高分子材料溶液が波打ったり、表面に風紋状の模様が生じるのを抑制防止し、厚さ50μm以上、特に80μm以上、通常1mm以下の厚いシームレスベルトの肉厚の均一化を図ることができるという効果がある。また、各輪を被覆する弾性エラストマーの硬度が30°Hs〜90°Hsの範囲なので、圧縮永久歪み特性が悪化したり、制振性が乏しくなるのを抑制することができる。
また、不安定な片持ちではなく、駆動輪と従動輪とで金型を安定状態に搭載するので、小径のみならず、200mm以上の大径のシームレスベルトをも容易に遠心成形することができる。また、駆動輪のみで金型を回転させ、従動輪を従わせて回転させるので、駆動輪と従動輪との間に速度差の発生することがなく、簡易な構成で金型の上下動や微小なスリップを有効に防止することができる。さらに、駆動輪に対して従動輪が接近又は離隔するので、金型のメンテナンスや交換の便宜を図ったり、異なる仕様の金型に簡単に対処することが期待できる。
【図面の簡単な説明】
【図1】本発明に係るシームレスベルトの製造方法の実施形態を示す部分断面説明図である。
【図2】本発明に係るシームレスベルトの製造方法の実施形態における金型を示す正面説明図である。
【図3】図2の金型の側面説明図である。
【符号の説明】
1 供給装置
2 吐出ノズル
3 ポンプ
4 高分子材料溶液
6 成形装置
7 金型
8 駆動装置
9 従動装置
10 蓋
20 シームレスベルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seamless belt used in an electrophotographic copying machine, a laser printer, and the like, and more particularly, to a method of manufacturing a seamless belt for intermediate transfer, paper conveyance, development, or fixing. .
[0002]
[Prior art]
Conventionally, when manufacturing a thick seamless belt, although not shown, first, a cylindrical cantilever mold is rotated at a low speed, and a nozzle of a supply device capable of moving forward and backward is advanced into the mold. The polymer material solution is sprayed and applied at a pressure of 2 kgf / cm 2 or more from one end portion to the other end portion of the inner peripheral surface of the rotating mold, and the material is dried to centrifugally mold the seamless belt. Then, the seamless belt is heated and cooled, and then the seamless belt is completed to a predetermined length.
[0003]
[Problems to be solved by the invention]
As described above, the conventional method of manufacturing a thick seamless belt supplies the polymer material solution at a high pressure from one end of the inner peripheral surface of the mold to the other end, and applies it by flying. As a result, the molecular material solution wavyly scattered, and as a result, the wall thickness of the seamless belt became uneven.
[0004]
The present invention has been made in view of the above problems, and prevents the polymer material solution from waving in the mold or generating a wind-like pattern on the surface, and has a thickness of 50 μm or more, particularly 80 μm or more. It is an object of the present invention to provide a method for producing a seamless belt which can achieve a uniform thickness of a thick seamless belt which is usually 1 mm or less.
[0005]
[Means for Solving the Problems]
In the present invention, in order to achieve the above-mentioned problem, a manufacturing method for forming a seamless belt by supplying a polymer material solution to a cylindrical and horizontally long mold,
A pair of lids that are detachably fitted to both ends of the mold, a plurality of drive wheels that contact and support one lower side of the outer peripheral surface of each lid, and the other lower side of the outer peripheral surface of each lid A plurality of driven wheels that support and rotate as the mold rotates,
A plurality of driven wheels can be slid horizontally and horizontally with respect to a plurality of driving wheels, and the outer peripheral surfaces of the plurality of driving wheels and the driven wheels have a hardness of 30 ° Hs to 90 ° Hs. Each coated with
The mold is rotated and heated from its surroundings, and the polymer material solution with high viscosity is continuously discharged from one end to the other end in the longitudinal direction in the mold, and uniformly distributed on the inner peripheral surface of the mold. It features leveling and continuous molding of the seamless belt by continuous mold heating .
[0006]
According to the present invention, instead of splashing the material solution, the polymer material solution is continuously dropped from the discharge nozzle and applied in a stable state. The thickness of the seamless belt can be suppressed or prevented from becoming uneven.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. A seamless belt manufacturing method in the present embodiment forms a polymer material solution 4 from a discharge nozzle 2 of a supply device 1 as shown in FIG. The apparatus 6 is adapted to perform discharge application while continuously dripping at a predetermined discharge pressure from one end to the other end in the longitudinal direction in the mold 7 of the apparatus 6.
[0008]
As shown in FIG. 1, the supply device 1 includes various pumps 3 that are horizontally provided with elongated discharge nozzles 2 and a hopper 5 that supplies the polymer material solution 4 to the pumps 3. Then, based on the driving of a gear mechanism and a belt mechanism (not shown), the inner periphery of the mold 7 moves forward and backward with respect to the axial direction of the mold 7 as indicated by an arrow and is 20 to 30 mm away from the tip of the discharge nozzle 2. A liquid polymer material solution 4 having a high viscosity (1 poise or more and 100 poise or less at normal temperature) is applied to the surface while continuously hanging down on the streaks.
[0009]
The polymer material solution 4 is obtained by dissolving a polymer material such as PES or PET in various solvents such as NMP and adding carbon or the like. In addition to these, the polymer materials include polyester resins such as PBT and PEN, polyimide resins, polyamideimide resins, polyamide resins, fluororesins, polysulfones, polycarbonates, aramid resins, and polyether ether ketones. Among these, PAI and PES which are excellent in heat resistance, tensile strength and creep resistance are preferable. The polymer material may be either thermoplastic or thermosetting, and an appropriate material can be selected depending on the production method to be performed.
[0010]
As shown in FIGS. 2 and 3, the molding device 6 is capable of contacting and separating from a mold 7 for centrifugally molding the seamless belt 20, a drive device 8 for rotating the mold 7, and the drive device 8. And a driven device 9. The mold 7 is formed in a horizontally long cylindrical shape using various metals, and a smooth mirror surface processing, fluorine processing, or silicone resin processing is applied to the inner peripheral surface so that the seamless belt 20 can be easily removed. At the same time, matte black (not shown) is applied to the outer peripheral surface, and this black efficiently absorbs heat from the external heater. A ring-shaped lid 10 for preventing leakage of the polymer material solution 4 is detachably fitted to both ends of the mold 7, and an injection hole for the polymer material solution 4 is provided at the center of the lid 10. It has been.
[0011]
The drive device 8 covers various motors 11, a drive shaft 12 that rotates by driving the motor 11, a plurality of drive wheels 13 that are fitted to the drive shaft 12, and an outer peripheral surface of each drive wheel 13. In addition, it is composed of a heat-resistant and cylindrical elastic elastomer 14 that carries the vibration control function by contacting and supporting the lower part of the outer peripheral surface of the lid 10. The elastic elastomer 14 is made of, for example, silicone rubber, chloroprene rubber, or fluororubber having excellent oil resistance, solvent resistance, chemical resistance, weather resistance, heat resistance, and the like, and is 90 ° Hs or less, preferably 30 ° Hs to 90 °. It has a hardness of ° Hs. This is because if it is less than 30 ° Hs, the compression set characteristics deteriorate, and if it exceeds 90 ° Hs, the damping property becomes poor.
[0012]
As shown in FIG. 2, the driven device 9 includes a free driven shaft 15 that slides horizontally with respect to the drive shaft 12, a plurality of driven wheels 16 fitted to the driven shaft 15, and each driven wheel. 16 is composed of a heat-resistant and durable cylindrical elastic elastomer 14A that covers and covers the outer peripheral surface of the cover 10 and exerts a damping function by contacting and supporting the lower portion of the outer peripheral surface of the lid 10. Since the elastic elastomer 14A is the same as the elastic elastomer 14 of the driving device 8, the description thereof is omitted.
[0013]
Next, a specific manufacturing method of the seamless belt 20 will be described. First, the driving device 8 is driven to rotate the horizontal mold 7 at a high speed (for example, 900 to 1,000 rpm), and this mold is used. 7 is heated by an external heater to a predetermined temperature (although there is no particular limitation, about 70 ° C. to 100 ° C.), and the supply device 1 is moved forward and backward as appropriate with respect to the rotating mold 7 to end one end of the inner peripheral surface of the mold 7 The polymer material solution 4 is gradually dropped from the tip of the discharge nozzle 2 at a discharge pressure of 0.5 kgf / cm 2 or less from the top to the other end, and gradually applied by discharge (discharge amount is, for example, 50 g in 10 seconds) Then, the polymer material solution 4 is uniformly leveled on the inner peripheral surface of the mold 7.
[0014]
Nanoha discharge pressure 0.5 kgf / cm 2 or less, exceeds 0.5 kgf / cm 2, it begins to occur waviness, moreover, depending on the viscosity of the polymer material solution 4, approximately greater than 0.8 kgf / cm 2 This is because it causes scattering. When the polymer material solution 4 is completely leveled in this way, the mold 7 is continuously heated from the outside with an external heater to promote the viscosity reduction of the polymer material solution 4 and the evaporation of the solvent.
[0015]
When the mold 7 is heated for a predetermined time, the molding apparatus 6 is stopped, the mold 7 is removed, the mold 7 is set in a dryer, the residual solvent is evaporated and dried, the mold 7 is removed from the dryer and the room temperature is removed. Cool with air. Then, the seamless belt 20 naturally peels from the inner peripheral surface of the mold 7 due to a difference in thermal expansion between the mold 7 and the seamless belt 20 that is centrifugally molded. In the case where the mold 7 and the seamless belt 20 are in close contact with each other and are not separated from each other, the seamless belt 20 can be removed from the mold 7 by gradually peeling off the end of the seamless belt 20. After that, if both ends of the seamless belt 20 are cut to a predetermined length, a flexible cylindrical and thick seamless belt 20 can be obtained.
[0016]
According to the above method, since the high-viscosity polymer material solution 4 is continuously discharged and applied from the tip of the discharge nozzle 2, the polymer material solution 4 undulates in the mold 7 and the resulting seamless belt 20 is obtained. It is possible to extremely effectively suppress and prevent the occurrence of a wind-like pattern on the surface of the belt, and the wall thickness of the seamless belt 20 can be made extremely uniform. Therefore, the high-precision thick seamless belt 20 having a thickness of 50 μm or more, particularly 80 μm or more, and usually 1 mm or less can be suitably produced in a short time. Moreover, since the mold 7 is mounted in a stable state by the driving device 8 and the driven device 9 instead of being unstable cantilever, not only a small diameter but also a seamless belt 20 having a large diameter of 200 mm or more can be easily centrifugally formed. It becomes possible to do. Further, since the polymer material solution 4 is applied to the mold 7 that is rotating at a high speed, not at a low speed, quick leveling becomes very easy.
[0017]
Further, since the mold 7 is rotated only by the driving wheel 13 of the driving device 8 and the driven wheel 16 is rotated, the speed difference between the driving wheel 13 and the driven wheel 16 does not occur, and it is simple. With this configuration, it is possible to prevent the mold 7 from moving up and down and minute slips very effectively. Furthermore, since the driven device 9 approaches or separates from the drive device 8 in the direction of the arrow in FIG. 2, it is possible to facilitate maintenance and replacement of the mold 7, or to easily deal with differently used molds 7. I can expect. Furthermore, since the elastic elastomers 14 and 14A are excellent in heat resistance, long-term continuous use can be greatly expected even when the mold 7 is heated.
[0018]
In the above embodiment, the drive device 8 and the driven device 9 are used. However, the driven device 9 may be omitted and a pair of drive devices 8 may be used. Further, the driven device 9 can be brought into contact with and separated from the drive device 8, but the drive device 8 can be brought into contact with and separated from the driven device 9, and the drive device 8 and the driven device 9 can be brought into contact with and separated from each other. Also good. The elastic elastomers 14 and 14A of the driving wheel 13 and the driven wheel 16 are brought into contact with the lower part of the outer peripheral surface of the lid 10, but the elastic elastomers 14 and 14A of the driving wheel 13 and the driven wheel 16 are attached to the lower part of the outer peripheral surface of the mold 7. You may make it contact. The seamless belt 20 may be semiconductive or not. Further, after the polymer material solution 4 is completely leveled, the mold 7 that rotates at a high speed is rotated at a low speed (for example, 200 to 250 rpm) during drying to release the solvent from the centrifugal force and discharge it. Time can be shortened and the thickness of the seamless belt 20 can be made more uniform.
[0019]
【Example】
Hereinafter, polymer material solutions, examples, comparative examples, and evaluation of the seamless belt manufacturing method according to the present invention will be described in order.
Preparation of polymer material solution First, an equivalent of trimellitic anhydride and 4,4'-diaminodiphenylmethane was dissolved in dimethylacetamide and heated to react to a solid content concentration (substantially fully ring-closed polyamideimide) of 28% by weight. Aromatic polyamideimide was prepared. Dimethylacetamide was added thereto to obtain a polyamideimide solution having a solid content concentration of 15% by weight and a solid content specific gravity of 1.2.
Next, as a carbon filler, “Special Black MONARCH 120” manufactured by Cabot was mixed with dimethylacetamide so as to be 15% by weight. Then, 20 parts by weight of the carbon filler mixed solution is added to 100 parts by weight of the polyamideimide solution dispersed in the beads mill for 1 hour, and mixed with the beads mill for 1 hour to obtain a polyamideimide-carbon black mixed solution. It was.
[0020]
Example First, a lid (inner diameter 170 mm, outer diameter 220 mm) 10 was fitted to a mold (inner diameter 200 mm, outer diameter 220 mm, length 400 mm) 7, and this mold 7 was mounted and supported on the molding apparatus 6. When the mold 7 is thus mounted, the driving device 8 is driven to rotate the horizontal mold 7 at a high speed of 1,000 rpm, and the supply device 1 is appropriately moved with respect to the rotating mold 7 to move the inside of the mold 7. A polymer material solution 4 composed of a polyamideimide-carbon black mixed solution is discharged from one end of the peripheral surface to the other end while continuously dropping from the tip of the discharge nozzle (φ5 mm) 2 at a discharge pressure of 0.1 kgf / cm 2. The polymer material solution 4 was uniformly leveled on the inner peripheral surface of the mold 7. In this case, the supply amount of the polymer material solution 4 is 215 g.
[0021]
Next, the atmosphere temperature of the mold 7 was maintained at 80 ° C. with a hot air warm air machine, and the viscosity reduction of the polymer material solution 4 and the evaporation of the solvent were promoted. When the atmosphere temperature of 80 ° C. is maintained for 30 minutes, the molding apparatus 6 is stopped, the mold 7 is removed, the mold 7 is set in an oven at 180 ° C. to evaporate and dry the residual solvent, and after 45 minutes, the gold is removed from the oven. The mold 7 was removed and air cooled at room temperature. Then, the seamless belt 20 was peeled from the inner peripheral surface of the mold 7 using the difference in thermal expansion between the mold 7 and the seamless belt 20 and cut to a width of 260 mm to obtain a seamless belt 20 having a thickness of about 100 μm.
[0022]
Comparative Example First, the same lid 10 was set on the same mold 7 as in the example, and this mold 7 was mounted and supported on the molding apparatus 6. When the mold 7 is mounted, the driving device 8 is driven to rotate the horizontal mold 7 at a high speed of 1,000 rpm, and the supply device 1 is appropriately moved with respect to the rotating mold 7 to move the inner periphery of the mold 7. While the polymer material solution 4 composed of a polyamideimide-carbon black mixed solution is continuously ejected from one end portion of the surface to the other end portion at a discharge pressure of 2.0 kgf / cm 2 from the tip portion of the discharge nozzle (φ0.2 mm) 2. The polymer material solution 4 was leveled on the inner peripheral surface of the mold 7 by spray coating. In this case, the supply amount of the polymer material solution 4 is 215 g.
[0023]
Next, the atmosphere temperature of the mold 7 was kept at 80 ° C. with a hot air warm air machine, and the viscosity reduction of the polymer material solution 4 and the evaporation of the solvent were promoted. When the atmosphere temperature of 80 ° C. is maintained for 30 minutes, the molding apparatus 6 is stopped, the mold 7 is removed, the mold 7 is set in an oven at 180 ° C. to evaporate and dry the residual solvent, and after 45 minutes, the gold is removed from the oven. The mold 7 was removed and cooled at room temperature. Then, the seamless belt 20 was peeled from the inner peripheral surface of the mold 7 using the difference in thermal expansion between the mold 7 and the seamless belt 20 and cut to a width of 260 mm to obtain a seamless belt 20 having a thickness of about 100 μm.
[0024]
When the thickness of the peripheral wall of the seamless belt 20 obtained in the evaluation examples was measured at intervals of 10 mm in length and width, the average value of the peripheral wall thickness of the seamless belt 20 was 100.1 μm, the minimum value was 98.6 μm, and the maximum value. Was 101.3 μm. In addition, no defects in appearance were observed.
On the other hand, when the thickness of the peripheral wall of the seamless belt 20 obtained in the comparative example was measured at 10 mm vertical and horizontal intervals, the average value of the peripheral wall thickness of the seamless belt 20 was 99.7 μm, the minimum value was 95.2 μm, The maximum value was 110.3 μm, and a large variation was confirmed. Furthermore, innumerable convex portions that are considered to be caused by scattering of the polymer material solution 4 were recognized on the inner peripheral surface of the seamless belt 20.
[0025]
As described above, according to the present invention, the polymer material solution is not simply applied to the mold, but the high-viscosity polymer material solution is continuously discharged and applied to the filaments. It is possible to prevent the molecular material solution from undulating and the occurrence of a wind-like pattern on the surface, and to achieve uniform thickness of a thick seamless belt having a thickness of 50 μm or more, particularly 80 μm or more, and usually 1 mm or less. effective. Moreover, since the hardness of the elastic elastomer which coat | covers each ring | wheel is the range of 30 degrees Hs-90 degrees Hs, it can suppress that a compression set characteristic deteriorates or a damping property becomes scarce.
Moreover, since the mold is stably mounted with the driving wheel and the driven wheel instead of an unstable cantilever, not only a small diameter but also a seamless belt having a large diameter of 200 mm or more can be easily centrifugally formed. . In addition, since the mold is rotated only by the driving wheel and the driven wheel is rotated, there is no speed difference between the driving wheel and the driven wheel, and the mold can be moved up and down with a simple configuration. A minute slip can be effectively prevented. Furthermore, since the driven wheel approaches or separates from the driving wheel, it can be expected to facilitate the maintenance and replacement of the mold or easily deal with the mold having different specifications.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional explanatory view showing an embodiment of a seamless belt manufacturing method according to the present invention.
FIG. 2 is an explanatory front view showing a mold in an embodiment of a seamless belt manufacturing method according to the present invention.
FIG. 3 is an explanatory side view of the mold of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply apparatus 2 Discharge nozzle 3 Pump 4 Polymer material solution 6 Molding apparatus 7 Mold 8 Drive apparatus 9 Drive apparatus 10 Lid 20 Seamless belt

Claims (1)

高分子材料溶液を円筒形で横長の金型に供給してシームレスベルトを成形するシームレスベルトの製造方法であって、
金型の両端部にそれぞれ着脱自在に嵌め合わされるリング形を呈した一対の蓋と、各蓋の外周面下部一側を接触支持する複数の駆動輪と、各蓋の外周面下部他側を接触支持し、金型の回転に伴い回転する複数の従動輪とを含み、
複数の駆動輪に対して複数の従動輪を水平横方向にスライド可能とするとともに、複数の駆動輪と従動輪の外周面を、30°Hs〜90°Hsの硬度を有する耐熱性の弾性エラストマーでそれぞれ被覆し、
金型を回転させてその周囲から加熱し、粘度の高い線条の高分子材料溶液を金型内の長手方向一端部から他端部にかけて連続的に吐き出して金型の内周面に均一にレベリングし、金型の加熱を継続してシームレスベルトを遠心成形することを特徴とするシームレスベルトの製造方法。
A method for producing a seamless belt in which a polymer material solution is supplied to a cylindrical and horizontally long mold to form a seamless belt,
A pair of lids that are detachably fitted to both ends of the mold, a plurality of drive wheels that contact and support one lower side of the outer peripheral surface of each lid, and the other lower side of the outer peripheral surface of each lid A plurality of driven wheels that support and rotate as the mold rotates,
A plurality of driven wheels can be slid horizontally and horizontally with respect to a plurality of driving wheels, and the outer peripheral surfaces of the plurality of driving wheels and the driven wheels have a hardness of 30 ° Hs to 90 ° Hs. Each coated with
The mold is rotated and heated from its surroundings, and the polymer material solution with high viscosity is continuously discharged from one end to the other end in the longitudinal direction in the mold, and uniformly distributed on the inner peripheral surface of the mold. A method for producing a seamless belt, characterized in that the seamless belt is centrifugally molded by leveling and heating the mold .
JP25720799A 1999-09-10 1999-09-10 Seamless belt manufacturing method Expired - Fee Related JP3922845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25720799A JP3922845B2 (en) 1999-09-10 1999-09-10 Seamless belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25720799A JP3922845B2 (en) 1999-09-10 1999-09-10 Seamless belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2001079862A JP2001079862A (en) 2001-03-27
JP3922845B2 true JP3922845B2 (en) 2007-05-30

Family

ID=17303162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25720799A Expired - Fee Related JP3922845B2 (en) 1999-09-10 1999-09-10 Seamless belt manufacturing method

Country Status (1)

Country Link
JP (1) JP3922845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465998A (en) * 2017-09-08 2019-03-15 柯尼卡美能达株式会社 The manufacturing method of intermediate transfer belt and the manufacturing device of intermediate transfer belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330539A (en) * 2005-05-30 2006-12-07 Shin Etsu Polymer Co Ltd Endless belt for electrophotographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465998A (en) * 2017-09-08 2019-03-15 柯尼卡美能达株式会社 The manufacturing method of intermediate transfer belt and the manufacturing device of intermediate transfer belt

Also Published As

Publication number Publication date
JP2001079862A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP3922845B2 (en) Seamless belt manufacturing method
JP3990467B2 (en) Tubular product manufacturing method and tubular product
JP2007298814A (en) Fixing belt and method for manufacturing the same
JP4259695B2 (en) Seamless belt manufacturing method
JP5002901B2 (en) Immersion coating method and fixing belt manufacturing method
JP2003089125A (en) Method for manufacturing endless belt made of polyimide resin and annular coating device
JP4798853B2 (en) Seamless belt and manufacturing method thereof
JP2005013955A (en) Masking tool or spray coating method using the same
JP4222909B2 (en) Composite tubular body
JP3558929B2 (en) Method for producing semiconductive seamless belt
JP3891300B2 (en) Tubular product manufacturing method and tubular product
JP3922840B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP3922839B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP3947991B2 (en) Endless tubular film and its use
JP4243910B2 (en) Manufacturing method of centrifugal mold
JP2003245932A (en) Method for manufacturing polyimide resin-made endless belt and polyimide resin-made endless belt
JP2614323B2 (en) Manufacturing method of annular film
JP2005215133A (en) Endless belt, fixing belt, and its manufacturing method
JP2005305809A (en) Polyimide resin endless belt and method for manufacturing the same
JP3011204B1 (en) Manufacturing method for tubular objects
JP2007083424A (en) Tubular body and its manufacturing method
JP3856629B2 (en) Manufacturing method of endless belt
JP2006003764A (en) Belt for electrophotographic apparatus
JPH11237799A (en) Manufacture of endless belt
JP3868147B2 (en) Centrifugal forming method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160302

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees