JP3558929B2 - Method for producing semiconductive seamless belt - Google Patents

Method for producing semiconductive seamless belt Download PDF

Info

Publication number
JP3558929B2
JP3558929B2 JP25492199A JP25492199A JP3558929B2 JP 3558929 B2 JP3558929 B2 JP 3558929B2 JP 25492199 A JP25492199 A JP 25492199A JP 25492199 A JP25492199 A JP 25492199A JP 3558929 B2 JP3558929 B2 JP 3558929B2
Authority
JP
Japan
Prior art keywords
seamless belt
semiconductive seamless
mold
semiconductive
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25492199A
Other languages
Japanese (ja)
Other versions
JP2001082546A (en
Inventor
隆 野上
勝 米山
広 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP25492199A priority Critical patent/JP3558929B2/en
Publication of JP2001082546A publication Critical patent/JP2001082546A/en
Application granted granted Critical
Publication of JP3558929B2 publication Critical patent/JP3558929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真式の複写機やレーザプリンタ等に使用される半導電性シームレスベルトの製造方法に関するものである。
【0002】
【従来の技術】
従来、半導電性シームレスベルトを製造する場合には、図示しないが、先ず、円筒形の金型を低速回転させ、この金型内に進退動可能な供給装置のノズルを進出させ、このノズルから材料溶液を回転する金型の内周面一端部から他端部にかけて塗布してレベリングし、材料を乾燥させて半導電性シームレスベルトを遠心成形する。
そして、金型から脱型した半導電性シームレスベルトを加熱、冷却し、図11に示すように半導電性シームレスベルト1の両端部側の周壁にカッタ3の先端部を貫通させ、その後、半導電性シームレスベルト1を周方向に回転させてその各端部を切断除去し、半導電性シームレスベルト1を所定の長さとして完成させるようにしている。
【0003】
【発明が解決しようとする課題】
従来における半導電性シームレスベルト1の製造においては、以上のように半導電性シームレスベルト1の各端部側の周壁にカッタ3を単に貫通させ、半導電性シームレスベルト1の各端部を切断して所定の長さとするが、カッタ3や切断が不適切だと、半導電性シームレスベルト1が必要以上に長くなったり、短くなることがある。
また、半導電性シームレスベルト1の周壁を厚いカッタ3で全カットすると、図12に示すように、半導電性シームレスベルト1の切断面24が引き裂かれたような実に粗れた醜い面となり、大きなかえり(burr)が多数発生する。これにより、半導電性シームレスベルト1の強度や耐久性が低下し、製品寿命が短くなるので、半導電性シームレスベルト1の切断した端面を必ずテープ等で補強しなければならないという大きな問題がある。
【0004】
本発明は上記問題に鑑みなされたもので、強度や耐久性を向上させ、端面を特に補強する必要のない半導電性シームレスベルトの製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明においては上記課題を達成するため、樹脂に半導電性を付与した半導電性シームレスベルトの製造方法であって、
溶剤に高分子材料を溶かした材料溶液を回転する金型に注入して半導電性シームレスベルトを遠心成形する工程と、
この半導電性シームレスベルトを乾燥させて金型から取り外す工程と、
金型から取り外した半導電性シームレスベルトの周壁をカッタで周方向にハーフカットし、このハーフカット部分を用いて半導電性シームレスベルトを引き裂いて所定の長さとする工程とを含んでなることを特徴としている。
なお、半導電性シームレスベルトの周壁に対するカッタのハーフカット深さを、周壁の厚さの10%〜90%とすることが好ましい。
【0006】
ここで特許請求の範囲における樹脂は、熱可塑性樹脂でも良いし、熱硬化性樹脂でも良い。また、カッタは、特に限定されるものではなく、各種の片刃、両刃、リング形等でも良い。このカッタでハーフカットする場合、周壁の外周面をカッタで周方向にハーフカットしても良いが、周壁の内周面をカッタで周方向にハーフカットすることも可能である。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明するが、本発明は以下の実施形態になんら限定されるものではない。
本実施形態におけるエンドレスの半導電性シームレスベルト1は、図1ないし図3に示すように、端部側の周壁の外周面をカッタ3で周方向にハーフカットし、このハーフカット部分を用いて端部2を引き裂いた場合に、周壁の引き裂き面4がカッタ切断層5と引き裂き層6とからなるものである。
【0008】
この半導電性シームレスベルト1の製造装置について説明する。半導電性シームレスベルト1を製造する場合には、図4や図5に示す進退動可能な供給装置7と成形装置12とを用い、供給装置7の吐出ノズル8から材料溶液10を成形装置12の金型内の長手方向一端部から他端部にかけて連続して垂らしながら注入塗布する。
【0009】
供給装置7は、図4に示すように、細長い吐出ノズル8を水平に備えた各種のポンプ9と、このポンプ9に材料溶液10を供給するホッパ11とから構成されている。そして、図示しない歯車機構やベルト機構の駆動に基づき、矢印で示すように金型13の軸方向に対して進退動し、吐出ノズル8の先端部から20〜30mm離れた金型13の内周面に粘度の高い(常温時で1ポイズ以上、100ポイズ以下)液状の材料溶液10を筋状、線条に連続して垂らしながら塗布する。
【0010】
材料溶液10は、NMP等の各種溶剤にPESやPET等の高分子材料を溶解させ、カーボン等を配合等させたものである。高分子材料としては、これらの他にも、PBT、PEN等のポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、フッ素樹脂、ポリサルフォン、ポリカーボネート、アラミド樹脂、又はポリエーテルエーテルケトン等があげられるが、これらの中でも耐熱性、抵張力、耐クリープ特性に優れるPAIやPESが好ましい。高分子材料は、熱可塑性や熱硬化性のいずれでも良く、実施する製造方法により適当なものを選択することができる。
【0011】
成形装置12は、図4や図5に示すように、半導電性シームレスベルト1を遠心成形する金型13と、この金型13を回転させる駆動装置14と、この駆動装置14に対して接離可能な従動装置15とから構成されている。金型13は、各種金属を使用して横長の円筒形に形成され、半導電性シームレスベルト1を容易に脱型できるよう内周面に滑らかな鏡面加工、フッ素加工、あるいはシリコーン樹脂加工等が施されるとともに、粗い外周面には図示しないつや消しの黒色が塗布されており、この黒色が外部ヒータからの熱を効率的に吸収する。金型13の両端部には材料溶液10の漏洩を防止するリング形の蓋16がそれぞれ着脱自在に嵌合され、蓋16の中心部には材料溶液用の注入孔が設けられている。
【0012】
駆動装置14は、各種のモータ17と、このモータ17の駆動で回転する駆動軸18と、この駆動軸18に嵌着される複数の駆動輪19と、各駆動輪19の外周面に覆着され、蓋16の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー20とから構成されている。弾性エラストマー20は、例えば耐油性、耐溶剤性、耐薬品性、耐候性、耐熱性等に優れるシリコーンゴム、クロロプレンゴム、又はフッ素ゴム等からなり、90°Hs以下、好ましくは30°Hs〜90°Hsの硬度を有している。これは、30°Hs未満だと圧縮永久歪み特性が悪化し、90°Hsを超えると制振性に乏しくなるからである。
【0013】
従動装置15は、図5に示すように、駆動軸18に対して水平横方向にスライドするフリーの従動軸21と、この従動軸21に嵌着される複数の従動輪22と、各従動輪22の外周面に覆着され、蓋16の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー20Aとから構成されている。
弾性エラストマー20Aについては、駆動装置14の弾性エラストマー20と同様であるので説明を省略する。
【0014】
次に、半導電性シームレスベルト1の具体的な製造方法を説明すると、先ず、駆動装置14を駆動して水平状態の金型13を高速(例えば、900〜1,000rpm)で回転させるとともに、この金型13を外部ヒータで所定の温度(特に制約はないが、70℃〜100℃程度)に加熱し、供給装置7を回転する金型13に対し進退動させて金型13の内周面一端部から他端部にかけて材料溶液10を0.5kgf/cm2以下の圧力で吐出ノズル8の先端部から連続して垂下させながら徐々に吐出塗布(吐出量は、例えば10秒で50g〜500g程度)し、金型13の内周面に材料溶液10を均一にレベリングする。こうして材料溶液10を完全にレベリングしたら、金型13を外部ヒータで周囲から継続加熱して材料溶液10の粘度低減や溶剤の蒸発を促進する。
【0015】
金型13を所定時間加熱したら、成形装置12を停止させて金型13を取り外し、金型13を乾燥機にセットして残留溶剤を蒸発・乾燥させ、乾燥機から金型13を取り外して室温で空冷する。
すると、金型13と遠心成形された半導電性シームレスベルト1の熱膨張差により、金型13の内周面から外周面にスキン層23を備えた半導電性シームレスベルト1が自然に剥離する。金型13と半導電性シームレスベルト1とが強く密着して離れない場合には、半導電性シームレスベルト1の端部から徐々に剥がせば、エンドレスの半導電性シームレスベルト1を金型13から脱型することができる。
【0016】
次いで、図示しない回転駆動軸に半導電性シームレスベルト1を嵌通支持させ、この半導電性シームレスベルト1の両端部側における周壁の外周面にカッタ3の先端部を貫通することのないようそれぞれ切り欠き接触させる。そしてその後、半導電性シームレスベルト1を回転させて両端部側の周壁の外周面をリング形にハーフカットし、この溝状のハーフカット部分に沿って半導電性シームレスベルト1の各端部2を引き裂き、半導電性シームレスベルト1を所定の長さとする。
【0017】
カッタ3の厚さは100μm以下が好ましい。これは、厚さが120、450、600μm等となり、100μmを超えると、引き裂き面4の外観が悪化して粗れるからである。カッタ3の周壁に対するハーフカット深さは、周壁の厚さの10%〜90%、好ましくは周壁の厚さの10%〜50%程度が良い。これは、ハーフカット深さが周壁の厚さの10%未満の場合には、カットが困難になり、50%を超える場合、引き裂き面4の外観が徐々に劣化し、カットも次第に困難になるからである。また、ハーフカットは、一度に切り欠いても良いが、複数回に分けて徐々に切り欠けば、引き裂き面4の外観を美しく整えることができる。以上の引き裂き作業により、周壁の引き裂き面4が相互に異なるカッタ切断層5と引き裂き層6になり、可撓性を有する円筒形で厚肉の半導電性シームレスベルト1を得ることができる。
【0018】
上記によれば、半導電性シームレスベルト1の各端部側の周壁にカッタ3を貫通させて全カットするのではないから、不適切な切断により半導電性シームレスベルト1が必要以上に長くなったり、短くなることがない。また、図3に示すように、半導電性シームレスベルト1の引き裂き面4が粗れたり、大きなかえりが多数発生することがないので、半導電性シームレスベルト1の強度や耐久性を著しく向上させることが可能となる。したがって、製品寿命を大幅に長くすることができ、しかも、半導電性シームレスベルト1の引き裂いた端面をテープ等で補強する必要がない。
【0019】
また、高粘度の材料溶液10を吐出ノズル8の先端部から連続して吐出塗布するので、金型13内で材料溶液10が四方に飛散するのをきわめて有効に抑制防止し、半導電性シームレスベルト1の肉厚を著しく均一化することができる。よって、厚さ50μm以上、特には80μm以上の高精度の厚い半導電性シームレスベルト1を短時間に好適に製造することができる。また、低速回転ではなく、高速回転中の金型13に材料溶液10を塗布するので、迅速なレベリングが非常に容易になる。また、不安定な片持ちではなく、駆動装置14と従動装置15とで金型13を安定状態に搭載するので、小径のみならず、200mm以上の大径の半導電性シームレスベルト1をも容易に遠心成形することが可能となる。
【0020】
また、駆動装置14の駆動輪19のみで金型13を回転させ、従動輪22を従わせて回転させるので、駆動輪19と従動輪22との間に速度差の発生することがなく、簡易な構成で金型13の上下動や微小なスリップをきわめて有効に防止することができる。さらに、駆動装置14に対して従動装置15が図5の矢印方向に接近又は離隔するので、金型13のメンテナンスや交換の便宜を図ったり、異なる使用の金型13に簡単に対処することが期待できる。さらにまた、弾性エラストマー20・20Aが耐熱性に優れるので、金型13を加熱しても、長時間の連続使用が大いに期待できる。
【0021】
なお、上記実施形態では半導電性シームレスベルト1を回転させてハーフカットしたものを示したが、なんらこれに限定されるものではなく、カッタ3を回転させて半導電性シームレスベルト1をハーフカットすることもできる。また、周壁の引き裂き面4を異なるカッタ切断層5と引き裂き層6としたが、表面精度の異なるカッタ3でハーフカットする等して3種、4種以上の層としても良い。また、上記実施形態では駆動装置14と従動装置15とを使用したが、従動装置15を省略し、一対の駆動装置14を使用することもできる。
【0022】
また、駆動装置14に対して従動装置15を接離可能としたが、従動装置15に対して駆動装置14を接離可能としたり、駆動装置14と従動装置15とを相互に接離可能としても良い。また、蓋16の外周面下部に駆動輪19や従動輪22の弾性エラストマー20・20Aを接触させたが、金型13の外周面下部に駆動輪19や従動輪22の弾性エラストマー20・20Aを接触させても良い。さらに、材料溶液10を完全にレベリングした後、高速回転する金型13を乾燥時に低速回転(例えば、200〜250rpm)させて溶剤を遠心力から解放し、排出するようにすれば、乾燥時間を短縮し、半導電性シームレスベルト1の肉厚を均一化することができる。
【0023】
【実施例】
以下、本発明に係る半導電性シームレスベルトの製造方法の実施例1、比較例1、実施例2、比較例2、及び実施例3について順次説明する。
実施例1
(芳香族)ポリアミドイミドにカーボンD4を18.1phr添加した材料溶液10を用いて周壁の厚さが100μmの半導電性シームレスベルト1を遠心成形し、加熱、室温空冷、脱型の後、回転駆動軸に半導電性シームレスベルト1を嵌通支持させ、この半導電性シームレスベルト1の両端部側における周壁の外周面にカッタ(フェザー社製)3の先端部を貫通することのないようそれぞれ50μm切り欠き接触させた。そして、半導電性シームレスベルト1を回転させて両端部側の周壁の外周面をリング形に50μmハーフカットし、この溝状のハーフカット部分に沿って半導電性シームレスベルト1の各端部2を引き裂き、所定の長さの半導電性シームレスベルト1を得た。
【0024】
こうして得られた半導電性シームレスベルト1の引き裂き面4を観察したところ、図6に示すように、引き裂き面4が醜く粗れておらず、大きなかえりも発生しないというきわめて良好な結果を得ることができた。また、ハーフカットも実に容易であった。
【0025】
比較例1
実施例1と同様の半導電性シームレスベルト1を遠心成形し、加熱、室温空冷、脱型の後、回転駆動軸に半導電性シームレスベルト1を嵌通支持させ、この半導電性シームレスベルト1の両端部側における周壁の外周面にカッタ(フェザー社製)3の先端部をそれぞれ貫通させた。そして、半導電性シームレスベルト1を回転させて各端部2を100μm全カットし、所定の長さの半導電性シームレスベルト1を得た。
この半導電性シームレスベルト1の引き裂き面4を観察したところ、図7に示すように、引き裂き面4が実に粗れて醜く、大きなかえりも多数散見されるという非常に不十分な結果しか得られなかった。カットも実に困難だった。
【0026】
実施例2
基本的には実施例1と同様であるが、50μmハーフカットする際、一度に50μmハーフカットするのではなく、10μmずつ5回に分けて徐々に50μmハーフカットした。
半導電性シームレスベルト1の引き裂き面4を観察したところ、図8に示すように、引き裂き面4の外観やかえりに関して良好な結果を得ることができた。
【0027】
比較例2
10μmずつ5回に分けて50μmハーフカットするのではなく、一度に50μmハーフカットした。その他の部分については、カッタ3を厚さ120μmのシック社製の両刃とした以外、実施例2と同様とした。
半導電性シームレスベルト1の引き裂き面4を観察したところ、図9に示すように、引き裂き面4の外観や大きなかえりに関し、十分な結果を得ることができなかった。
【0028】
実施例3
基本的には実施例1と同様であるが、カッタ3を厚さ100μmのフェザー社製の両刃とし、このカッタ3で50μmハーフカットした。
半導電性シームレスベルト1の引き裂き面4を観察したところ、図10に示すように、引き裂き面4が美しく、大きなかえりも殆ど見られないという良好な結果を得ることができた。
【0029】
【発明の効果】
以上のように本発明によれば、半導電性シームレスベルトの強度や耐久性を向上させることができるという効果がある。また、半導電性シームレスベルトの端面用等の補強部材を省略することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る半導電性シームレスベルトの製造方法の実施形態における両端部側の周壁 の外周面をそれぞれカッタで周方向にリング形にハーフカットする状態を示す斜視説明図である。
【図2】図1の正面説明図である。
【図3】本発明に係る半導電性シームレスベルトの製造方法の実施形態における半導電性シームレスベルトを示す要部拡大説明図である。
【図4】本発明に係る半導電性シームレスベルトの製造方法の実施形態を示す部分断面説明図である。
【図5】本発明に係る半導電性シームレスベルトの製造方法の実施形態における成形装置を示す説明図である。
【図6】本発明に係る半導電性シームレスベルトの製造方法の実施例1を示す写真である。
【図7】本発明に係る半導電性シームレスベルトの製造方法の比較例1を示す写真である。
【図8】本発明に係る半導電性シームレスベルトの製造方法の実施例2を示す写真である。
【図9】本発明に係る半導電性シームレスベルトの製造方法の比較例2を示す写真である。
【図10】本発明に係る半導電性シームレスベルトの製造方法の実施例3を示す写真である。
【図11】従来の半導電性シームレスベルトの製造方法における端部側の周壁をカッタで全カットする状態を示す説明図である。
【図12】図11の半導電性シームレスベルトの切断面を示す拡大説明図である。
【符号の説明】
1 半導電性シームレスベルト
2 端部
3 カッタ
4 引き裂き面
5 カッタ切断層
6 引き裂き層
7 供給装置
8 吐出ノズル
9 ポンプ
10 材料溶液
11 ホッパ
12 成形装置
13 金型
14 駆動装置
15 従動装置
23 スキン層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductive seamless belt used in an electrophotographic copying machine, a laser printer, and the like .
[0002]
[Prior art]
Conventionally, in the case of manufacturing a semiconductive seamless belt, although not shown, first, a cylindrical mold is rotated at a low speed, and a nozzle of a supply device capable of moving forward and backward is advanced into the mold. The material solution is applied and leveled from one end to the other end of the inner peripheral surface of the rotating mold, and the material is dried to form a semiconductive seamless belt by centrifugal molding.
Then, the semiconductive seamless belt removed from the mold is heated and cooled, and as shown in FIG. 11, the tip of the cutter 3 is made to penetrate through the peripheral walls on both ends of the semiconductive seamless belt 1. The conductive seamless belt 1 is rotated in the circumferential direction to cut and remove each end thereof, so that the semiconductive seamless belt 1 is completed to have a predetermined length.
[0003]
[Problems to be solved by the invention]
In the conventional manufacturing of the semiconductive seamless belt 1, the cutter 3 is simply penetrated through the peripheral wall on each end side of the semiconductive seamless belt 1 as described above, and each end of the semiconductive seamless belt 1 is cut. However, if the cutter 3 or cutting is inappropriate, the semiconductive seamless belt 1 may be unnecessarily long or short.
Also, when the entire peripheral wall of the semiconductive seamless belt 1 is completely cut by the thick cutter 3, as shown in FIG. 12, the cut surface 24 of the semiconductive seamless belt 1 becomes a really rough and ugly surface as if torn, Many large burrs occur. As a result, the strength and durability of the semiconductive seamless belt 1 are reduced, and the product life is shortened. Therefore, there is a major problem that the cut end face of the semiconductive seamless belt 1 must be reinforced with tape or the like. .
[0004]
The present invention has been made in view of the above problems, and has as its object to provide a method for producing a semiconductive seamless belt which has improved strength and durability and does not particularly need to reinforce an end face .
[0005]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a method for producing a semiconductive seamless belt in which semiconductivity is imparted to a resin,
A step of injecting a material solution obtained by dissolving a polymer material in a solvent into a rotating mold and centrifugally forming a semiconductive seamless belt,
A step of drying the semiconductive seamless belt and removing it from the mold,
Half-cutting the peripheral wall of the semi-conductive seamless belt removed from the mold in the circumferential direction with a cutter, and tearing the semi-conductive seamless belt to a predetermined length by using the half-cut portion. Features.
In addition, it is preferable that the half-cut depth of the cutter with respect to the peripheral wall of the semiconductive seamless belt is 10% to 90% of the thickness of the peripheral wall.
[0006]
Here, the resin in the claims may be a thermoplastic resin or a thermosetting resin. Further, the cutter is not particularly limited, and may be various single-edged, double-edged, ring-shaped or the like. When the cutter is half-cut, the outer peripheral surface of the peripheral wall may be half-cut in the circumferential direction with a cutter, but the inner peripheral surface of the peripheral wall may be half-cut in the circumferential direction with a cutter.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
As shown in FIGS. 1 to 3, the endless semiconductive seamless belt 1 in the present embodiment is obtained by half-cutting the outer peripheral surface of the peripheral wall on the end portion side in the circumferential direction with a cutter 3 and using this half-cut portion. When the end 2 is torn, the tear surface 4 of the peripheral wall is composed of the cutter cutting layer 5 and the tear layer 6.
[0008]
An apparatus for manufacturing the semiconductive seamless belt 1 will be described. When manufacturing the semiconductive seamless belt 1, the material solution 10 is discharged from the discharge nozzle 8 of the supply device 7 using the supply device 7 and the molding device 12 that can move forward and backward as shown in FIGS. Is applied while continuously hanging from one end to the other end in the longitudinal direction in the mold.
[0009]
As shown in FIG. 4, the supply device 7 includes various pumps 9 having elongated discharge nozzles 8 horizontally, and a hopper 11 for supplying a material solution 10 to the pumps 9. Then, based on the driving of a gear mechanism or a belt mechanism (not shown), it moves forward and backward in the axial direction of the mold 13 as shown by an arrow, and the inner periphery of the mold 13 which is 20 to 30 mm away from the tip of the discharge nozzle 8. A liquid material solution 10 having a high viscosity (1 poise or more and 100 poise or less at room temperature) is applied to the surface while continuously hanging in a streak or a linear form.
[0010]
The material solution 10 is obtained by dissolving a polymer material such as PES or PET in various solvents such as NMP and blending carbon or the like. Examples of the polymer material include polyester resins such as PBT and PEN, polyimide resins, polyamideimide resins, polyamide resins, fluororesins, polysulfone, polycarbonate, aramid resins, and polyetheretherketone. Of these, PAI and PES, which are excellent in heat resistance, low tension, and creep resistance, are preferable. The polymer material may be either thermoplastic or thermosetting, and an appropriate material can be selected depending on the production method to be performed.
[0011]
As shown in FIGS. 4 and 5, the molding device 12 includes a mold 13 for centrifugally molding the semiconductive seamless belt 1, a drive device 14 for rotating the mold 13, and a contact with the drive device 14. And a detachable driven device 15. The mold 13 is formed in a horizontally long cylindrical shape by using various metals, and the inner peripheral surface is subjected to smooth mirror finishing, fluorine processing, silicone resin processing, or the like so that the semiconductive seamless belt 1 can be easily removed from the mold. In addition, a matte black (not shown) is applied to the rough outer peripheral surface, and this black efficiently absorbs heat from the external heater. Ring-shaped lids 16 for preventing leakage of the material solution 10 are respectively detachably fitted to both ends of the mold 13, and an injection hole for the material solution is provided at the center of the lid 16.
[0012]
The driving device 14 includes various motors 17, a driving shaft 18 that rotates by driving the motor 17, a plurality of driving wheels 19 that are fitted to the driving shaft 18, and an outer peripheral surface of each driving wheel 19. The lid 16 is made of a heat-resistant and durable cylindrical elastic elastomer 20 that contacts and supports the lower portion of the outer peripheral surface of the lid 16 to exert a vibration damping function. The elastic elastomer 20 is made of, for example, silicone rubber, chloroprene rubber, or fluororubber having excellent oil resistance, solvent resistance, chemical resistance, weather resistance, heat resistance, and the like, and has a temperature of 90 ° Hs or less, preferably 30 ° Hs to 90 °. ° Hs. This is because if it is less than 30 ° Hs, the compression set characteristic will deteriorate, and if it exceeds 90 ° Hs, the vibration damping properties will be poor.
[0013]
As shown in FIG. 5, the driven device 15 includes a free driven shaft 21 that slides horizontally and horizontally with respect to the drive shaft 18, a plurality of driven wheels 22 fitted to the driven shaft 21, and each driven wheel 22 and is made of a heat-resistant and durable cylindrical elastic elastomer 20A that contacts and supports the lower portion of the outer peripheral surface of the lid 16 to exert a vibration damping function.
Since the elastic elastomer 20A is the same as the elastic elastomer 20 of the driving device 14, the description is omitted.
[0014]
Next, a specific method of manufacturing the semiconductive seamless belt 1 will be described. First, the driving device 14 is driven to rotate the mold 13 in a horizontal state at a high speed (for example, 900 to 1,000 rpm). The mold 13 is heated to a predetermined temperature (about 70 ° C. to 100 ° C., although there is no particular limitation) by an external heater, and the supply device 7 is moved forward and backward with respect to the rotating mold 13 to thereby rotate the inner periphery of the mold 13. From the one end to the other end of the surface, the material solution 10 is gradually applied while continuously dripping from the tip of the discharge nozzle 8 at a pressure of 0.5 kgf / cm 2 or less (the discharge amount is, for example, 50 g to 10 g / sec). (About 500 g), and the material solution 10 is leveled uniformly on the inner peripheral surface of the mold 13. When the material solution 10 is completely leveled in this way, the mold 13 is continuously heated from the surroundings by an external heater to promote the viscosity reduction of the material solution 10 and the evaporation of the solvent.
[0015]
When the mold 13 is heated for a predetermined time, the molding apparatus 12 is stopped, the mold 13 is removed, the mold 13 is set in a drier to evaporate and dry the residual solvent, and the mold 13 is removed from the drier and cooled to room temperature. Cool with air.
Then, due to a difference in thermal expansion between the mold 13 and the semi-conductive seamless belt 1 formed by centrifugal molding, the semi-conductive seamless belt 1 having the skin layer 23 from the inner peripheral surface to the outer peripheral surface of the mold 13 is naturally separated. . When the mold 13 and the semiconductive seamless belt 1 are strongly adhered and do not separate from each other, the endless semiconductive seamless belt 1 is gradually peeled off from the end of the semiconductive seamless belt 1. From the mold.
[0016]
Next, the semi-conductive seamless belt 1 is fitted and supported on a rotary drive shaft (not shown), and the end of the cutter 3 is not penetrated through the outer peripheral surface of the peripheral wall at both ends of the semi-conductive seamless belt 1. Make contact with notch. Then, the semiconductive seamless belt 1 is rotated to cut the outer peripheral surfaces of the peripheral walls at both ends into a ring shape, and each end 2 of the semiconductive seamless belt 1 is formed along the groove-shaped half cut portion. To make the semiconductive seamless belt 1 a predetermined length.
[0017]
The thickness of the cutter 3 is preferably 100 μm or less. This is because the thickness becomes 120, 450, 600 μm or the like, and if it exceeds 100 μm, the appearance of the tear surface 4 deteriorates and becomes rough. The half-cut depth of the cutter 3 with respect to the peripheral wall is 10% to 90% of the thickness of the peripheral wall, and preferably about 10% to 50% of the thickness of the peripheral wall. This is because when the half-cut depth is less than 10% of the thickness of the peripheral wall, cutting becomes difficult, and when it exceeds 50%, the appearance of the tear surface 4 gradually deteriorates, and cutting becomes gradually difficult. Because. In addition, the half cut may be cut out at once, but if it is cut out a plurality of times gradually, the appearance of the tear surface 4 can be beautifully adjusted. By the above-described tearing operation, the tearing surface 4 of the peripheral wall becomes the mutually different cutter cutting layer 5 and the tearing layer 6, and the flexible cylindrical and thick semiconductive seamless belt 1 can be obtained.
[0018]
According to the above, since the cutter 3 is not entirely cut through the peripheral wall on each end side of the semiconductive seamless belt 1, the semiconductive seamless belt 1 becomes unnecessarily long due to improper cutting. Or be short. Further, as shown in FIG. 3, since the tear surface 4 of the semiconductive seamless belt 1 is not roughened and a large number of burrs do not occur, the strength and durability of the semiconductive seamless belt 1 are significantly improved. It becomes possible. Therefore, the product life can be greatly extended, and furthermore, there is no need to reinforce the torn end surface of the semiconductive seamless belt 1 with tape or the like.
[0019]
In addition, since the high-viscosity material solution 10 is continuously discharged and applied from the tip of the discharge nozzle 8, the material solution 10 can be effectively prevented from scattering in all directions in the mold 13, and the semiconductive seamless material can be prevented. The thickness of the belt 1 can be made extremely uniform. Therefore, a high-precision thick semiconductive seamless belt 1 having a thickness of 50 μm or more, particularly 80 μm or more can be suitably manufactured in a short time. In addition, since the material solution 10 is applied to the mold 13 that is rotating at a high speed instead of rotating at a low speed, quick leveling becomes very easy. Further, since the mold 13 is mounted in a stable state by the driving device 14 and the driven device 15 instead of the unstable cantilever, not only a small diameter but also a semiconductive seamless belt 1 having a large diameter of 200 mm or more can be easily formed. Centrifugal molding.
[0020]
Further, since the mold 13 is rotated only by the driving wheel 19 of the driving device 14 and the driven wheel 22 is rotated by following the rotation, no speed difference is generated between the driving wheel 19 and the driven wheel 22, and the driving wheel 19 and the driven wheel 22 are simplified. With such a configuration, vertical movement and minute slippage of the mold 13 can be extremely effectively prevented. Further, since the driven device 15 approaches or separates from the driving device 14 in the direction of the arrow in FIG. 5, it is possible to facilitate maintenance and replacement of the mold 13 and easily deal with the mold 13 used differently. Can be expected. Furthermore, since the elastic elastomers 20 and 20A have excellent heat resistance, even if the mold 13 is heated, long-term continuous use can be greatly expected.
[0021]
In the above embodiment, the semiconductive seamless belt 1 is rotated and half-cut is shown. However, the present invention is not limited to this, and the cutter 3 is rotated to half-cut the semiconductive seamless belt 1. You can also. Further, although the tear surface 4 of the peripheral wall is made of the different cutter cutting layer 5 and the different tear layer 6, three or four or more layers may be formed by half-cutting with the cutter 3 having different surface accuracy. In the above embodiment, the driving device 14 and the driven device 15 are used. However, the driven device 15 may be omitted and a pair of driving devices 14 may be used.
[0022]
Further, the driven device 15 can be moved toward and away from the driving device 14, but the driving device 14 can be moved toward and away from the driven device 15, and the driving device 14 and the driven device 15 can be moved toward and away from each other. Is also good. In addition, the elastic elastomers 20 and 20A of the driving wheel 19 and the driven wheel 22 are brought into contact with the lower portion of the outer peripheral surface of the lid 16. You may make it contact. Furthermore, after completely leveling the material solution 10, the mold 13 that rotates at a high speed is rotated at a low speed during drying (for example, 200 to 250 rpm) to release the solvent from the centrifugal force and discharge the solvent. It is possible to shorten the thickness and make the thickness of the semiconductive seamless belt 1 uniform.
[0023]
【Example】
Hereinafter, Example 1, Comparative Example 1, Example 2, Comparative Example 2, and Example 3 of the method for manufacturing a semiconductive seamless belt according to the present invention will be sequentially described.
Example 1
Using a material solution 10 in which 18.1 phr of carbon D4 is added to (aromatic) polyamideimide, a semiconductive seamless belt 1 having a peripheral wall thickness of 100 μm is centrifugally formed, heated, air-cooled at room temperature, demolded, and rotated. The semiconductive seamless belt 1 is fitted and supported on the drive shaft, and the end of the cutter (manufactured by Feather Corporation) 3 does not penetrate the outer peripheral surface of the peripheral wall at both ends of the semiconductive seamless belt 1. The contact was made with a notch of 50 μm. Then, the semiconductive seamless belt 1 is rotated to cut the outer peripheral surfaces of the peripheral walls at both ends 50 μm in a ring shape by 50 μm, and each end 2 of the semiconductive seamless belt 1 is formed along the groove-shaped half cut portion. To obtain a semiconductive seamless belt 1 having a predetermined length.
[0024]
When the tear surface 4 of the semiconductive seamless belt 1 thus obtained was observed, as shown in FIG. 6, it was found that the tear surface 4 was not ugly and rough, and that a very good result that no large burrs were generated was obtained. Was completed. Also, half-cutting was very easy.
[0025]
Comparative Example 1
The same semiconductive seamless belt 1 as in Example 1 is centrifugally formed, heated, air-cooled at room temperature, and released from the mold. Then, the semiconductive seamless belt 1 is inserted into and supported by a rotary drive shaft. The tip of a cutter (manufactured by Feather Corporation) 3 was made to penetrate the outer peripheral surface of the peripheral wall at both end portions. Then, the semiconductive seamless belt 1 was rotated to completely cut each end portion 2 by 100 μm to obtain a semiconductive seamless belt 1 having a predetermined length.
When the tear surface 4 of the semiconductive seamless belt 1 was observed, as shown in FIG. 7, the tear surface 4 was very rough, ugly, and many large burrs were found. Did not. The cut was really difficult.
[0026]
Example 2
Basically, it is the same as in Example 1, but when 50 μm half-cut is performed, instead of 50 μm half-cut at a time, 50 μm half-cut is gradually performed in 10 μm divided into 5 times.
When the tear surface 4 of the semiconductive seamless belt 1 was observed, as shown in FIG. 8, good results could be obtained with respect to the appearance and burrs of the tear surface 4.
[0027]
Comparative Example 2
The 50 μm half-cut was performed at once, instead of dividing the 50 μm half-cut into five 10 μm steps. The other parts were the same as in Example 2 except that the cutter 3 was a 120 μm-thick double-edged blade.
Observation of the tear surface 4 of the semiconductive seamless belt 1 showed that sufficient results could not be obtained with respect to the appearance and large burr of the tear surface 4 as shown in FIG.
[0028]
Example 3
Basically, it is the same as in Example 1, except that the cutter 3 was a 100 μm-thick double-edged blade made by Feather Corporation, and the cutter 3 was half-cut by 50 μm.
When the tear surface 4 of the semiconductive seamless belt 1 was observed, as shown in FIG. 10, a good result was obtained in which the tear surface 4 was beautiful and a large burr was hardly observed.
[0029]
【The invention's effect】
As described above, according to the present invention, there is an effect that the strength and durability of the semiconductive seamless belt can be improved. In addition, it is possible to omit a reinforcing member for an end surface of the semiconductive seamless belt.
[Brief description of the drawings]
FIG. 1 is an explanatory perspective view showing a state in which an outer peripheral surface of a peripheral wall at both end portions is half-cut in a circumferential direction by a cutter in a ring shape in an embodiment of a method of manufacturing a semiconductive seamless belt according to the present invention .
FIG. 2 is an explanatory front view of FIG. 1;
FIG. 3 is an enlarged explanatory view of a main part showing a semiconductive seamless belt in an embodiment of a method for manufacturing a semiconductive seamless belt according to the present invention.
FIG. 4 is a partially sectional explanatory view showing an embodiment of a method for manufacturing a semiconductive seamless belt according to the present invention.
FIG. 5 is an explanatory view showing a molding apparatus in the embodiment of the method for producing a semiconductive seamless belt according to the present invention.
FIG. 6 is a photograph showing Example 1 of a method for producing a semiconductive seamless belt according to the present invention.
FIG. 7 is a photograph showing Comparative Example 1 of the method for producing a semiconductive seamless belt according to the present invention.
FIG. 8 is a photograph showing Example 2 of the method for producing a semiconductive seamless belt according to the present invention.
FIG. 9 is a photograph showing Comparative Example 2 of the method for producing a semiconductive seamless belt according to the present invention.
FIG. 10 is a photograph showing Example 3 of the method for producing a semiconductive seamless belt according to the present invention.
FIG. 11 is an explanatory view showing a state in which a peripheral wall on an end side is completely cut by a cutter in a conventional method for manufacturing a semiconductive seamless belt.
FIG. 12 is an enlarged explanatory view showing a cut surface of the semiconductive seamless belt of FIG. 11;
[Explanation of symbols]
Reference Signs List 1 semiconductive seamless belt 2 end 3 cutter 4 tear surface 5 cutter cutting layer 6 tear layer 7 supply device 8 discharge nozzle 9 pump 10 material solution 11 hopper 12 molding device 13 mold 14 drive device 15 driven device 23 skin layer

Claims (2)

樹脂に半導電性を付与した半導電性シームレスベルトの製造方法であって、A method for producing a semiconductive seamless belt in which a resin is provided with semiconductivity,
溶剤に高分子材料を溶かした材料溶液を回転する金型に注入して半導電性シームレスベルトを遠心成形する工程と、  A step of injecting a material solution in which a polymer material is dissolved in a solvent into a rotating mold and centrifugally forming a semiconductive seamless belt,
この半導電性シームレスベルトを乾燥させて金型から取り外す工程と、  A step of drying the semiconductive seamless belt and removing it from the mold,
金型から取り外した半導電性シームレスベルトの周壁をカッタで周方向にハーフカットし、このハーフカット部分を用いて半導電性シームレスベルトを引き裂いて所定の長さとする工程とを含んでなることを特徴とする半導電性シームレスベルトの製造方法。  Half-cutting the peripheral wall of the semiconductive seamless belt removed from the mold in the circumferential direction with a cutter, and tearing the semiconductive seamless belt to a predetermined length by using the half-cut portion. A method for producing a semiconductive seamless belt, which is characterized in that:
半導電性シームレスベルトの周壁に対するカッタのハーフカット深さを、周壁の厚さの10%〜90%とする請求項1記載の半導電性シームレスベルトの製造方法。The method for manufacturing a semiconductive seamless belt according to claim 1, wherein a half cut depth of the cutter with respect to a peripheral wall of the semiconductive seamless belt is set to 10% to 90% of a thickness of the peripheral wall.
JP25492199A 1999-09-08 1999-09-08 Method for producing semiconductive seamless belt Expired - Fee Related JP3558929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25492199A JP3558929B2 (en) 1999-09-08 1999-09-08 Method for producing semiconductive seamless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25492199A JP3558929B2 (en) 1999-09-08 1999-09-08 Method for producing semiconductive seamless belt

Publications (2)

Publication Number Publication Date
JP2001082546A JP2001082546A (en) 2001-03-27
JP3558929B2 true JP3558929B2 (en) 2004-08-25

Family

ID=17271720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25492199A Expired - Fee Related JP3558929B2 (en) 1999-09-08 1999-09-08 Method for producing semiconductive seamless belt

Country Status (1)

Country Link
JP (1) JP3558929B2 (en)

Also Published As

Publication number Publication date
JP2001082546A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
KR101310323B1 (en) Shear generating apparatus and method
JP6502484B2 (en) Method of forming a surface coating on a razor blade using centrifugal force
JP2008540163A (en) Heat transfer method and apparatus
EP0220154A1 (en) Method of making a shaped layer by spraying
KR101503764B1 (en) Apparatus for centrifugal spinning
JP2000329137A (en) Resin roller and its manufacture
JP2009538752A5 (en)
JP3558929B2 (en) Method for producing semiconductive seamless belt
JP4259695B2 (en) Seamless belt manufacturing method
JP2015182235A (en) Method and apparatus for manufacturing shaped film
JP6956550B2 (en) Elastic roller
JP2001079862A (en) Production of seamless belt
KR102162520B1 (en) The Manufacturing Apparatus for Film
JP3922840B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP4281867B2 (en) Roll kneader
KR100792621B1 (en) Apparatus for forming hair
JP3922839B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP2004098545A (en) Method for uniaxial rotation molding and die
JP2002307461A (en) Mold for centrifugal molding and seamless belt
JP3810613B2 (en) Endless belt molding application mold and endless belt molding method
JP2002018971A (en) Endless belt, method for manufacturing the same, molding apparatus and image forming apparatus equipped with endless belt
JP4243910B2 (en) Manufacturing method of centrifugal mold
JP4044417B2 (en) Tubular product manufacturing method and tubular product
JP3763959B2 (en) Endless belt manufacturing method
JP2001162630A (en) Seamless belt and apparatus for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees