JP4259695B2 - Seamless belt manufacturing method - Google Patents

Seamless belt manufacturing method Download PDF

Info

Publication number
JP4259695B2
JP4259695B2 JP27718599A JP27718599A JP4259695B2 JP 4259695 B2 JP4259695 B2 JP 4259695B2 JP 27718599 A JP27718599 A JP 27718599A JP 27718599 A JP27718599 A JP 27718599A JP 4259695 B2 JP4259695 B2 JP 4259695B2
Authority
JP
Japan
Prior art keywords
mold
polymer material
seamless belt
material solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27718599A
Other languages
Japanese (ja)
Other versions
JP2001099248A (en
Inventor
隆 野上
勝 米山
広 小原
智 小田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP27718599A priority Critical patent/JP4259695B2/en
Publication of JP2001099248A publication Critical patent/JP2001099248A/en
Application granted granted Critical
Publication of JP4259695B2 publication Critical patent/JP4259695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Belt Conveyors (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fixing For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真式の複写機やレーザプリンタ等に使用されるシームレスベルトに関し、より詳しくは、中間転写用、用紙搬送用、現像用、あるいは定着用のシームレスベルトの製造方法に関するものである。
【0002】
【従来の技術】
従来、シームレスベルトを製造する場合には、図示しないが、円筒形の金型を低速回転させ、有機溶剤に高分子材料を溶解させた比較的多量の高分子材料溶液を金型に供給してレベリングし、有機溶剤を揮発除去して高分子材料層、すなわち、シームレスベルトを遠心成形する。そしてその後、金型から乾燥したシームレスベルトを脱型してその両端部をそれぞれ切断除去し、円筒形で可撓性のシームレスベルトを得る。
【0003】
なお、この種の関連先行技術文献として、特開平3−34817号公報等があげられる。
【0004】
【発明が解決しようとする課題】
従来のシームレスベルトの製造方法は、以上のように多量の高分子材料溶液を一度にまとめて単に供給するので、有機溶剤の揮発速度が非常に遅く、乾燥の遅延化を招くという大きな問題がある。また、シームレスベルトの内外面の乾燥の速度差が大きいので、内面の平滑性が到底期待できない。
【0005】
本発明は、上記問題に鑑みなされたもので、乾燥時間を短縮し、内面の平滑性を向上させることのできるシームレスベルトの製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明においては上記課題を解決するため、高分子材料と有機溶剤とからなる高粘度の高分子材料溶液を所定の温度の円筒形の金型内に供給し、この金型を回転させ、周囲から加熱することにより、高分子材料溶液中の有機溶剤を除去して可撓性のシームレスベルトを遠心成形し、その後、金型からシームレスベルトを脱型してその両端部を除去する製造方法であって、
同一の高分子材料溶液の供給と有機溶剤の除去とを複数回繰り返すとともに、有機溶剤の除去時における金型の回転速度を高分子材料溶液供給時の最高速度よりも低速にすることにより、シームレスベルトを実質的に同質の高分子材料により積層形成し、複数の高分子材料間に表皮を介在させることを特徴としている。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態におけるシームレスベルト1は、図1及び図2に示すように、実質的に同質の材料からなる複数(本実施形態では三層)の高分子材料層2が遠心成形で積層されることにより円筒形に成形され、各高分子材料層2が表皮3を介して積層されている。
【0009】
実質的に同質の材料とは、高分子材料や導電性フィラー等の主要成分が同質であることをいう。したがって、±10%以内の配合比の相違、主要成分ではない添加物の添加、又は高分子材料の分子量分布の違い等は、実質的に同質である。また、表皮3は、後述する金型10内に供給された高分子材料溶液4が回転に伴い固化するときに空気に接触した界面に膜が発生することにより形成される。
【0010】
次に、本実施形態におけるシームレスベルト1の製造方法について説明すると、図3等に示すように、高分子材料溶液4を供給装置5から成形装置9の金型10内に供給し、この金型10を回転させるとともに、有機溶剤を揮発除去する製造方法であって、同一の高分子材料溶液4の供給と有機溶剤の除去とを複数回繰り返すとともに、有機溶剤の除去時における金型10の回転速度を、高分子材料溶液供給時の最高速度よりも低速とするようにしている。
【0011】
高分子材料溶液4は、NMP等の各種有機溶剤にPESやPET等の高分子材料が溶解し、カーボン等が配合等されたものである。高分子材料としては、これらの他にも、PBT、PEN等のポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリカーボネート、アラミド樹脂、又はポリエーテルエーテルケトン等があげられるが、これらの中でも耐クリープ特性に優れるPESが好ましい。高分子材料は、熱可塑性や熱硬化性のいずれでも良く、実施する製造方法により適当なものを選択することができる。
【0012】
供給装置5は、図3に示すように、細長い吐出ノズル6を水平に備えたポンプ7と、このポンプ7に高分子材料溶液4を供給するホッパ8とから構成されている。そして、図示しない歯車機構やベルト機構の駆動に基づき、矢印で示すように金型10の軸方向に対して進退動し、吐出ノズル6の先端部から20〜30mm離れた金型10の内周面に粘度の高い(常温時で1ポイズ以上、100ポイズ以下)液状の高分子材料溶液4を筋状、線条に垂らしながら供給する。
【0013】
成形装置9は、図4や図5に示すように、高分子材料層2、すなわちシームレスベルト1を遠心成形する金型10と、この金型10を回転させる駆動装置11と、この駆動装置11に対して接離可能な従動装置12とから構成されている。金型10は、各種金属を使用して横長の円筒形に形成され、シームレスベルト1を容易に脱型できるよう内周面に滑らかな鏡面加工、フッ素加工、あるいはシリコーン樹脂加工等が施されるとともに、外周面には図示しないつや消しの黒色が塗布されており、この黒色が外部ヒータからの熱を効率的に吸収する。金型10の両端部には高分子材料溶液4の漏洩を防止するリング形の蓋13がそれぞれ着脱自在に嵌合され、蓋13の中心部には高分子材料溶液4用の供給孔が形成されている。
【0014】
駆動装置11は、各種のモータ14と、このモータ14の駆動で回転する駆動軸15と、この駆動軸15に嵌着される複数の駆動輪16と、各駆動輪16の外周面に覆着され、蓋13の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー17とから構成されている。弾性エラストマー17は、例えば耐油性、耐有機溶剤性、耐薬品性、耐候性、耐熱性等に優れるシリコーンゴム、クロロプレンゴム、又はフッ素ゴム等からなり、90°Hs以下、好ましくは30°Hs〜90°Hsの硬度を有している。これは、30°Hs未満だと圧縮永久歪み特性が悪化し、90°Hsを超えると制振性に乏しくなるからである。
【0015】
従動装置12は、図4に示すように、駆動軸15に対して水平横方向にスライドするフリーの従動軸18と、この従動軸18に嵌着される複数の従動輪19と、各従動輪19の外周面に覆着され、蓋13の外周面下部を接触担持して制振機能を発揮する耐熱耐久性で円筒形の弾性エラストマー17Aとから構成されている。弾性エラストマー17Aについては、駆動装置11の弾性エラストマー17と同様であるので説明を省略する。
【0016】
次に、シームレスベルト1の具体的な製造方法を説明すると、先ず、駆動装置11を駆動して水平状態の金型10を50G以上の遠心力が加わる最高速度(例えば、金型の内径が200mmの場合、662rpm以上)で回転させるとともに、この金型10を所定の温度(特に制約はないが、70℃〜100℃程度)とし、供給装置5を金型10の軸方向に対して適宜進退動させて回転する金型10の内周面に高分子材料溶液4を垂らしながら供給塗布し、金型10の内周面に高分子材料溶液4を均一にレベリングする。こうして高分子材料溶液4を完全にレベリングしたら、金型10の回転速度を最高速度から2〜20Gの遠心力が作用する低速(例えば、金型の内径が200mmの場合、134rpm以上、134〜423rpm)にして遠心力から有機溶剤を解放し、金型10を外部ヒータで周囲から加熱して高分子材料溶液4の粘度低減や有機溶剤の蒸発を促進する。
【0017】
2G〜20Gの遠心力が作用する低速とするのは、2G未満ではレベリングした高分子材料溶液4の垂れるおそれがあるからである。逆に20Gを超えると、有機溶剤の遠心力からの開放が不十分となり、有機溶剤の除去時間短縮が困難になるからである。
【0018】
次いで、金型10を再度最高速度で回転させ、供給装置5を金型10の軸方向に対して進退動させて金型10の内周面に付着した高分子材料層2上に同一の高分子材料溶液4を表皮3を介し垂らしながら供給塗布し、表皮3上に高分子材料溶液4を均一にレベリングする。高分子材料溶液4をレベリングしたら、金型10の回転速度を再度最高速から低速度にし、金型10を外部ヒータで周囲から加熱して高分子材料溶液4の粘度低減や有機溶剤の蒸発を促進する。
【0019】
次いで、金型10を再び最高速度で回転させ、供給装置5を金型10の軸方向に対して進退動させて金型10の二層目の高分子材料層2上に同一の高分子材料溶液4を表皮3を介し垂らしながら供給塗布し、表皮3上に高分子材料溶液4を均一にレベリングする。高分子材料溶液4をレベリングしたら、金型10の回転速度を再び最高速から低速度にし、金型10を外部ヒータで周囲から加熱して高分子材料溶液4の粘度低減や有機溶剤の蒸発を促進し、多層の高分子材料層2、換言すれば、周面に表皮3を備えたシームレスベルト1を遠心成形する。これらの作業の際、外部ヒータで単に加熱して有機溶剤を急激に蒸発・乾燥させると、シームレスベルト1の周面の状態が悪化するので、金型10の温度が有機溶剤の沸点よりも120〜50℃程度低くなるよう加熱し、指触乾燥状態の得られた後に加熱温度を上昇させ、乾燥作業を終了する。
【0020】
次いで、成形装置9から金型10を取り外し、金型10を乾燥機にセットして残留有機溶剤を蒸発・乾燥させ、乾燥機から金型10を取り外して室温で空冷する。すると、金型10とシームレスベルト1の熱膨張差により、金型10の内周面からシームレスベルト1が自然に剥離する。金型10とシームレスベルト1とが強く密着して離れない場合には、シームレスベルト1の端部から徐々に剥がせば、金型10からシームレスベルト1を脱型することができる。そしてその後、シームレスベルト1の両端部をそれぞれ所定の長さで切断すれば、可撓性を有する円筒形で厚肉のシームレスベルト1を得ることができる。
【0021】
上記方法によれば、金型10に高分子材料溶液4を複数回供給するので、1回のチャージ量を少なくすることができ、これにより有機溶剤の揮発を著しく速めて表皮3の形成を促進し、生産性の向上を図ることができる。例えば、高分子材料溶液4の一回当たりのチャージ量を1/3とした場合、トータルの乾燥速度を3倍にすることができる。また、高分子材料溶液4の複数回供給により、1回目の厚さのばらつきを2回目以降で修正することができるので、シームレスベルト1の内外面の乾燥速度差が小さくなり、シームレスベルト1の内面の平滑性やシームレスベルト1の精度を大幅に向上させることが可能になる。
【0022】
また、低速回転中の金型10ではなく、最高速度で回転中の金型10に高分子材料溶液4を供給するので、迅速なレベリングが非常に容易となる。また、最高速度で回転する金型10を有機溶剤の除去時や乾燥時に低速回転させて有機溶剤を遠心力から解放し、排出するので、乾燥時間を半分以上短縮することができるとともに、シームレスベルト1の端部の厚さが不均一化するのをきわめて有効に防止することができる。また、金型10に粘度の低い高分子材料溶液4を高圧で飛翔させるのではなく、高粘度の高分子材料溶液4を吐出ノズル6から吐出塗布するので、金型10内で高分子材料溶液4が飛散したり、シームレスベルト1の肉厚が不均一化することがない。よって、厚さ50μm〜80μm以上、1mm以下の範囲で±3μm以下程度の高精度のシームレスベルト1を短時間に好適に製造することができる。
【0023】
また、駆動装置11と従動装置12とで金型10を搭載するので、小径のみならず、200μm以上の大径のシームレスベルト1をも容易に遠心成形することが可能となる。また、駆動装置11の駆動輪16のみで金型10を回転させ、従動輪19を従わせて回転させるので、駆動輪16と従動輪19との間に速度差の発生することがなく、簡易な構成で金型10の上下動や微小なスリップをきわめて有効に防止することができる。さらに、駆動装置11に対して従動装置12が接近又は離隔するので、金型10のメンテナンスや交換の便宜を図ったり、異なる使用の金型10に簡単に対処することが期待できる。さらにまた、弾性エラストマー17・17Aが耐熱性に優れるので、金型10を加熱しても、長時間の連続使用が大いに期待できる。
【0024】
なお、上記実施形態では金型10に高分子材料溶液4を3回供給したものを示したが、必要に応じ、高分子材料溶液4を2回供給したり、4回以上供給することもできる。また、金型10を当初から最高速度で回転させ、この金型10の内周面に高分子材料溶液4を垂らしながら供給塗布したが、金型10は、少なくとも高分子材料溶液4の供給塗布後に最高速度で回転すれば良い。したがって、当初は金型10を最高速度よりも低い速度で回転させ、この金型10の内周面に高分子材料溶液4を供給塗布した後に50G以上の最高速度で回転させても良い。また、上記実施形態では駆動装置11と従動装置12とを使用したが、従動装置12を省略し、一対の駆動装置11を使用することも可能である。
【0025】
また、駆動装置11に対して従動装置12を接離可能としたが、従動装置12に対して駆動装置11を接離可能としたり、駆動装置11と従動装置12とを相互に接離可能としても良い。さらに、蓋13の外周面下部に駆動輪16や従動輪19の弾性エラストマー17・17Aを接触させたが、金型10の外周面下部に駆動輪16や従動輪19の弾性エラストマー17・17Aを接触させても良い。
【0026】
【実施例】
以下、本発明に係るシームレスベルト1の製造方法の実施例、比較例、及び評価について順次説明する。
実施例
先ず、駆動装置11を駆動して水平の金型(内径200mm、外径220mm、長さ400mm)10を1,000rpmの最高速度で回転させるとともに、この金型10の温度を75℃とし、供給装置5を金型10の軸方向に対して進退動させて金型10の内周面に101gの高分子材料溶液4を垂らしながら供給塗布し、金型10の内周面に高分子材料溶液4を均一にレベリングした。高分子材料溶液4は、NMPにポリアミドイミドを溶解させ、この材料にカーボン5−20wt%配合した材料とした(固形分15%)。こうして高分子材料溶液4をレベリングしたら、金型10の回転速度を最高速から200rpmの低速にし、金型10を外部ヒータで周囲から120℃に加熱して20分乾燥させた。
【0027】
次いで、金型10を再度1,000rpmの最高速度で回転させ、供給装置5を金型10の軸方向に対して進退動させて金型10の内周面に付着した高分子材料層2の表皮3に同一の高分子材料溶液4を100g垂らしながら供給塗布し、表皮3上に高分子材料溶液4を均一にレベリングした。高分子材料溶液4をレベリングしたら、金型10の回転速度を最高速度から200rpmの低速にし、金型10を外部ヒータで周囲から120℃に加熱して25分乾燥させ、シームレスベルト1を遠心成形した。なお、シームレスベルト1の遠心成形時間は、供給時間、昇温時間を含め、60分であった。
【0028】
次いで、成形装置9から金型10を取り外し、金型10を250℃の乾燥機にセットして残留有機溶剤を蒸発・乾燥させ、1時間経過した後に乾燥機から金型10を取り外して室温で冷却した。そして、金型10とシームレスベルト1の熱膨張差を利用してシームレスベルト1を脱型し、シームレスベルト1の両端部をそれぞれ所定の長さで切断して厚さ約100μmのシームレスベルト1を得た。
【0029】
比較例
実施例と同様の駆動装置11を駆動して同様の金型10を200rpmの低速で回転させるとともに、この金型10の温度を75℃とし、供給装置5を金型10の軸方向に対して進退動させて金型10の内周面に201gの高分子材料溶液4を垂らしながら供給塗布し、金型10の内周面に実施例同様の高分子材料溶液4を均一にレベリングした。高分子材料溶液4をレベリングしたら、回転する金型10を外部ヒータで周囲から120℃に加熱して20分乾燥させ、シームレスベルト1を遠心成形した。この場合のシームレスベルト1の遠心成形時間は90分であった。
【0030】
次いで、成形装置9から金型10を取り外し、金型10を250℃の乾燥機にセットして残留有機溶剤を蒸発・乾燥させ、1時間経過した後に乾燥機から金型10を取り外して室温で冷却した。そして、金型10とシームレスベルト1の熱膨張差を利用してシームレスベルト1を脱型し、その後、シームレスベルト1の両端部をそれぞれ所定の長さで切断して厚さ約100μmのシームレスベルト1を得た。
【0031】
評 価
実施例で得られたシームレスベルト1の周壁の厚さを縦横10mm毎に測定したところ、平均値が100.1μmであり、ばらつき(最大−最小)を6μm以内に抑えることができた。これに対し、比較例で得られたシームレスベルト1の周壁の厚さを測定したところ、11μmものばらつきが確認された。さらに、実施例と異なり、シームレスベルト1の内面(表面)に微細な波打が認められた。
【0032】
【発明の効果】
以上のように本発明によれば、シームレスベルトの乾燥時間を短縮することができ、しかも、シームレスベルトの内面の平滑性を向上させることができるという効果がある。
具体的には、金型に高分子材料溶液を複数回供給するので、1回のチャージ量を少なくすることができ、これにより有機溶剤の揮発を速めて表皮の形成を促進し、生産性の向上を図ることができる。また、高分子材料溶液の複数回供給により、1回目の厚さのばらつきを2回目以降で修正することができるので、シームレスベルトの内外面の乾燥速度差が小さくなり、シームレスベルトの内面の平滑性やシームレスベルトの精度を向上させることができる。
また、低速回転中の金型ではなく、最高速度で回転中の金型に高分子材料溶液を供給するので、迅速なレベリングが容易となる。また、最高速度で回転する金型を有機溶剤の除去時や乾燥時に低速回転させて有機溶剤を遠心力から解放し、排出するので、乾燥時間を短縮することができるとともに、シームレスベルトの端部の厚さが不均一化するのを有効に防止することが可能となる。さらに、金型に粘度の低い高分子材料溶液を高圧で飛翔させるのではなく、高粘度の高分子材料溶液を塗布するので、金型内で高分子材料溶液が飛散したり、シームレスベルトの肉厚が不均一化することがない。
【図面の簡単な説明】
【図1】本発明に係るシームレスベルトの実施形態を示す一部切り欠き斜視説明図である。
【図2】図1のII部の拡大説明図である。
【図3】本発明に係るシームレスベルトの製造方法の実施形態を示す説明図である。
【図4】本発明に係るシームレスベルトの製造方法の実施形態における成形装置を示す正面図である。
【図5】図4の側面図である。
【符号の説明】
1 シームレスベルト
2 高分子材料層
3 表皮
4 高分子材料溶液
5 供給装置
9 成形装置
10 金型
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seamless belt used in an electrophotographic copying machine, a laser printer, and the like, and more particularly, to a method of manufacturing a seamless belt for intermediate transfer, paper conveyance, development, or fixing. .
[0002]
[Prior art]
Conventionally, when manufacturing a seamless belt, although not shown, a cylindrical mold is rotated at a low speed, and a relatively large amount of a polymer material solution in which a polymer material is dissolved in an organic solvent is supplied to the mold. Leveling is performed, and the organic solvent is volatilized and removed, and the polymer material layer, that is, the seamless belt is centrifugally formed. Thereafter, the dried seamless belt is removed from the mold, and both end portions thereof are cut and removed to obtain a cylindrical and flexible seamless belt.
[0003]
As a related prior art documents of this type, JP-A-3-34817 Publication and the like.
[0004]
[Problems to be solved by the invention]
The conventional seamless belt manufacturing method simply supplies a large amount of the polymer material solution at a time as described above, and thus has a large problem that the volatilization rate of the organic solvent is very slow and the drying is delayed. . Moreover, since the difference in drying speed between the inner and outer surfaces of the seamless belt is large, the smoothness of the inner surface cannot be expected.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a seamless belt manufacturing method capable of shortening the drying time and improving the smoothness of the inner surface.
[0006]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problems, a high-viscosity polymer material solution composed of a polymer material and an organic solvent is supplied into a cylindrical mold at a predetermined temperature, and this mold is rotated and the surroundings are In the manufacturing method, the organic solvent in the polymer material solution is removed by heating from the mold, and the flexible seamless belt is centrifugally molded. Then, the seamless belt is removed from the mold and both ends thereof are removed. There,
The same polymer material solution supply and organic solvent removal are repeated multiple times, and the mold rotation speed when removing the organic solvent is set lower than the maximum speed when supplying the polymer material solution. A belt is formed by laminating substantially the same polymer material, and a skin is interposed between a plurality of polymer materials.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, a seamless belt 1 according to the present embodiment includes a plurality of substantially identical materials (in this embodiment, The three polymer material layers 2 are laminated by centrifugal molding to be formed into a cylindrical shape, and the polymer material layers 2 are laminated via the skin 3.
[0009]
The substantially homogeneous material means that main components such as a polymer material and a conductive filler are homogeneous. Therefore, the difference in the blending ratio within ± 10%, the addition of an additive that is not a main component, or the difference in the molecular weight distribution of the polymer material is substantially the same. The skin 3 is formed by the formation of a film at the interface in contact with air when the polymer material solution 4 supplied into the mold 10 described later is solidified with rotation.
[0010]
Next, the manufacturing method of the seamless belt 1 in the present embodiment will be described. As shown in FIG. 3 and the like, the polymer material solution 4 is supplied from the supply device 5 into the mold 10 of the molding device 9, and this mold is used. 10 is a manufacturing method in which the organic solvent is volatilized and removed while the supply of the same polymer material solution 4 and the removal of the organic solvent are repeated a plurality of times, and the mold 10 is rotated during the removal of the organic solvent. The speed is set to be lower than the maximum speed when the polymer material solution is supplied.
[0011]
The polymer material solution 4 is a solution in which a polymer material such as PES or PET is dissolved in various organic solvents such as NMP and carbon is blended. In addition to these, the polymer materials include polyester resins such as PBT and PEN, polyimide resins, polyamideimide resins, polyamide resins, fluororesins, polysulfones, polyethersulfones, polycarbonates, aramid resins, or Examples thereof include polyether ether ketone, and among these, PES having excellent creep resistance is preferable. The polymer material may be either thermoplastic or thermosetting, and an appropriate material can be selected depending on the production method to be performed.
[0012]
As shown in FIG. 3, the supply device 5 includes a pump 7 provided with a long and narrow discharge nozzle 6 horizontally, and a hopper 8 that supplies the polymer material solution 4 to the pump 7. Then, based on the driving of a gear mechanism and a belt mechanism (not shown), the inner periphery of the mold 10 moves forward and backward with respect to the axial direction of the mold 10 as indicated by an arrow and is 20 to 30 mm away from the tip of the discharge nozzle 6. A liquid polymer material solution 4 having a high viscosity (1 poise or more and 100 poise or less at room temperature) is supplied to the surface while hanging down on the streaks.
[0013]
As shown in FIGS. 4 and 5, the molding device 9 includes a mold 10 for centrifugally molding the polymer material layer 2, that is, the seamless belt 1, a drive device 11 for rotating the mold 10, and the drive device 11. It is comprised from the follower 12 which can contact / separate with respect to. The mold 10 is formed in a horizontally long cylindrical shape using various metals, and the inner peripheral surface is subjected to smooth mirror surface processing, fluorine processing, or silicone resin processing so that the seamless belt 1 can be easily removed from the mold. At the same time, matte black (not shown) is applied to the outer peripheral surface, and this black efficiently absorbs heat from the external heater. A ring-shaped lid 13 for preventing leakage of the polymer material solution 4 is detachably fitted to both ends of the mold 10, and a supply hole for the polymer material solution 4 is formed at the center of the lid 13. Has been.
[0014]
The drive device 11 covers various motors 14, a drive shaft 15 that rotates by driving the motor 14, a plurality of drive wheels 16 that are fitted to the drive shaft 15, and an outer peripheral surface of each drive wheel 16. In addition, it is composed of a cylindrical elastic elastomer 17 having a heat resistance and durability that exerts a damping function by contacting and supporting the lower part of the outer peripheral surface of the lid 13. The elastic elastomer 17 is made of, for example, silicone rubber, chloroprene rubber, or fluororubber having excellent oil resistance, organic solvent resistance, chemical resistance, weather resistance, heat resistance, and the like, and is 90 ° Hs or less, preferably 30 ° Hs to It has a hardness of 90 ° Hs. This is because if it is less than 30 ° Hs, the compression set characteristics deteriorate, and if it exceeds 90 ° Hs, the vibration damping property becomes poor.
[0015]
As shown in FIG. 4, the driven device 12 includes a free driven shaft 18 that slides horizontally and horizontally with respect to the drive shaft 15, a plurality of driven wheels 19 that are fitted to the driven shaft 18, and each driven wheel. 19 is composed of a cylindrical elastic elastomer 17A having a heat resistance and durability, which is covered with an outer peripheral surface of 19 and supports the lower portion of the outer peripheral surface of the lid 13 so as to exhibit a damping function. Since the elastic elastomer 17A is the same as the elastic elastomer 17 of the drive device 11, the description thereof is omitted.
[0016]
Next, a specific method for manufacturing the seamless belt 1 will be described. First, the driving device 11 is driven to apply a centrifugal force of 50 G or more to the horizontal mold 10 (for example, the inner diameter of the mold is 200 mm). In this case, the mold 10 is rotated at a predetermined temperature (although there is no particular limitation, about 70 ° C. to 100 ° C.), and the supply device 5 is appropriately advanced and retracted with respect to the axial direction of the mold 10. The polymer material solution 4 is supplied and applied while hanging on the inner peripheral surface of the mold 10 that is moved and rotated, and the polymer material solution 4 is uniformly leveled on the inner peripheral surface of the mold 10. When the polymer material solution 4 is completely leveled in this way, the rotational speed of the mold 10 is changed from the maximum speed to a low speed at which a centrifugal force of 2 to 20 G acts (for example, when the inner diameter of the mold is 200 mm, 134 rpm or more, 134 to 423 rpm). ), The organic solvent is released from the centrifugal force, and the mold 10 is heated from the outside with an external heater to promote the reduction of the viscosity of the polymer material solution 4 and the evaporation of the organic solvent.
[0017]
The reason why the centrifugal force of 2G to 20G is applied is that the speed is lower than 2G because the leveled polymer material solution 4 may sag. Conversely, if it exceeds 20 G, the organic solvent will not be sufficiently released from the centrifugal force, and it will be difficult to shorten the removal time of the organic solvent.
[0018]
Next, the mold 10 is rotated again at the maximum speed, and the supply device 5 is moved back and forth with respect to the axial direction of the mold 10 so that the same height is applied on the polymer material layer 2 attached to the inner peripheral surface of the mold 10. The molecular material solution 4 is supplied and applied while hanging down through the skin 3, and the polymer material solution 4 is uniformly leveled on the skin 3. When the polymer material solution 4 is leveled, the rotational speed of the mold 10 is changed from the highest speed to the lower speed again, and the mold 10 is heated from the outside with an external heater to reduce the viscosity of the polymer material solution 4 and evaporate the organic solvent. Facilitate.
[0019]
Next, the mold 10 is rotated again at the maximum speed, and the supply device 5 is moved back and forth with respect to the axial direction of the mold 10 to form the same polymer material on the second polymer material layer 2 of the mold 10. The solution 4 is supplied and applied while dripping through the skin 3, and the polymer material solution 4 is uniformly leveled on the skin 3. When the polymer material solution 4 is leveled, the rotational speed of the mold 10 is changed from the highest speed to the lower speed again, and the mold 10 is heated from the outside with an external heater to reduce the viscosity of the polymer material solution 4 and evaporate the organic solvent. The multi-layer polymer material layer 2, in other words, the seamless belt 1 having the outer skin 3 on the peripheral surface is centrifugally molded. During these operations, if the organic solvent is rapidly evaporated and dried by simply heating with an external heater, the state of the peripheral surface of the seamless belt 1 deteriorates, so that the temperature of the mold 10 is 120 ° C. higher than the boiling point of the organic solvent. It heats so that it may become about -50 degreeC low, A heating temperature is raised after the dry touch state is obtained, and a drying operation is complete | finished.
[0020]
Next, the mold 10 is removed from the molding apparatus 9, the mold 10 is set in a dryer to evaporate and dry the residual organic solvent, and the mold 10 is removed from the dryer and air-cooled at room temperature. Then, the seamless belt 1 naturally peels from the inner peripheral surface of the mold 10 due to a difference in thermal expansion between the mold 10 and the seamless belt 1. In the case where the mold 10 and the seamless belt 1 are not in close contact with each other, the seamless belt 1 can be removed from the mold 10 by gradually peeling off the end of the seamless belt 1. After that, if both ends of the seamless belt 1 are cut at a predetermined length, a flexible cylindrical and thick seamless belt 1 can be obtained.
[0021]
According to the above method, since the polymer material solution 4 is supplied to the mold 10 a plurality of times, the amount of charge per time can be reduced, thereby significantly speeding up the volatilization of the organic solvent and promoting the formation of the skin 3. Thus, productivity can be improved. For example, when the charge amount per one time of the polymer material solution 4 is 1/3, the total drying speed can be tripled. Further, since the thickness variation of the first time can be corrected after the second time by supplying the polymer material solution 4 a plurality of times, the difference in the drying speed between the inner and outer surfaces of the seamless belt 1 is reduced, and the seamless belt 1 The smoothness of the inner surface and the accuracy of the seamless belt 1 can be greatly improved.
[0022]
Further, since the polymer material solution 4 is supplied not to the mold 10 rotating at a low speed but to the mold 10 rotating at the maximum speed, quick leveling becomes very easy. In addition, since the organic solvent is released from the centrifugal force by rotating the mold 10 rotating at the maximum speed at a low speed when removing the organic solvent or drying, the drying time can be shortened by more than half and the seamless belt. It is possible to prevent the thickness of one end portion from becoming non-uniform very effectively. In addition, since the high-viscosity polymer material solution 4 is discharged and applied from the discharge nozzle 6 instead of flying the low-viscosity polymer material solution 4 to the mold 10 at a high pressure, 4 does not scatter and the thickness of the seamless belt 1 does not become uneven. Therefore, the highly accurate seamless belt 1 having a thickness of about 50 μm to 80 μm and 1 mm or less and having a precision of about ± 3 μm or less can be manufactured in a short time.
[0023]
In addition, since the mold 10 is mounted by the driving device 11 and the driven device 12, not only a small diameter but also a large-diameter seamless belt 1 of 200 μm or more can be easily centrifugally formed. Further, since the mold 10 is rotated only by the driving wheel 16 of the driving device 11 and the driven wheel 19 is rotated, there is no speed difference between the driving wheel 16 and the driven wheel 19, and it is simple. With such a configuration, it is possible to prevent the mold 10 from moving up and down and minute slips very effectively. Furthermore, since the driven device 12 approaches or separates from the drive device 11, it can be expected to facilitate the maintenance and replacement of the mold 10 or easily deal with the mold 10 used differently. Furthermore, since the elastic elastomers 17 and 17A are excellent in heat resistance, long-term continuous use can be greatly expected even when the mold 10 is heated.
[0024]
In the above embodiment, the polymer material solution 4 is supplied to the mold 10 three times. However, the polymer material solution 4 can be supplied twice or four times or more as needed. . In addition, the mold 10 is rotated at the maximum speed from the beginning, and the polymer material solution 4 is supplied and applied while hanging down on the inner peripheral surface of the mold 10, but the mold 10 is supplied and applied with at least the polymer material solution 4. You only need to rotate at the maximum speed later. Therefore, initially, the mold 10 may be rotated at a speed lower than the maximum speed, and the polymer material solution 4 may be supplied and applied to the inner peripheral surface of the mold 10 and then rotated at a maximum speed of 50 G or more. In the above embodiment, the driving device 11 and the driven device 12 are used. However, the driven device 12 may be omitted and a pair of driving devices 11 may be used.
[0025]
Further, although the driven device 12 can be contacted and separated with respect to the drive device 11, the drive device 11 can be contacted and separated with respect to the driven device 12, and the drive device 11 and the driven device 12 can be contacted and separated from each other. Also good. Furthermore, the elastic elastomers 17 and 17A of the driving wheel 16 and the driven wheel 19 are brought into contact with the lower part of the outer peripheral surface of the lid 13, but the elastic elastomers 17 and 17A of the driving wheel 16 and the driven wheel 19 are attached to the lower part of the outer peripheral surface of the mold 10. You may make it contact.
[0026]
【Example】
Hereinafter, the Example of the manufacturing method of the seamless belt 1 which concerns on this invention, a comparative example, and evaluation are demonstrated sequentially.
Example First, the driving device 11 is driven to rotate a horizontal mold (inner diameter 200 mm, outer diameter 220 mm, length 400 mm) 10 at a maximum speed of 1,000 rpm, and the temperature of the mold 10 is set to 75 ° C. Then, the supply device 5 is moved forward and backward with respect to the axial direction of the mold 10 to supply and apply 101 g of the polymer material solution 4 to the inner peripheral surface of the mold 10, and the polymer is applied to the inner peripheral surface of the mold 10. The material solution 4 was leveled uniformly. The polymer material solution 4 was prepared by dissolving polyamideimide in NMP and blending 5-20 wt% of carbon in this material (solid content 15%). When the polymer material solution 4 was leveled in this way, the rotational speed of the mold 10 was changed from the highest speed to a low speed of 200 rpm, and the mold 10 was heated from the surroundings to 120 ° C. with an external heater and dried for 20 minutes.
[0027]
Next, the mold 10 is rotated again at the maximum speed of 1,000 rpm, and the supply device 5 is moved back and forth with respect to the axial direction of the mold 10 so that the polymer material layer 2 attached to the inner peripheral surface of the mold 10 is removed. 100 g of the same polymer material solution 4 was applied to the skin 3 while being dropped, and the polymer material solution 4 was uniformly leveled on the skin 3. When the polymer material solution 4 is leveled, the rotational speed of the mold 10 is changed from the maximum speed to a low speed of 200 rpm, the mold 10 is heated to 120 ° C. from the surroundings with an external heater and dried for 25 minutes, and the seamless belt 1 is centrifugally molded. did. The centrifugal molding time of the seamless belt 1 was 60 minutes including the supply time and the temperature raising time.
[0028]
Next, the mold 10 is removed from the molding apparatus 9, the mold 10 is set in a dryer at 250 ° C., the residual organic solvent is evaporated and dried, and after 1 hour, the mold 10 is removed from the dryer at room temperature. Cooled down. Then, the seamless belt 1 is demolded using the difference in thermal expansion between the mold 10 and the seamless belt 1, and both ends of the seamless belt 1 are cut to a predetermined length to obtain a seamless belt 1 having a thickness of about 100 μm. Obtained.
[0029]
The same driving device 11 as in the comparative example is driven to rotate the same mold 10 at a low speed of 200 rpm, the temperature of the mold 10 is set to 75 ° C., and the supply device 5 is moved in the axial direction of the mold 10. In contrast, 201 g of the polymer material solution 4 was supplied and applied while hanging down on the inner peripheral surface of the mold 10, and the polymer material solution 4 similar to the example was uniformly leveled on the inner peripheral surface of the mold 10. . When the polymer material solution 4 was leveled, the rotating mold 10 was heated to 120 ° C. from the surroundings with an external heater and dried for 20 minutes, and the seamless belt 1 was centrifugally molded. The centrifugal molding time of the seamless belt 1 in this case was 90 minutes.
[0030]
Next, the mold 10 is removed from the molding apparatus 9, the mold 10 is set in a dryer at 250 ° C., the residual organic solvent is evaporated and dried, and after 1 hour, the mold 10 is removed from the dryer at room temperature. Cooled down. Then, the seamless belt 1 is removed from the mold 10 and the seamless belt 1 by using the difference in thermal expansion, and then both ends of the seamless belt 1 are cut to a predetermined length to obtain a seamless belt having a thickness of about 100 μm. 1 was obtained.
[0031]
When the thickness of the peripheral wall of the seamless belt 1 obtained in the evaluation examples was measured every 10 mm in length and width, the average value was 100.1 μm, and the variation (maximum-minimum) could be suppressed within 6 μm. On the other hand, when the thickness of the peripheral wall of the seamless belt 1 obtained in the comparative example was measured, a variation of 11 μm was confirmed. Furthermore, unlike the examples, fine undulations were observed on the inner surface (surface) of the seamless belt 1.
[0032]
【The invention's effect】
As described above, according to the present invention, the drying time of the seamless belt can be shortened, and the smoothness of the inner surface of the seamless belt can be improved.
Specifically, since the polymer material solution is supplied to the mold a plurality of times, the amount of charge at one time can be reduced, which accelerates the volatilization of the organic solvent and promotes the formation of the epidermis. Improvements can be made. In addition, since the thickness variation of the first time can be corrected after the second time by supplying the polymer material solution multiple times, the difference in the drying speed between the inner and outer surfaces of the seamless belt is reduced, and the inner surface of the seamless belt is smoothed. And the accuracy of the seamless belt can be improved.
Further, since the polymer material solution is supplied not to the mold rotating at a low speed but to the mold rotating at the maximum speed, quick leveling is facilitated. In addition, since the organic solvent is released from the centrifugal force by discharging the mold rotating at the maximum speed at a low speed when removing the organic solvent or drying, the drying time can be shortened and the end of the seamless belt It is possible to effectively prevent the thickness of the film from becoming uneven. In addition, a high-viscosity polymer material solution is not applied to the mold at high pressure, but a high-viscosity polymer material solution is applied to the mold. Thickness does not become uneven.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective explanatory view showing an embodiment of a seamless belt according to the present invention.
FIG. 2 is an enlarged explanatory view of a part II in FIG. 1;
FIG. 3 is an explanatory view showing an embodiment of a method for producing a seamless belt according to the present invention.
FIG. 4 is a front view showing a molding apparatus in an embodiment of a seamless belt manufacturing method according to the present invention.
FIG. 5 is a side view of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seamless belt 2 Polymer material layer 3 Skin 4 Polymer material solution 5 Supply apparatus 9 Molding apparatus 10 Mold

Claims (1)

高分子材料と有機溶剤とからなる高粘度の高分子材料溶液を所定の温度の円筒形の金型内に供給し、この金型を回転させ、周囲から加熱することにより、高分子材料溶液中の有機溶剤を除去して可撓性のシームレスベルトを遠心成形し、その後、金型からシームレスベルトを脱型してその両端部を除去するシームレスベルトの製造方法であって、A high-viscosity polymer material solution composed of a polymer material and an organic solvent is supplied into a cylindrical mold at a predetermined temperature, and this mold is rotated and heated from the surroundings to obtain a solution in the polymer material solution. A seamless belt is produced by centrifugally forming a flexible seamless belt by removing the organic solvent, and then removing the seamless belt from the mold and removing both ends thereof.
同一の高分子材料溶液の供給と有機溶剤の除去とを複数回繰り返すとともに、有機溶剤の除去時における金型の回転速度を高分子材料溶液供給時の最高速度よりも低速にすることにより、シームレスベルトを実質的に同質の高分子材料により積層形成し、複数の高分子材料間に表皮を介在させることを特徴とするシームレスベルトの製造方法。  The same polymer material solution supply and organic solvent removal are repeated multiple times, and the mold rotation speed when removing the organic solvent is set lower than the maximum speed when supplying the polymer material solution. A method for producing a seamless belt, comprising: forming a belt by laminating substantially the same polymer material; and interposing a skin between the plurality of polymer materials.
JP27718599A 1999-09-29 1999-09-29 Seamless belt manufacturing method Expired - Fee Related JP4259695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27718599A JP4259695B2 (en) 1999-09-29 1999-09-29 Seamless belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27718599A JP4259695B2 (en) 1999-09-29 1999-09-29 Seamless belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2001099248A JP2001099248A (en) 2001-04-10
JP4259695B2 true JP4259695B2 (en) 2009-04-30

Family

ID=17580004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27718599A Expired - Fee Related JP4259695B2 (en) 1999-09-29 1999-09-29 Seamless belt manufacturing method

Country Status (1)

Country Link
JP (1) JP4259695B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192659A (en) 2008-02-13 2009-08-27 Oki Data Corp Endless belt, transfer unit, and image forming apparatus
KR101481857B1 (en) * 2011-09-30 2015-01-13 코오롱인더스트리 주식회사 Seamless belt
JP6075620B2 (en) * 2012-12-28 2017-02-08 株式会社リコー Image forming apparatus

Also Published As

Publication number Publication date
JP2001099248A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP4820161B2 (en) Manufacturing method of blade for electrophotographic apparatus and blade for electrophotographic apparatus
JP4259695B2 (en) Seamless belt manufacturing method
JP3990467B2 (en) Tubular product manufacturing method and tubular product
CN115135483A (en) Method for producing three-dimensional shaped objects by applying material layer by layer
US20020084547A1 (en) Method of forming a seamless belt
CN1456427A (en) Centrifugal shaping die and manufacturing method thereof, centrifugar shapes and blades manufactured thereby
JP3922845B2 (en) Seamless belt manufacturing method
JP3558929B2 (en) Method for producing semiconductive seamless belt
JP2005024829A (en) Intermediate transfer member and method of producing it
JP4290078B2 (en) Centrifugal molding machine, centrifugal molding method, and molding system
JP2008250164A (en) Method for manufacturing rubber roller
JP3891300B2 (en) Tubular product manufacturing method and tubular product
JP4243910B2 (en) Manufacturing method of centrifugal mold
JP3922840B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP2005074914A (en) Device for manufacturing tubular material, and tubular material
US20050143240A1 (en) Polymer sleeve member for an image cylinder or a blanket cylinder
JP5012620B2 (en) Method for producing rubber roll having coating layer
JP2000117850A (en) Production of seamless belt
FR2644644A1 (en) METHOD FOR COATING THE INDUCTURE OF A ROTARY ELECTRICAL APPARATUS
US20050136206A1 (en) Multi-layered plastic sleeve for a blanket cylinder and a method for producing the multi-layered plastic sleeve
JP3922839B2 (en) Seamless belt molding apparatus and seamless belt manufacturing method using the same
JP3011204B1 (en) Manufacturing method for tubular objects
JP2002283367A (en) Method for manufacturing silicone rubber sheet
JP2001158023A (en) Coating mold for centrifugal molding, method for centrifugal molding, and method for manufacturing endless belt
JP4667448B2 (en) Conductive rubber roller and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees