JP4798853B2 - Seamless belt and manufacturing method thereof - Google Patents
Seamless belt and manufacturing method thereof Download PDFInfo
- Publication number
- JP4798853B2 JP4798853B2 JP2001027665A JP2001027665A JP4798853B2 JP 4798853 B2 JP4798853 B2 JP 4798853B2 JP 2001027665 A JP2001027665 A JP 2001027665A JP 2001027665 A JP2001027665 A JP 2001027665A JP 4798853 B2 JP4798853 B2 JP 4798853B2
- Authority
- JP
- Japan
- Prior art keywords
- belt
- support
- seamless belt
- polyimide precursor
- seamless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Fixing For Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Moulding By Coating Moulds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【0001】
【発明の属する技術】
本発明は、電子写真方式の画像形成装置のシームレスベルト及びその製造方法に関する。より詳しくは、電子写真方式の複写機、プリンター、ファクシミリ等に使われる定着搬送ベルト、転写定着用ベルト及びその製造方法に関する。
【0002】
【従来の技術】
従来より、電子写真方式の画像形成装置用の回転部材としてロールやドラムが用いられてきた。
【0003】
近年、装置の小型化等を解決するために、これらの部材に代わってプラスチック製のベルトが実用に供されている。このような用途に用いられるベルトとして、ポリカーボネートやエチレンテトラフルオロエチレン共重合体等の熱可塑性樹脂からなるシームレスベルトが知られている(特開平10−10880号公報、特開2000−25097号公報等)。
【0004】
しかしながら、前記熱可塑性樹脂は耐熱性及び耐久性が低く、またダイ押出等による方法により製造されるため、厚み精度や表面精度等の寸法精度が低く前記電子写真方式の画像形成装置に用いられるベルトとしては、実用として供されるには満足されるものではなかった。
【0005】
これに対し、熱硬化性ポリイミド樹脂からなる画像形成装置用シームレスベルトが提案されている。これらのシームレスベルトの製造方法としては、ポリイミド前駆体溶液を芯体に塗布した後、溶媒の除去及びイミド転化反応を行う方法、ポリイミド前駆体溶液を円筒状金型の内面に塗布して被膜を形成した後、このまま溶媒の除去及びイミド転化まで断続的に行う方法、並びにポリイミド前駆体溶液を円筒状金型の内面に塗布して被膜を形成した後、被膜がそれ自体支持できるまで一部溶媒の除去及び一部イミド転化を行った後前記金型から剥離し、管状金型に差し替えて溶媒の除去及びイミド転化反応の完結を行う方法等が挙げられる。
【0006】
【発明が解決しようとする課題】
しかしながら、これらの方法では溶媒の完全除去及びイミド転化反応の完結の際に、ポリイミド前駆体溶液の溶媒や閉環水がベルトとベルトを支持する金型との間にこもってしまい、これがベルトの膨らみやムラの原因になるという問題点がある。一方、これを解決する手段として、管状金型の周囲に多数の微細な貫通孔を設けるという提案がなされている(特開平10−258434号公報)。しかしながら、このような微細な貫通孔は、シームレスベルトの内表面や膜厚等の特性バラツキの原因となる。また、管状金型自体を高温炉内に長時間保持するため、貫通孔のない管状金型に比べ金型自体の強度が不足することにより金型の曲がり、ひいてはシームレスベルトの内径及び外径差の発生等の寸法不良を生じさせるだけでなく、シームレスベルト内周面の精度低下の原因となる。
【0007】
一方、このようなシームレスベルトは、その内側に配置した押圧部材でそのシームレスベルトをベルト外側に対向して配置した加熱駆動ロールに押圧して、前記ベルトの外面に記録材を通過させるニップ部を形成するとともに、前記押圧部材の摺動面に摺動材を配置しつつ、前記ベルトの内面との間に潤滑剤を介在させて、前記ベルトを走行可能にしている定着装置に用いられている。この定着装置は、ベルト外側に配置されている加熱駆動ロールに押圧されながら駆動するため、ベルトの外表面の摩擦係数よりも常に内表面の摩擦係数が低い状態でなければならず、このため潤滑剤を介在させている。しかしながら、前記シームレスベルト内周面の表面精度が低いと、この潤滑剤供給手段からの潤滑剤の供給が安定せず、当該ベルトの搬送性が不安定となる。
【0008】
そこで、本発明の目的は、寸法不良が少なく、内周面の表面精度が良好でムラがないシームレスベルト及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
前記目的は、下記の如き本発明により達成できる。すなわち、本発明のシームレスベルトは、その内側に配置した押圧部材でその外側に対向して配置した加熱駆動ロールに押圧して、前記シームレスベルトの外面に記録材を通過させるニップ部を形成するとともに、前記押圧部材の摺動面に摺動材を配置しつつ、前記摺動材と前記シームレスベルトの内面との間に潤滑剤を介在させて走行可能なシームレスベルトであって、その内面の表面粗さは、Rmaxが0.18〜8.00μmかつRzが0.10〜3.50μmかつRaが0.02〜0.50μmであることを特徴とするものである。
【0010】
本発明のシームレスベルトは、画像形成装置内の定着装置等に用いるものであり、例えば、図1に示すような態様で使用される。
【0011】
図1において、シームレスベルト1の内部には押圧部材2が配置され、その外部には押圧部材2と対向させて加熱駆動ロール3が配置されている。加熱駆動ロール3は、ハロゲンランプ等の加熱源31が内蔵されている。押圧部材2によりシームレスベルト1を加熱駆動ロール3に押圧して、シームレスベルト1の外部にニップ部4を形成している。ニップ部4は、加熱駆動ロール3の回転駆動に伴ってシームレスベルト1が走行することにより記録材5を通過させる部位である。感熱インク51の仮着した記録材5は、通過の際の加熱及び押圧により画像が定着される。シームレスベルト1が安定に走行するためには、ベルト内表面の摩擦係数を下げる必要がある。このために、押圧部材2の摺動面には摺動材6を配置し、摺動材6とシームレスベルト1の内面との間に潤滑剤を介在させている。
【0012】
ここで、摺動材とは、シームレスベルト1の内面との摩擦係数を低減させる材料をいい、例えば、フッ素樹脂シート等や、ガラス繊維シート等にフッ素系樹脂を被覆したもの等が挙げられる。
【0013】
潤滑剤としては、シリコーンオイルや、アミノ変性シリコーンオイル、カルボキシ変性シリコーンオイル、スルホン酸変性シリコーンオイルなどの変性シリコーンオイル等が挙げられる。前記潤滑剤は、従来公知の方法、装置等を用いて、手動又は自動で供給することができる。
【0014】
前記潤滑剤が安定に供給されてシームレスベルトの搬送性を良好に保つためには、シームレスベルトの内面の表面粗さ(Ra)は0.02〜0.5μmであり、好ましくは0.03〜0.4μmであり、より好ましくは0.04〜0.2μmである。また、前記ベルトの表面粗さ(Rz)は、0.1〜3.5μmであり、好ましくは0.2〜3.0μmである。また、前記ベルトの表面粗さ(Rmax)は、0.18〜8.00μmであり、好ましくは0.2〜7.00μmである。
【0015】
前記表面粗さ(Ra、Rz及びRmax)は、JIS B 0601に規定されており、実施例に示す方法により測定した値である。
【0016】
本発明のシームレスベルトの製造方法は、前記本発明のシームレスベルトの製造に好適に用いられる方法である。すなわち、当該製造方法は、ポリイミド前駆体溶液を金型に塗布し、加熱乾燥により自己支持できるまで硬化させ、金型から剥離させてポリイミド前駆体ベルトを得る工程、前記ポリイミド前駆体ベルトの内径よりも小さい外径を有する支持体を前記ポリイミド前駆体ベルト内部に挿入する工程、前記ポリイミド前駆体ベルトを支持体ごと加熱してイミド転化反応の完結を行う工程、及び前記支持体よりシームレスベルトを取り出す工程を含み、前記支持体の表面粗さは、Rmaxが1.4〜50.0μmかつRzが1.0〜40.0μmかつRaが0.1〜5.0μmであることを特徴とするものである。
【0017】
前記支持体の表面粗さ(Ra)は、加熱時に蒸発する残存溶媒や閉環水が支持体とベルトの間にこもらず、かつ支持体表面の凹凸がシームレスベルト内面又は外面の表面性に影響を与えないためには、0.1〜5.0μmであり、好ましくは0.3〜4.0μmであり、より好ましくは0.5〜3.0μmである。同様に、前記支持体の表面粗さ(Rz)は、1.0〜40.0μmであり、好ましくは2.0〜35.0μmである。また同様に、前記支持体の表面粗さ(Rmax)は、1.4〜50.0μmであり、好ましくは3.0〜45.0μmである。
【0018】
前記表面粗さ(Ra、Rz及びRmax)は、JIS B 0601に規定されており、実施例に示す方法により測定した値である。
【0019】
本発明の製造方法においては、前記支持体の熱線膨張係数が前記ポリイミド前駆体ベルトの熱線膨張係数より大きいものであることが好ましい。この場合、加熱時に支持体がシームレスベルトを内側から圧迫しながらヒートセットするため、さらに良好な寸法精度及び表面特性を有するシームレスベルトが得られる。逆に、熱線膨張係数が小さいと、加熱時に支持体とポリイミド前駆体ベルトとの間の隙間が広がり、ベルト内面より残存溶媒や閉環水が効率よく蒸発するが、シームレスベルトのヒートセットを行うことはできない。
【0020】
ポリイミド樹脂の熱線膨張係数は、残存溶媒量、ベルトを構成するポリイミド組成により異なるが、一般的に1×10-5〜3×10-5cm/cm/℃である。したがって、支持体の熱線膨張係数は、通常、前記ポリイミド樹脂の熱線膨張係数より大きいことが好ましく、より好ましくは2×10-5cm/cm/℃以上、さらにより好ましくは3×10-5cm/cm/℃以上である。
【0021】
熱線膨張係数は、JIS K 7197に準じて測定した値である。
【0022】
前記要件を満たす支持体の素材としては、銅、アルミニウム、マグネシウム、亜鉛、マンガン等の金属及びこれらの合金並びにガラス、セラミック等が挙げられる。
【0023】
[作用効果]
本発明のシームレスベルトは、寸法不良が少なく、内周面の表面精度が良好でムラがなく、画像形成装置における定着用ベルト、転写定着用ベルト等のシームレスベルトとして好適に用いることができる。また、本発明の製造方法によると、そのようなシームレスベルトを効率良く製造することができる。
【0024】
【発明の実施の形態】
本発明の実施の形態を以下に詳細に説明する。
【0025】
本発明のシームレスベルトは、ポリイミド前駆体溶液を金型に塗布し、加熱乾燥により自己支持できるまで硬化させ、前記金型から剥離させてポリイミド前駆体ベルトを得る工程、前記ポリイミド前駆体ベルトの内径よりも小さい外径を有する支持体を前記ポリイミド前駆体ベルト内部に挿入する工程、前記ポリイミド前駆体ベルトを支持体ごと加熱してイミド転化反応の完結を行う工程、及び前記支持体よりシームレスベルトを取り出す工程を含む方法により製造される。
【0026】
本発明に用いるポリイミド前駆体溶液は、溶媒中で酸二無水物成分とジアミン成分を反応させることにより得られる。酸二無水物成分としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3 ,3 ’,4 ,4 ’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物等が挙げられる。
【0027】
一方、ジアミン成分としては、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフォン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジメチル−4,4’−ビフェニルジアミン、ベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフォン等が挙げられる。
【0028】
これらの酸二無水物とジアミンを重合反応させる際の溶媒としては適宜なものを用いうるが、溶解性等の点から有機極性溶媒が好ましく用いられ、N,N−ジアルキルアミド類が好ましい。具体的にはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等が挙げられ、これらを単独又は複数併用することもできる。
【0029】
前記酸二無水物成分とジアミン成分を有機極性溶媒中で重合反応させることによりポリイミド前駆体溶液が得られる。その際のモノマー濃度(溶媒中における酸二無水物成分とジアミン成分)は、種々の条件に応じて設定されるが、5〜30重量%が好ましい。また、反応温度は80℃以下に設定することが好ましく、反応時間は0.5〜10時間が好ましい。
【0030】
重合反応の進行に従い溶液粘度が増大するため、粘度を調整することができる。また、モノマー濃度による粘度の調整も可能である。具体的には、粘度としては10〜10000ポイズが好ましく、50〜8000ポイズであるとより好ましい。
【0031】
本発明におけるポリイミド前駆体溶液には、熱伝導性、導電性、帯電防止性、半導電性、高摺動性、高強度、高弾性等の種々の目的やその用途により適宜充填剤を添加してもよい。例えば、窒化アルミニウム、窒化ホウ素、アルミナ、炭化珪素、室化珪素、シリカ等の熱伝導性無機粉末や、カーボンブラック、アルミニウム、ニッケル、酸化錫、チタン酸カリウム等の導電性乃至半導電性粉末、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−へキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)のフッ素樹脂等が挙げられる。充填剤の充填量は、本発明の範囲内でその目的に応じ決定することができる。
【0032】
前記ポリイミド前駆体溶液を金型に塗布する。用いる金型としては従来からシームレスベルトの製造に用いられているものであればどのようなものでも差し支えなく、通常、ベルトの形状に応じた円筒状金型を用い、その内面に塗布する。円筒状金型に均一に塗布する方法は、公知の方法を適用することが可能で、例えば遠心成形する方法、ディスペンサーにより塗布する方法、スクレーパを用いる方法、弾丸状走行体を用いる方法等が挙げられる。金型の材質としては、その耐熱性の観点から、金属、ガラス、セラミック等の各種のものが挙げられる。
【0033】
このようにして円筒状金型上に均一に塗布したポリイミド前駆体溶液を、加熱乾燥することにより自己支持できるまで硬化させた後、該金型からポリイミド前駆体ベルトを剥離して得る。前記加熱温度は、適用した溶媒を蒸発させることができる温度であれば特に制限はなく適宜に設定できる。ポリイミド前駆体溶液中の溶媒が急激に蒸発するための微小ボイドの発生を防止するためには230℃以下が好ましく、加熱時間の短縮という観点から80℃以上が好ましい。加熱時間は加熱温度に応じて適宜設定され、通常、10〜60分程度である。
【0034】
前記円筒状金型からポリイミド前駆体ベルトを剥離する方法としては、例えば金型端部の周壁に予め設けられた微小貫通孔に空気を圧送する方法等が挙げられる。なお、円筒状金型周面に予めシリコーン樹脂等による離型処理を施しておけば、ポリイミド前駆体ベルトの剥離作業性が向上するため好ましい。
【0035】
本発明では、以上のようにして得られたポリイミド前駆体ベルトの内部に、その内径よりも小さい外径を有する支持体を挿入し、次いでポリイミド前駆体ベルトを支持体ごと加熱して残存溶媒の除去、閉環水の除去、及びイミド転化反応の完結を行う。
【0036】
この時の加熱温度は、残存溶媒や閉環水の除去という観点から、前記円筒状金型上での加熱温度以上が好ましく、ポリイミド前駆体ベルトや支持体の耐熱性及び熱線膨張率という観点から400℃以下が好ましい。通常、この時の加熱時間は10〜60分である。
【0037】
また、当然のことながらこの時目的に応じシームレスベルトとして好ましい内径及び外径差となるような支持体となるように、適宜支持体の寸法を設定する必要がある。
【0038】
以上のようにして得られたベルトを、支持体より取り出す。通常、室温で放冷して支持体が熱収縮した後に取り出せばよい。
【0039】
さらに、本発明では、支持体上にポリイミド前駆体ベルトを支持しているとき、或いは加熱により得られたシームレスベルトを支持体上に支持しているときに、離型性、弾性、光導電性等のさらなる機能を付与するために、PTFE、FEP、PFA等のフッ素樹脂、シリコーンゴム又はフッ素ゴム等をスプレーコート、ディッピング等の方法を用いてベルトの外周面に更に積層しても構わない。また、電磁誘導発熱方式の発熱ベルトとして用いる場合は、ニッケル、鉄、コバルト、銅、アルミ又はこれらの合金等からなる電磁誘導発熱層を、メッキ、イオンプレーティング等の方法を用いて設けてもよい。
【0040】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0041】
[実施例1]
N−メチル−2−ピロリドン732g中に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物147gとp−フェニレンジアミン54gを溶解(固形分濃度20重量%)し、窒素雰囲気中において室温で攪拌しながら反応させて、3000ポイズのポリイミド前駆体溶液を得た。内径40mmの円筒状金型の内面に、前記ポリイミド前駆体溶液を塗布後、弾丸状走行体を自重により落下させた後、塗膜中の気泡を除く脱法を行い、均一な塗膜面を得た。次いで該金型を室温から180℃で30分間加熱して、それ自体ベルトとして保持できるまで硬化(一部溶媒の除去と一部イミド転化)させ、ポリイミド前駆体ベルトを得た。前記ベルトを該金型より離型した後、表面粗さRaが2.5μm、Rzが20.0μm及びRmaxが27.0μm、熱線膨張係数が2.6×10-5cm/cm/℃である金属製円筒状支持体に差し替え、この支持体を2℃/分の昇温速度で370℃まで昇温して残存溶媒及び閉環水の除去、イミド転化反応の完結を行った後冷却し、厚み60μmのポリイミドからなるシームレスベルトを得た。この金属性支持体上のシームレスベルトの外面にプライマー処理を行った後、離型性樹脂としてPFAの水分散体をスプレーコートし、次いで支持体に差したまま370℃まで加熱したあと冷却し、離型性樹脂層が10μmのシームレスベルト(総厚71μm)を得た。
【0042】
このベルトの内面の表面粗さは、Raが0.2μm、Rzが2.3μm及びRmaxが3.7μmであり、溶媒のこもりによる膨らみや外観不良は見られなかった。このベルトを実際の定着装置にかけて試験を行ったところ、ベルトの搬送性が良好であり、良好な定着画像が得られ(トナーの定着低下率4%)、3週間後も問題なく機能した。
【0043】
[実施例2]
実施例1において金属製円筒状支持体の表面粗さをRaが3.0μm、Rzが30.0μm及びRmaxが40.0μmにした以外は、実施例1と同様にしてポリイミド層厚さ60μm、離型性樹脂層厚さ10μmの定着用シームレスベルト(総厚71μm)を得た。
【0044】
このベルトの内表面の表面粗さは、Raが0.3μm、Rzが3.0μm及びRmaxが6.0μmであり、溶媒のこもりによる膨らみや外観不良は見られなかった。このベルトを実際の定着装置にかけて試験を行ったところ、ベルトの搬送性が良好であり、良好な定着画像が得られ(トナーの定着低下率7%)、3週間後も問題なく機能した。
【0045】
[比較例1]
実施例1において金属製円筒状支持体の表面粗さをRaが7.0μm、Rzが42.0μm及びRmaxが60.0μmにした以外は、実施例1と同様にしてポリイミド層厚さ60μm、離型性樹脂層厚さ12μmの定着用シームレスベルト(総厚73μm)を得た。
【0046】
このベルトの内表面の表面粗さは、Raが0.6μm、Rzが4.0μm及びRmaxが9.0μmであったが、このベルトを実際の定着装置にかけたところ、定着性が悪い(トナーの定着低下率45%)ために、定着画像が不鮮明であった。
【0047】
[比較例2]
実施例1において金属製円筒状支持体の表面粗さをRaが0.05μm、Rzが0.80μm及びRmaxが1.00μmにした以外は、実施例1と同様にしてポリイミド層厚さ60μm、離型性樹脂層厚さ12μmの定着用シームレスベルト(総厚73μm)を得たが、ベルト内面と前記支持体との間に溶媒等がこもることにより膨れが発生した。この膨れ部の外径差は、1%となった。また、ベルト内面は、Raが0.01μm、Rzが0.07μm及びRmaxが0.15μmであった。得られたシームレスベルトを定着装置にかけても初期より搬送性が悪く、実用に耐えられるものではなかった。
【0048】
[比較例3]
実施例1において金属製円筒状支持体の表面粗さをRaが12.0μm、Rzが73.0μm及びRmaxが120.0μmにした以外は、実施例1と同様にしてポリイミド層厚さ60μm、離型性樹脂層厚さ12μmの定着用シームレスベルト(総厚73μm)を得たが、高さ15μm、直径1mmの突起が発生した。また、ベルト内面は、Raが1.2μm、Rzが7.3μm及びRmaxが17.0μmであった。得られたシームレスベルトを定着装置にかけても初期より搬送性が悪く、突起部で定着画像に白抜けが発生した。
【0049】
(評価)
−表面粗さ(Ra、Rz、Rmax)−
JIS B 0601に準じ、ベルト内面の任意の5点よりサンプルを採取し、その周方向に関して、表面粗さ計(サーフコム554A(東京精密社製))にてカットオフ0.32mm、測定長さ2.5mm、駆動速度0.12mm/sec、触針荷重70mgにて測定を行った。
【0050】
金属製円筒状支持体の表面粗さは、カットオフ4mm、測定長さ20mm、駆動速度1.5mm/sec、触針荷重70mgにて測定を行った。
【0051】
−トナーの定着低下率−
斑点模様を10枚印刷したときのトナーの溶着色度に対して、擦り紙で擦った後の色度の低下度をパーセントで示した。
【図面の簡単な説明】
【図1】ベルト定着法による画像定着装置の要部模式図
【符号の説明】
1 シームレスベルト
2 押圧部材
3 加熱駆動ロール
4 ニップ部
5 記録材
6 摺動材[0001]
[Technology to which the invention belongs]
The present invention relates to a seamless belt of an electrophotographic image forming apparatus and a method for manufacturing the same. More specifically, the present invention relates to a fixing conveyance belt, a transfer fixing belt used in an electrophotographic copying machine, a printer, a facsimile, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, rolls and drums have been used as rotating members for electrophotographic image forming apparatuses.
[0003]
In recent years, plastic belts have been put into practical use in place of these members in order to solve the downsizing of the apparatus. As belts used for such applications, seamless belts made of thermoplastic resins such as polycarbonate and ethylenetetrafluoroethylene copolymer are known (Japanese Patent Laid-Open Nos. 10-10880 and 2000-25097). ).
[0004]
However, since the thermoplastic resin has low heat resistance and durability, and is manufactured by a method such as die extrusion, the belt used in the electrophotographic image forming apparatus has low dimensional accuracy such as thickness accuracy and surface accuracy. As such, it was not satisfactory for being put to practical use.
[0005]
On the other hand, a seamless belt for an image forming apparatus made of a thermosetting polyimide resin has been proposed. As a method for producing these seamless belts, after applying a polyimide precursor solution to a core, removing the solvent and performing an imide conversion reaction, coating the polyimide precursor solution on the inner surface of a cylindrical mold After the formation, a method of intermittently removing the solvent and imide conversion as it is, and after forming the coating by applying the polyimide precursor solution to the inner surface of the cylindrical mold, a part of the solvent until the coating can support itself And removal of the solvent and partial imide conversion, and then peeling from the mold and replacing with a tubular mold to remove the solvent and complete the imide conversion reaction.
[0006]
[Problems to be solved by the invention]
However, in these methods, when the solvent is completely removed and the imide conversion reaction is completed, the solvent of the polyimide precursor solution and the ring-closing water are trapped between the belt and the mold supporting the belt, which causes the swelling of the belt. There is a problem of causing unevenness. On the other hand, as means for solving this, a proposal has been made to provide a large number of fine through holes around a tubular mold (Japanese Patent Laid-Open No. 10-258434). However, such fine through-holes cause variations in characteristics such as the inner surface and film thickness of the seamless belt. In addition, since the tubular mold itself is held in the high-temperature furnace for a long time, the strength of the mold itself is insufficient compared to the tubular mold without a through-hole, resulting in bending of the mold, and thus the difference in inner diameter and outer diameter of the seamless belt. In addition to causing dimensional defects such as the occurrence of the above, it causes a decrease in accuracy of the inner peripheral surface of the seamless belt.
[0007]
On the other hand, such a seamless belt has a nip portion that presses the seamless belt against a heating drive roll disposed opposite to the belt outer side with a pressing member disposed on the inner side thereof, and allows a recording material to pass through the outer surface of the belt. And a fixing device in which a sliding material is disposed on the sliding surface of the pressing member, and a lubricant is interposed between the pressing member and the inner surface of the belt so that the belt can run. . Since this fixing device is driven while being pressed by a heating drive roll arranged outside the belt, the friction coefficient of the inner surface must always be lower than the friction coefficient of the outer surface of the belt. An agent is interposed. However, if the surface accuracy of the inner surface of the seamless belt is low, the supply of lubricant from the lubricant supply means is not stable, and the transportability of the belt becomes unstable.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a seamless belt which has few dimensional defects, has a good surface accuracy on the inner peripheral surface and has no unevenness, and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The object can be achieved by the present invention as described below. That is, the seamless belt of the present invention forms a nip portion that allows the recording material to pass through the outer surface of the seamless belt by pressing the heating drive roll disposed facing the outer side with the pressing member disposed on the inner side. A seamless belt capable of running with a lubricant interposed between the sliding material and the inner surface of the seamless belt while disposing a sliding material on the sliding surface of the pressing member, the inner surface of the seamless belt The roughness is characterized in that Rmax is 0.18 to 8.00 μm, Rz is 0.10 to 3.50 μm, and Ra is 0.02 to 0.50 μm.
[0010]
The seamless belt of the present invention is used for a fixing device or the like in an image forming apparatus, and is used, for example, in a mode as shown in FIG.
[0011]
In FIG. 1, a
[0012]
Here, the sliding material refers to a material that reduces the coefficient of friction with the inner surface of the
[0013]
Examples of the lubricant include silicone oil, modified silicone oil such as amino-modified silicone oil, carboxy-modified silicone oil, and sulfonic acid-modified silicone oil. The lubricant can be supplied manually or automatically using a conventionally known method, apparatus, or the like.
[0014]
In order to stably supply the lubricant and keep the transportability of the seamless belt good, the surface roughness (Ra) of the inner surface of the seamless belt is 0.02 to 0.5 μm, preferably 0.03 to 0.03. 0.4 μm, more preferably 0.04 to 0.2 μm. The surface roughness (Rz) of the belt is 0.1 to 3.5 μm, preferably 0.2 to 3.0 μm. The surface roughness (Rmax) of the belt is 0.18 to 8.00 [mu] m, preferably 0.2 to 7.00 [mu] m.
[0015]
The surface roughness (Ra, Rz and Rmax) is defined in JIS B 0601, and is a value measured by the method shown in the examples.
[0016]
The method for producing a seamless belt of the present invention is a method suitably used for producing the seamless belt of the present invention. That is, the manufacturing method includes a step of applying a polyimide precursor solution to a mold, curing it by heating and drying until it can be self-supported, and peeling it from the mold to obtain a polyimide precursor belt, from the inner diameter of the polyimide precursor belt A step of inserting a support having a smaller outer diameter into the polyimide precursor belt, a step of heating the polyimide precursor belt together with the support to complete the imide conversion reaction, and taking out the seamless belt from the support The surface roughness of the support is 1.4 to 50.0 μm, Rz is 1.0 to 40.0 μm, and Ra is 0.1 to 5.0 μm. It is.
[0017]
The surface roughness (Ra) of the support is such that residual solvent or ring-closing water that evaporates during heating does not stay between the support and the belt, and the unevenness of the support surface affects the surface properties of the inner surface or outer surface of the seamless belt. In order not to give, it is 0.1-5.0 micrometers, Preferably it is 0.3-4.0 micrometers, More preferably, it is 0.5-3.0 micrometers. Similarly, the surface roughness (Rz) of the support is 1.0 to 40.0 μm, preferably 2.0 to 35.0 μm. Similarly, the surface roughness (Rmax) of the support is 1.4 to 50.0 μm, preferably 3.0 to 45.0 μm.
[0018]
The surface roughness (Ra, Rz and Rmax) is defined in JIS B 0601, and is a value measured by the method shown in the examples.
[0019]
In the manufacturing method of this invention, it is preferable that the thermal expansion coefficient of the said support body is larger than the thermal linear expansion coefficient of the said polyimide precursor belt. In this case, since the support is heat-set while pressing the seamless belt from the inside during heating, a seamless belt having even better dimensional accuracy and surface characteristics can be obtained. Conversely, if the coefficient of thermal expansion is small, the gap between the support and the polyimide precursor belt will widen during heating, and the residual solvent and ring-closing water will efficiently evaporate from the inner surface of the belt. I can't.
[0020]
The thermal expansion coefficient of the polyimide resin is generally 1 × 10 −5 to 3 × 10 −5 cm / cm / ° C., although it varies depending on the amount of residual solvent and the polyimide composition constituting the belt. Therefore, the thermal linear expansion coefficient of the support is usually preferably larger than the thermal linear expansion coefficient of the polyimide resin, more preferably 2 × 10 −5 cm / cm / ° C. or more, and even more preferably 3 × 10 −5 cm. / Cm / ° C. or higher.
[0021]
The thermal expansion coefficient is a value measured according to JIS K 7197.
[0022]
Examples of the material for the support that satisfies the above requirements include metals such as copper, aluminum, magnesium, zinc, and manganese, alloys thereof, glass, and ceramics.
[0023]
[Function and effect]
The seamless belt of the present invention has few dimensional defects, good surface accuracy on the inner peripheral surface and no unevenness, and can be suitably used as a seamless belt such as a fixing belt and a transfer fixing belt in an image forming apparatus. Moreover, according to the manufacturing method of this invention, such a seamless belt can be manufactured efficiently.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below.
[0025]
The seamless belt of the present invention is a process in which a polyimide precursor solution is applied to a mold, cured until it can be self-supported by heat drying, and peeled off from the mold to obtain a polyimide precursor belt, the inner diameter of the polyimide precursor belt A step of inserting a support having a smaller outer diameter into the polyimide precursor belt, a step of heating the polyimide precursor belt together with the support to complete the imide conversion reaction, and a seamless belt from the support. It is manufactured by a method including a step of taking out.
[0026]
The polyimide precursor solution used for this invention is obtained by making an acid dianhydride component and a diamine component react in a solvent. Examples of the acid dianhydride component include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 4,5,8-naphthalenetetracarboxylic dianhydride and the like.
[0027]
On the other hand, as the diamine component, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3, 3'-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3'-dimethyl-4,4'-biphenyldiamine, benzidine, 3,3'-dimethylbenzidine, 3 , 3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone and the like.
[0028]
An appropriate solvent can be used as the solvent for the polymerization reaction of these acid dianhydrides and diamine, but organic polar solvents are preferably used from the viewpoint of solubility and the like, and N, N-dialkylamides are preferable. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, hexamethylphosphotriamide, N -Methyl-2-pyrrolidone, pyridine, dimethyl sulfoxide, tetramethylene sulfone, dimethyl tetramethylene sulfone and the like can be mentioned, and these can be used alone or in combination.
[0029]
A polyimide precursor solution is obtained by polymerizing the acid dianhydride component and the diamine component in an organic polar solvent. The monomer concentration (acid dianhydride component and diamine component in the solvent) at that time is set according to various conditions, but is preferably 5 to 30% by weight. The reaction temperature is preferably set to 80 ° C. or less, and the reaction time is preferably 0.5 to 10 hours.
[0030]
Since the solution viscosity increases as the polymerization reaction proceeds, the viscosity can be adjusted. Also, the viscosity can be adjusted by the monomer concentration. Specifically, the viscosity is preferably 10 to 10000 poise, and more preferably 50 to 8000 poise.
[0031]
In the polyimide precursor solution in the present invention, a filler is appropriately added depending on various purposes such as thermal conductivity, conductivity, antistatic property, semiconductivity, high slidability, high strength, and high elasticity and its use. May be. For example, heat conductive inorganic powder such as aluminum nitride, boron nitride, alumina, silicon carbide, silicon carbide, silica, etc., conductive or semiconductive powder such as carbon black, aluminum, nickel, tin oxide, potassium titanate, Polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) fluororesin, and the like. The filling amount of the filler can be determined according to the purpose within the scope of the present invention.
[0032]
The polyimide precursor solution is applied to a mold. Any mold may be used as long as it has been conventionally used in the production of seamless belts. Usually, a cylindrical mold corresponding to the shape of the belt is used and applied to the inner surface thereof. As a method of uniformly applying to a cylindrical mold, a known method can be applied, and examples thereof include a method of centrifugal molding, a method of applying by a dispenser, a method of using a scraper, and a method of using a bullet-like traveling body. It is done. Examples of the material of the mold include various materials such as metal, glass, and ceramic from the viewpoint of heat resistance.
[0033]
The polyimide precursor solution uniformly applied on the cylindrical mold in this way is cured by heating until it can be self-supported, and then the polyimide precursor belt is peeled from the mold. The heating temperature is not particularly limited as long as it can evaporate the applied solvent, and can be appropriately set. In order to prevent generation of microvoids due to rapid evaporation of the solvent in the polyimide precursor solution, it is preferably 230 ° C. or lower, and preferably 80 ° C. or higher from the viewpoint of shortening the heating time. The heating time is appropriately set according to the heating temperature, and is usually about 10 to 60 minutes.
[0034]
Examples of the method for peeling the polyimide precursor belt from the cylindrical mold include a method in which air is pumped into a minute through hole provided in advance on the peripheral wall of the mold end. In addition, it is preferable to perform a mold release treatment with a silicone resin or the like on the circumferential surface of the cylindrical mold in advance because the workability of peeling the polyimide precursor belt is improved.
[0035]
In the present invention, a support having an outer diameter smaller than the inner diameter is inserted into the polyimide precursor belt obtained as described above, and then the polyimide precursor belt is heated together with the support to remove residual solvent. Removal, removal of ring-closing water, and completion of imide conversion reaction.
[0036]
The heating temperature at this time is preferably equal to or higher than the heating temperature on the cylindrical mold from the viewpoint of removal of residual solvent and ring-closing water, and 400 from the viewpoint of heat resistance and thermal linear expansion coefficient of the polyimide precursor belt and the support. C. or lower is preferable. Usually, the heating time at this time is 10 to 60 minutes.
[0037]
Of course, it is necessary to appropriately set the dimensions of the support so that the support has a difference in inner diameter and outer diameter that is preferable as a seamless belt according to the purpose.
[0038]
The belt obtained as described above is taken out from the support. Usually, the substrate is allowed to cool at room temperature and then taken out after the support is thermally contracted.
[0039]
Furthermore, in the present invention, when the polyimide precursor belt is supported on the support, or when the seamless belt obtained by heating is supported on the support, the releasability, elasticity, and photoconductivity. In order to provide further functions such as PTFE, FEP, and PFA, fluorine resin such as PTFE, silicone rubber, or fluorine rubber may be further laminated on the outer peripheral surface of the belt by a method such as spray coating or dipping. When used as a heat generating belt of an electromagnetic induction heat generation method, an electromagnetic induction heat generation layer made of nickel, iron, cobalt, copper, aluminum, or an alloy thereof may be provided by using a method such as plating or ion plating. Good.
[0040]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0041]
[Example 1]
In 732 g of N-methyl-2-pyrrolidone, 147 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 54 g of p-phenylenediamine were dissolved (solid content concentration 20% by weight), and in a nitrogen atmosphere The mixture was reacted at room temperature with stirring to obtain a 3000 poise polyimide precursor solution. After the polyimide precursor solution is applied to the inner surface of a cylindrical mold having an inner diameter of 40 mm, the bullet-shaped traveling body is dropped by its own weight, and then the degassing method is performed to remove bubbles in the coating film to obtain a uniform coating film surface. It was. The mold was then heated from room temperature to 180 ° C. for 30 minutes and cured (partially solvent removal and partial imide conversion) until it could be held as a belt itself to obtain a polyimide precursor belt. After releasing the belt from the mold, the surface roughness Ra is 2.5 μm, Rz is 20.0 μm, Rmax is 27.0 μm, and the thermal expansion coefficient is 2.6 × 10 −5 cm / cm / ° C. It was replaced with a certain metallic cylindrical support, and the support was heated to 370 ° C. at a temperature increase rate of 2 ° C./min to remove residual solvent and ring-closing water, complete the imide conversion reaction, and then cooled. A seamless belt made of polyimide having a thickness of 60 μm was obtained. After the primer treatment is performed on the outer surface of the seamless belt on the metallic support, a PFA aqueous dispersion is spray-coated as a release resin, and then heated to 370 ° C. while being inserted into the support, and then cooled. A seamless belt (total thickness: 71 μm) having a releasable resin layer of 10 μm was obtained.
[0042]
As for the surface roughness of the inner surface of this belt, Ra was 0.2 μm, Rz was 2.3 μm, and Rmax was 3.7 μm, and no swelling or poor appearance due to the accumulation of solvent was observed. When this belt was tested with an actual fixing device, the belt was well conveyed and a good fixed image was obtained (a toner fixing reduction rate of 4%).
[0043]
[Example 2]
In Example 1, the surface roughness of the metal cylindrical support was changed to Ra of 3.0 μm, Rz of 30.0 μm and Rmax of 40.0 μm, in the same manner as in Example 1, with a polyimide layer thickness of 60 μm, A seamless fixing belt (total thickness: 71 μm) having a release resin layer thickness of 10 μm was obtained.
[0044]
As for the surface roughness of the inner surface of this belt, Ra was 0.3 μm, Rz was 3.0 μm, and Rmax was 6.0 μm, and no swelling or poor appearance due to the accumulation of solvent was observed. When this belt was tested with an actual fixing device, the belt was well conveyed and a good fixed image was obtained (7% reduction in toner fixing), and functioned without problems after 3 weeks.
[0045]
[Comparative Example 1]
In Example 1, the surface roughness of the metal cylindrical support was changed to Ra 7.0 μm, Rz 42.0 μm and Rmax 60.0 μm in the same manner as in Example 1 except that the polyimide layer thickness was 60 μm. A seamless fixing belt (total thickness: 73 μm) having a releasable resin layer thickness of 12 μm was obtained.
[0046]
The surface roughness of the inner surface of this belt was 0.6 μm for Ra, 4.0 μm for Rz, and 9.0 μm for Rmax, but when this belt was put on an actual fixing device, the fixing property was poor (toner Therefore, the fixed image was unclear.
[0047]
[Comparative Example 2]
In Example 1, the surface roughness of the metal cylindrical support was 0.05 μm for Ra, 0.80 μm for Rz, and 1.00 μm for Rmax, and the thickness of the polyimide layer was 60 μm in the same manner as in Example 1. A seamless fixing belt (total thickness: 73 μm) having a releasable resin layer thickness of 12 μm was obtained, but swelling occurred due to the accumulation of solvent between the inner surface of the belt and the support. The difference in outer diameter of the swollen portion was 1%. The inner surface of the belt had Ra of 0.01 μm, Rz of 0.07 μm and Rmax of 0.15 μm. Even when the obtained seamless belt was applied to the fixing device, the transportability was poor from the beginning, and it could not be put into practical use.
[0048]
[Comparative Example 3]
In Example 1, the surface roughness of the metal cylindrical support was changed to Ra 12.0 μm, Rz 73.0 μm, and Rmax 120.0 μm, in the same manner as in Example 1, the polyimide layer thickness 60 μm, A fixing seamless belt (total thickness: 73 μm) having a releasable resin layer thickness of 12 μm was obtained, but protrusions having a height of 15 μm and a diameter of 1 mm were generated. The inner surface of the belt had Ra of 1.2 μm, Rz of 7.3 μm and Rmax of 17.0 μm. Even when the obtained seamless belt was applied to the fixing device, the transportability was poor from the beginning, and white spots were generated in the fixed image at the protrusions.
[0049]
(Evaluation)
-Surface roughness (Ra, Rz, Rmax)-
In accordance with JIS B 0601, samples were taken from any five points on the inner surface of the belt, and with respect to the circumferential direction, a surface roughness meter (Surfcom 554A (manufactured by Tokyo Seimitsu Co., Ltd.)) with a cutoff of 0.32 mm and a measurement length of 2 Measurement was carried out at a driving speed of 0.12 mm / sec and a stylus load of 70 mg.
[0050]
The surface roughness of the metal cylindrical support was measured at a cutoff of 4 mm, a measurement length of 20 mm, a driving speed of 1.5 mm / sec, and a stylus load of 70 mg.
[0051]
-Toner fixing reduction rate-
The degree of decrease in chromaticity after rubbing with rubbing paper was expressed as a percentage with respect to the degree of melt coloring of the toner when 10 spots were printed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a main part of an image fixing apparatus using a belt fixing method.
DESCRIPTION OF
Claims (2)
前記支持体の表面粗さは、Rmaxが1.4〜50.0μmかつRzが1.0〜40.0μmかつRaが0.1〜5.0μmであり、
前記支持体の熱線膨張係数が前記ポリイミド前駆体ベルトの熱線膨張係数より大きいものであり、
前記ポリイミド前駆体ベルトを前記支持体ごと加熱する際、前記支持体が前記ポリイミド前駆体ベルトを内側から圧迫することを特徴とするシームレスベルトの製造方法。A step of applying a polyimide precursor solution to a mold, curing it by heating and drying until it can be self-supported, and peeling the mold from the mold to obtain a polyimide precursor belt; A seamless belt comprising a step of inserting a support into the polyimide precursor belt, a step of heating the polyimide precursor belt together with the support to complete an imide conversion reaction, and a step of removing the seamless belt from the support. In the manufacturing method,
The surface roughness of the support is Rmax of 1.4 to 50.0 μm, Rz of 1.0 to 40.0 μm, and Ra of 0.1 to 5.0 μm,
The support has a thermal coefficient of thermal expansion greater than that of the polyimide precursor belt,
A method for producing a seamless belt, wherein when the polyimide precursor belt is heated together with the support, the support presses the polyimide precursor belt from the inside.
シームレスベルトをそのシームレスベルトの内側に配置した押圧部材でそのシームレスベルトの外側に対向して配置した加熱駆動ロールに押圧して、前記シームレスベルトの外面に記録材を通過させるニップ部を形成するとともに、前記押圧部材の摺動面に摺動材を配置しつつ、前記摺動材と前記シームレスベルトの内面との間に潤滑剤を介在させて走行させて用いる、
前記シームレスベルトの内面の表面粗さは、Rmaxが0.18〜8.00μmかつRzが0.10〜3.50μmかつRaが0.02〜0.50μmであるシームレスベルト。A seamless belt obtained by the production method according to claim 1,
The seamless belt is pressed by a pressing member disposed on the inner side of the seamless belt against a heating drive roll disposed to face the outer side of the seamless belt to form a nip portion through which the recording material passes on the outer surface of the seamless belt. The sliding member is disposed on the sliding surface of the pressing member, and is used by running a lubricant between the sliding member and the inner surface of the seamless belt .
The seamless belt has an inner surface roughness Rmax of 0.18 to 8.00 μm, Rz of 0.10 to 3.50 μm, and Ra of 0.02 to 0.50 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027665A JP4798853B2 (en) | 2001-02-05 | 2001-02-05 | Seamless belt and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001027665A JP4798853B2 (en) | 2001-02-05 | 2001-02-05 | Seamless belt and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002225051A JP2002225051A (en) | 2002-08-14 |
JP4798853B2 true JP4798853B2 (en) | 2011-10-19 |
Family
ID=18892283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001027665A Expired - Lifetime JP4798853B2 (en) | 2001-02-05 | 2001-02-05 | Seamless belt and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4798853B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331578A (en) * | 2004-05-18 | 2005-12-02 | Fuji Xerox Co Ltd | Electrophotographic system fixing device and image forming apparatus |
JP2006091182A (en) * | 2004-09-21 | 2006-04-06 | Fuji Xerox Co Ltd | Fixing device, belt tube and image forming apparatus |
JP4548548B2 (en) * | 2010-03-19 | 2010-09-22 | 富士ゼロックス株式会社 | Fixing apparatus and image forming apparatus |
JP4656258B2 (en) * | 2010-09-27 | 2011-03-23 | 富士ゼロックス株式会社 | Fixing device and image forming apparatus for electrophotographic system |
JP6141026B2 (en) * | 2012-02-27 | 2017-06-07 | キヤノン株式会社 | Image heating device |
JP6061606B2 (en) * | 2012-10-16 | 2017-01-18 | キヤノン株式会社 | Heating belt and heating device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07115363B2 (en) * | 1987-11-26 | 1995-12-13 | 日東電工株式会社 | Method for manufacturing tubular products |
JP3577897B2 (en) * | 1997-07-02 | 2004-10-20 | 富士ゼロックス株式会社 | Fixing belt and image fixing device |
JP2000206808A (en) * | 1999-01-13 | 2000-07-28 | Canon Inc | Resin film for fixing, production of resin film and fixing device |
-
2001
- 2001-02-05 JP JP2001027665A patent/JP4798853B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002225051A (en) | 2002-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080149211A1 (en) | Tubing and Process for Production Thereof | |
JP2006205151A (en) | Composite tubular product and method for manufacturing the same | |
JP4798853B2 (en) | Seamless belt and manufacturing method thereof | |
JP2000147928A (en) | Composite tubular object | |
JP2011209578A (en) | Tubular body and method for manufacturing the same | |
JP4071651B2 (en) | Composite belt and manufacturing method thereof | |
JP3667661B2 (en) | Manufacturing method of polyimide sleeve | |
US9248610B2 (en) | Methods of making belts for apparatus useful in printing | |
JP5101137B2 (en) | Polyimide belt and manufacturing method thereof | |
JP4222909B2 (en) | Composite tubular body | |
JPH09328610A (en) | Tubular material made of heat-resistant resin | |
JP2001215821A (en) | Fixing belt and method of producing the same | |
JP3226326B2 (en) | Manufacturing method of composite tubular material | |
JP2001040102A (en) | Tubular article | |
JP2006301196A (en) | Seamless belt | |
JP2000338797A (en) | Fixing belt | |
JPH10138264A (en) | Manufacture of composite film | |
JPH0243046A (en) | Composite tubular matter and manufacture thereof | |
JP3249385B2 (en) | Method for producing polyimide tube | |
JP2007083424A (en) | Tubular body and its manufacturing method | |
JPWO2017047746A1 (en) | Transfer member for image forming apparatus | |
JP2008100523A (en) | Method for manufacturing composite belt | |
JP2002178422A (en) | Composite tubular body | |
JP2007296838A (en) | Cylindrical core body and method for producing endless belt using the core body | |
JP2002082550A (en) | Fixing belt for electromagnetic induction heating and transfer fixing belt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050322 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070117 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071011 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4798853 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |