JP2002082550A - Fixing belt for electromagnetic induction heating and transfer fixing belt - Google Patents

Fixing belt for electromagnetic induction heating and transfer fixing belt

Info

Publication number
JP2002082550A
JP2002082550A JP2001092150A JP2001092150A JP2002082550A JP 2002082550 A JP2002082550 A JP 2002082550A JP 2001092150 A JP2001092150 A JP 2001092150A JP 2001092150 A JP2001092150 A JP 2001092150A JP 2002082550 A JP2002082550 A JP 2002082550A
Authority
JP
Japan
Prior art keywords
fixing belt
electromagnetic induction
belt
induction heating
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001092150A
Other languages
Japanese (ja)
Inventor
Satoru Ishizaki
哲 石崎
Taiichi Sugita
泰一 杉田
Masakazu Sugimoto
正和 杉本
Keizo Mizobe
敬三 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001092150A priority Critical patent/JP2002082550A/en
Publication of JP2002082550A publication Critical patent/JP2002082550A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fixing belt for electromagnetic induction heating and a transfer fixing belt performing efficient and uniform thermal fixing, having practical mechanical strength and produced at low cost in a small number of processes, and an image forming device using the belt. SOLUTION: In the fixing belt for electromagnetic induction heating or the transfer fixing belt equipped with a heating layer 1 consisting of heat resistant resin incorporating at least conductive particles and a surface mold-released layer 4 provided on its surface, the heating layer 1 has a heating part 2 constituted by unevenly distributing the conductive particles in the vicinity of an outer surface, and the thickness of the heating part 2 is <=50 μm and the density thereof is 0.5 times or more and less than 1.0 time as high as that of the conductive particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真方式の複
写機、レーザービームプリンタ、ファクシミリ等におい
てトナー画像を電磁誘導発熱を利用して加熱定着させる
電磁誘導発熱用定着ベルト及びこれを用いた画像形成装
置に関する。また、同様の画像形成装置において、一つ
のベルト上で転写工程と電磁誘導発熱を利用した定着工
程とを行う転写定着ベルト及びこれを用いた画像形成装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixing belt for electromagnetic induction heating which heats and fixes a toner image using electromagnetic induction heating in an electrophotographic copying machine, a laser beam printer, a facsimile or the like, and an image using the same. The present invention relates to a forming apparatus. Also, the present invention relates to a transfer fixing belt that performs a transfer step and a fixing step using electromagnetic induction heat on one belt in the same image forming apparatus, and an image forming apparatus using the same.

【0002】[0002]

【従来の技術】従来より電子写真方式の画像形成装置に
おける被記録材への画像定着方法として、熱ローラ方式
やフィルム加熱方式等の定着方式が知られている。これ
らの定着方式はハロゲンランプや線状のセラミックヒー
タから発生した熱をローラやフィルムを介して未定着ト
ナー像に与え、加熱定着するというものである。
2. Description of the Related Art Conventionally, as a method of fixing an image on a recording material in an electrophotographic image forming apparatus, a fixing method such as a heat roller method or a film heating method has been known. In these fixing systems, heat generated from a halogen lamp or a linear ceramic heater is applied to an unfixed toner image via a roller or a film to heat and fix the image.

【0003】一方、電子写真方式の複写機等に対する消
費エネルギーの効率化や待機時間の短縮化、クイックス
タートヘの要求のため、発熱層を備えたフィルムに渦電
流を発生させ直接発熱させるという電磁誘導発熱方式の
定着装置及びこれに用いられる定着ベルトが提案されて
いる。また、一つのベルト上で感光体上に形成したトナ
ー像を一次転写した後、そのベルト上でトナー像を電磁
誘導発熱により溶融しつつ記録材に圧接させて定着を行
う転写定着装置が知られている。
[0003] On the other hand, in order to increase the efficiency of energy consumption, shorten the standby time, and require a quick start for an electrophotographic copying machine or the like, an eddy current is generated in a film having a heating layer to directly generate heat. An induction heating type fixing device and a fixing belt used for the fixing device have been proposed. Further, a transfer fixing device is known in which after a toner image formed on a photoreceptor is primarily transferred on one belt, the toner image is fused on the belt by electromagnetic induction heat and pressed against a recording material to fix the toner image. ing.

【0004】例えば特開平7−295411号公報で
は、円筒状の金属フィルムの一面に低熱伝導性樹脂層、
もう一方の面にはトナー離型性を有する樹脂層をディッ
ピングやスプレーコートにより形成した像加熱用フィル
ムが提案されている。しかし、金属フィルムを用いたも
のでは、製造工程が多くなるなどコストが高く、しかも
ディッピングやスプレー塗布によるため膜厚が不均一に
なりやすく、このため均一な定着性、搬送性に問題があ
った。また、金属フィルムの剛性が高すぎることによる
問題も指摘されている。
For example, in Japanese Patent Application Laid-Open No. 7-295411, a low heat conductive resin layer is provided on one surface of a cylindrical metal film.
On the other side, there has been proposed an image heating film in which a resin layer having a toner releasing property is formed by dipping or spray coating. However, in the case of using a metal film, the cost is high, such as an increase in the number of production steps, and the film thickness tends to be non-uniform due to dipping or spray coating, and therefore, there has been a problem in uniform fixing property and transportability. . In addition, a problem caused by too high rigidity of the metal film has been pointed out.

【0005】また、耐熱性樹脂基材の外面にメッキ処理
により発熱層を形成した定着フィルムも知られている
(特開平7−114276号公報他)が、厚みの均一性
或いはメッキ浴中に含まれる不純物等の問題がある。
A fixing film in which a heat-generating layer is formed on the outer surface of a heat-resistant resin substrate by plating is also known (JP-A-7-114276, etc.). There is a problem of impurities and the like.

【0006】そこで、樹脂又はゴム中に金属粒子等を分
散させて発熱層を形成した電磁誘導発熱用定着ベルトが
提案されている。例えば、特開平9−146392号公
報では、基層が低剛性樹脂材料、発熱層として少なくと
も磁性体を含んだ低剛性樹脂材料から構成されたトナー
定着フィルムが提案されている。
Therefore, there has been proposed a fixing belt for electromagnetic induction heating in which a heating layer is formed by dispersing metal particles or the like in resin or rubber. For example, Japanese Patent Application Laid-Open No. 9-146392 proposes a toner fixing film in which a base layer is formed of a low-rigid resin material and a heat-generating layer is formed of a low-rigid resin material containing at least a magnetic substance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記公
報に記載の定着フィルムでは、発熱層中に磁性体が偏り
なく分散されているため、電磁誘導に必要な導電性を得
るには、樹脂の重量に対し50〜300%もの磁性体を
添加する必要が有り、機械的強度等の樹脂本来の特性が
低下するという問題点がある。また、発熱層を塗布・形
成する際、磁性体の含有量が多いため塗布液の粘度が大
きくなるなど、均一に薄い発熱層を形成するのが困難と
なり、均一に効率良く発熱可能な発熱層を形成しにくか
った。更に、発熱層とは別に十分な強度を有する基層を
形成する必要があるため、製造工程が多くなる等の問題
もあった。
However, in the fixing film described in the above publication, since the magnetic material is dispersed evenly in the heat generating layer, the weight of the resin is required to obtain the conductivity required for electromagnetic induction. However, it is necessary to add as much as 50 to 300% of a magnetic substance, which causes a problem that the intrinsic properties of the resin such as mechanical strength are reduced. In addition, when the heat generating layer is applied and formed, it is difficult to form a uniform thin heat generating layer, for example, the viscosity of the coating liquid increases due to a large content of the magnetic substance, and the heat generating layer can generate heat uniformly and efficiently. Was difficult to form. Furthermore, since it is necessary to form a base layer having sufficient strength separately from the heat generating layer, there is a problem that the number of manufacturing steps is increased.

【0008】なお、3種類以上ものトナーを重ねて溶
融、混色して定着させるフルカラー用の定着装置の場
合、弾力性を有する弾性層が必須となるため、電磁誘導
発熱用定着ベルトに対して、特に、均一で効率の良い発
熱が要求される。この点はトナーを重ねて転写した後、
溶融、混色して転写定着させるフルカラー用の転写定着
装置についても同様である。
In the case of a full-color fixing device in which three or more kinds of toners are superposed, melted, mixed and fixed, an elastic layer having elasticity is indispensable. In particular, uniform and efficient heat generation is required. This point is after the toner is overlaid and transferred,
The same applies to a full-color transfer / fixing device for transferring and fixing by fusing and mixing colors.

【0009】そこで、本発明の目的は、上記の如き問題
点を解決すべく、効率良くかつ均一な加熱定着が行え、
かつ実用的な機械的強度を有し、しかも少ない工程で低
コストにて製造可能な電磁誘導発熱用定着ベルト及びこ
れを用いた画像形成装置を提供することにある。また、
同様の作用効果を有する転写定着ベルト及びこれを用い
た画像形成装置を提供することにある。
[0009] Therefore, an object of the present invention is to solve the above-mentioned problems by performing efficient and uniform heating and fixing.
Another object of the present invention is to provide a fixing belt for electromagnetic induction heating which has practical mechanical strength and can be manufactured at a low cost with a small number of steps, and an image forming apparatus using the same. Also,
It is an object of the present invention to provide a transfer fixing belt having the same function and effect, and an image forming apparatus using the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、電磁誘導発熱に用いる定着ベルト等の形
成方法や構造、物性等について鋭意研究したところ、回
転遠心成形により発熱層を形成する際、各種条件を上手
く制御することにより、均一で、密度や厚みが調整可能
な発熱部(導電性粒子の偏在層)を形成でき、しかもそ
の発熱部により好適に電磁誘導発熱が行えることを見出
し、本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on the forming method, structure, physical properties, and the like of a fixing belt used for electromagnetic induction heating. By properly controlling various conditions when forming a layer, it is possible to form a heat-generating portion (uniformly distributed layer of conductive particles) having a uniform density and thickness that can be adjusted, and the heat-generating portion can suitably generate electromagnetic induction heat. This led to the completion of the present invention.

【0011】即ち、本発明の電磁誘導発熱用定着ベルト
は、少なくとも導電性粒子を含有した耐熱性樹脂よりな
る発熱層と、表面に設けられた表面離型層とを備える電
磁誘導発熱用定着ベルトにおいて、前記発熱層は、前記
導電性粒子が外表面付近に偏在してなる発熱部を有し、
その発熱部の厚みが50μm以下で、その密度が前記導
電性粒子の0.5倍以上1.0倍未満であることを特徴
とする。ここで、発熱部の厚みは、その断面において、
偏在する導電性粒子の粒子間距離が5μm以上となる部
分を境界線として測定した値である。また、発熱部の密
度は、上記発熱部の厚み断面における導電性粒子の面積
の占有率と密度から算出することにより求めた値であ
る。
That is, a fixing belt for electromagnetic induction heating according to the present invention comprises a heating layer made of a heat-resistant resin containing at least conductive particles, and a surface release layer provided on the surface. In the heat generating layer has a heat generating portion in which the conductive particles are unevenly distributed near the outer surface,
The thickness of the heat generating portion is 50 μm or less, and the density thereof is 0.5 times or more and less than 1.0 times of the conductive particles. Here, the thickness of the heat generating portion is
It is a value measured using a portion where the distance between the conductive particles unevenly distributed is 5 μm or more as a boundary line. Further, the density of the heat generating portion is a value obtained by calculating from the occupancy and the density of the area of the conductive particles in the thickness cross section of the heat generating portion.

【0012】上記において、前記発熱層が回転遠心成形
により形成されていると共に、前記発熱部の密度が5×
10-3g/L以上であることが好ましい。
In the above, the heat generating layer is formed by rotary centrifugal molding, and the density of the heat generating portion is 5 ×.
It is preferably at least 10 −3 g / L.

【0013】また、前記導電性粒子がニッケル、鉄、コ
バルト及びこれらを含有する合金からなる群より選ばれ
る強磁性材料の1種以上からなり、前記発熱部の厚みが
1〜50μmであることが好ましい。
The conductive particles may be made of at least one of ferromagnetic materials selected from the group consisting of nickel, iron, cobalt and alloys containing them, and the thickness of the heat generating portion may be 1 to 50 μm. preferable.

【0014】或いは、前記導電性粒子が銅及び銅を含有
する合金からなる群より選ばれる非磁性材料の1種以上
からなり、前記発熱部の厚みが20μm以下であること
が好ましい。
Alternatively, it is preferable that the conductive particles are made of at least one non-magnetic material selected from the group consisting of copper and an alloy containing copper, and the thickness of the heat generating portion is 20 μm or less.

【0015】一方、本発明の画像形成装置は、上記いず
れかに記載の電磁誘導発熱用定着ベルトと、そのベルト
に渦電流を生じさせるための励磁コイルと、その励磁コ
イルに電流を印加するための電源とを備えた定着装置を
具備するものである。
On the other hand, an image forming apparatus according to the present invention provides a fixing belt for electromagnetic induction heating according to any one of the above, an exciting coil for generating an eddy current in the belt, and an electric current applied to the exciting coil. And a fixing device provided with a power source.

【0016】他方、本発明の転写定着ベルトは、自身に
一旦転写された転写像を電磁誘導発熱を利用して記録材
に定着する転写定着ベルトにおいて、上記いずれかに記
載の電磁誘導発熱用定着ベルトからなることを特徴とす
る。
On the other hand, a transfer fixing belt according to the present invention is a transfer fixing belt for fixing a transfer image once transferred to itself to a recording material by utilizing electromagnetic induction heating. It is characterized by comprising a belt.

【0017】また、本発明の別の画像形成装置は、上記
の転写定着ベルトと、そのベルトに渦電流を生じさせる
ための励磁コイルと、その励磁コイルに電流を印加する
ための電源とを備えた転写定着装置を具備するものであ
る。
Further, another image forming apparatus of the present invention includes the above-mentioned transfer fixing belt, an exciting coil for generating an eddy current in the belt, and a power supply for applying a current to the exciting coil. And a transfer fixing device.

【0018】[作用効果]本発明の定着ベルトによる
と、実施例の結果が示すように、導電性粒子が発熱層の
外表面付近に偏在してなる発熱部を、均一で適当な厚み
にて、適当な密度で形成でき、これによって効率良くか
つ均一に電磁誘導発熱が行えるようになる。従って、未
定着トナー像に対し効率よく均一に熱を与えることがで
き、しかも待機状態から速やかに定着温度まで加熱する
ことができるため、低消費電力で高精度の画像を得るこ
とができる。また、導電性粒子が偏在しない部分によっ
て実用的な機械的強度を発現することができ、しかも両
者の構造部分を同時に形成できるため、少ない工程で低
コストにてベルトを製造することができる。
[Effects] According to the fixing belt of the present invention, as shown in the results of the examples, the heat generating portion in which the conductive particles are unevenly distributed near the outer surface of the heat generating layer is formed with a uniform and appropriate thickness. , And can be formed with an appropriate density, so that electromagnetic induction heating can be performed efficiently and uniformly. Therefore, heat can be efficiently and uniformly applied to the unfixed toner image, and since the standby state can be quickly heated to the fixing temperature, a high-precision image can be obtained with low power consumption. In addition, a portion where the conductive particles are not unevenly distributed can exhibit practical mechanical strength, and since both structural portions can be formed at the same time, a belt can be manufactured with a small number of steps and at low cost.

【0019】前記発熱層が回転遠心成形により形成され
ていると共に、前記発熱部の密度が5×10-3g/L以
上である場合、回転遠心成形に有利な密度の導電性粒子
が、適当な充填密度で発熱部を形成することになり、電
磁誘導発熱に必要な導電性が得られ易いと共に、製造が
より容易なものとなる。
When the heat generating layer is formed by rotary centrifugal molding, and the density of the heat generating portion is 5 × 10 −3 g / L or more, conductive particles having a density advantageous for rotary centrifugal molding are suitable. Since the heat-generating portion is formed with a high packing density, the conductivity required for electromagnetic induction heating is easily obtained, and the production becomes easier.

【0020】前記導電性粒子が上記の強磁性材料の1種
以上からなり、前記発熱部の厚みが1〜50μmである
場合、強磁性材料による発熱部が、電磁誘導発熱のため
に十分な厚みとなるとともに、ベルトの可撓性も十分維
持することができる。
When the conductive particles are made of at least one of the above-mentioned ferromagnetic materials and the thickness of the heat-generating portion is 1 to 50 μm, the heat-generating portion made of the ferromagnetic material has a sufficient thickness for electromagnetic induction heat generation. And the flexibility of the belt can be sufficiently maintained.

【0021】また、前記導電性粒子が上記の非磁性材料
の1種以上からなり、前記発熱部の厚みが20μm以下
である場合、非磁性材料による発熱部が、電磁誘導発熱
を行うのに有利な薄さとなる。
Further, when the conductive particles are made of one or more of the above-mentioned non-magnetic materials and the thickness of the heat-generating portion is 20 μm or less, the heat-generating portion made of the non-magnetic material is advantageous for generating electromagnetic induction heat. It becomes very thin.

【0022】一方、本発明の画像形成装置は、上記いず
れかに記載の電磁誘導発熱用定着ベルトを備えた定着装
置を具備するものであるため、実用的な機械的強度を有
し、少ない工程で低コストにて製造可能な定着ベルトに
よって、効率良くかつ均一に電磁誘導発熱が行えるよう
になる。従って、未定着トナー像に対し効率よく均一に
熱を与えることができ、しかも待機状態から速やかに定
着温度まで加熱することができるため、低消費電力で高
精度の画像を得ることができる。
On the other hand, since the image forming apparatus of the present invention includes the fixing device provided with any of the above-described fixing belts for electromagnetic induction heating, it has practical mechanical strength and requires a small number of processes. Therefore, the fixing belt which can be manufactured at low cost can efficiently and uniformly generate electromagnetic induction heat. Therefore, heat can be efficiently and uniformly applied to the unfixed toner image, and since the standby state can be quickly heated to the fixing temperature, a high-precision image can be obtained with low power consumption.

【0023】他方、本発明の転写定着ベルトは、自身に
一旦転写された転写像を電磁誘導発熱を利用して記録材
に定着する転写定着ベルトが、上記いずれかに記載の電
磁誘導発熱用定着ベルトであるため、上記の如き作用効
果により、効率良くかつ均一な加熱定着が行え、かつ実
用的な機械的強度を有し、しかも少ない工程で低コスト
にて製造可能となる。
On the other hand, in the transfer fixing belt of the present invention, the transfer fixing belt for fixing a transfer image once transferred to itself to a recording material by utilizing electromagnetic induction heating is the fixing device for electromagnetic induction heating described in any of the above. Since the belt is used, heat and fixing can be performed efficiently and uniformly by the above-described operation and effect, and the belt has practical mechanical strength, and can be manufactured with a small number of steps and at low cost.

【0024】また、本発明の別の画像形成装置による
と、上記の転写定着ベルトを備えた転写定着装置を具備
するものであるため、実用的な機械的強度を有し、少な
い工程で低コストにて製造可能な転写定着ベルトによっ
て、効率良くかつ均一に電磁誘導発熱が行えるようにな
る。従って、転写像に対し効率よく均一に熱を与えるこ
とができ、しかも待機状態から速やかに定着温度まで加
熱することができるため、低消費電力で高精度の画像を
得ることができる。
Further, according to another image forming apparatus of the present invention, since the image forming apparatus includes the transfer fixing device provided with the above-described transfer fixing belt, the image forming apparatus has practical mechanical strength, has a small number of steps, and is low in cost. The electromagnetic induction heat can be efficiently and uniformly generated by the transfer / fixing belt that can be manufactured by the method described above. Therefore, heat can be efficiently and uniformly applied to the transferred image, and the image can be quickly heated from the standby state to the fixing temperature, so that an image with low power consumption and high accuracy can be obtained.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態につい
て、電磁誘導発熱用定着ベルト、転写定着ベルト、画像
形成装置の順で詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail in the order of a fixing belt for electromagnetic induction heating, a transfer fixing belt, and an image forming apparatus.

【0026】(電磁誘導発熱用定着ベルト)本発明の電
磁誘導発熱用定着ベルトは、少なくとも発熱層と表面離
型層を有する構造となっており、表面離型層は発熱層の
表面に、直接又は弾性層等を介して設けられている。発
熱層は少なくとも導電性粒子を含有した耐熱性樹脂から
構成されており、導電性粒子が外表面付近に偏在してな
る発熱部(導電性粒子の偏在層)を有する。
(Fixing Belt for Electromagnetic Induction Heating) The fixing belt for electromagnetic induction heating of the present invention has a structure having at least a heat generation layer and a surface release layer, and the surface release layer is directly on the surface of the heat generation layer. Alternatively, it is provided via an elastic layer or the like. The heat generating layer is made of a heat-resistant resin containing at least conductive particles, and has a heat generating portion (a conductive particle uneven distribution layer) in which the conductive particles are unevenly distributed near the outer surface.

【0027】このような発熱層は、上記の材料の原料液
を円筒状金型の内面に塗布し、これを回転遠心成形させ
る方法等により、実質的に導電性粒子を傾斜分散させる
ことで、好適に形成することができる。
Such a heat generating layer is obtained by applying a raw material liquid of the above-mentioned material to the inner surface of a cylindrical mold and subjecting the conductive liquid to substantially centrifugal dispersion by a method such as rotational centrifugal molding. It can be suitably formed.

【0028】本発明においては、実際に定着ベルトとし
て用いられる場合、定着ベルトの外面に被記録材を当接
させて加熱定着するため、発熱部が外表面近傍に存在す
る方が効率よく被加熱材に熱が伝わるため好ましい。そ
のため、耐熱性樹脂よりも導電性粒子の方が密度が大き
いことが必須であり、この差が大きければ大きいほど回
転遠心成形時の回転速度が小さくても、回転時間が短く
ても所望の効果が得られるので好ましい。これにより発
熱層において導電性粒子を外表面付近に偏在させること
ができ、発熱部の厚みを50μm以下とすることができ
る。なお、発熱部の厚みが50μmを超えると、発熱層
全体の可撓性が不十分となり、実用的な機械的強度が得
られにくくなり、また、電磁誘導発熱の効率良く行えに
くい場合も生じる。
In the present invention, when actually used as a fixing belt, the recording material is brought into contact with the outer surface of the fixing belt to heat and fix the fixing belt. It is preferable because heat is transmitted to the material. Therefore, it is essential that the density of the conductive particles is higher than that of the heat-resistant resin, and the larger the difference, the lower the rotation speed during rotational centrifugal molding and the shorter the rotation time. Is preferred. Thereby, the conductive particles can be unevenly distributed in the vicinity of the outer surface in the heat generating layer, and the thickness of the heat generating portion can be reduced to 50 μm or less. If the thickness of the heat-generating portion exceeds 50 μm, the flexibility of the entire heat-generating layer becomes insufficient, so that it is difficult to obtain practical mechanical strength, and it is sometimes difficult to efficiently perform electromagnetic induction heat generation.

【0029】本発明では、発熱部の密度が添加する導電
性粒子の0.5倍以上1.0倍未満であるため、電磁誘
導発熱に必要な導電性を発現できると共に、表面の強度
などを実用的な範囲にすることできる。かかる観点より
発熱部の密度は、導電性粒子の0.6倍以上1.0倍未
満であることが好ましい。上記のような回転遠心成形を
行う上で、好ましい密度の導電性粒子を用いる場合、発
熱部の密度が5×10 -3g/L以上となり、密度を6×
10-3g/L以上とするとより好ましい。
In the present invention, the density of the heat generating portion is added to the conductivity.
0.5 times or more and less than 1.0 times the conductive particles,
The conductivity required for conducting heat can be expressed and the surface strength
Etc. can be in a practical range. From this perspective
The density of the heat generating part is 0.6 times or more and 1.0 times or less of the conductive particles.
Preferably it is full. Rotational centrifugal molding as above
When using conductive particles having a preferable density,
Heat density is 5 × 10 -3g / L or more and the density is 6 ×
10-3g / L or more is more preferable.

【0030】図1に本発明の定着ベルトの一例を示す。
このベルトは発熱部2を有する発熱層1と弾性層3と表
面離型層4から構成されている。発熱層1の耐熱性樹脂
としては、ポリイミド、ポリアミドイミド、ポリエーテ
ルエーテルケトン、ポリフェニレンスルフィド、ポリベ
ンズイミダゾール等が使用可能であるが、高い機械的強
度と絶縁性を有するポリイミド系樹脂を主成分とするの
が好ましい。この場合、使用するカルボン酸二無水物や
ジアミンの種類、モル比等を調節することにより、適度
な剛性あるいは可撓性の定着ベルトとすることができ
る。
FIG. 1 shows an example of the fixing belt of the present invention.
The belt includes a heat generating layer 1 having a heat generating portion 2, an elastic layer 3, and a surface release layer 4. As the heat resistant resin of the heat generating layer 1, polyimide, polyamide imide, polyether ether ketone, polyphenylene sulfide, polybenzimidazole and the like can be used. Is preferred. In this case, by adjusting the type, molar ratio, and the like of the carboxylic dianhydride and diamine used, a fixing belt having appropriate rigidity or flexibility can be obtained.

【0031】また、発熱層1には、その他、耐磨耗性、
摺動性等の機能を得るために、本発明の範囲内でフッ素
樹脂粒子や半導電性を付与するためにカーボンブラック
や金属酸化物などの機能性フィラーを充填してもよい。
フッ素樹脂粒子などの有機フィラーを添加する場合、密
度が耐熱性樹脂に近いため、回転遠心成形時に導電性粒
子が外表面付近に偏在するのを阻害しにくい。また、無
機フィラーを添加する場合でも、その密度が導電性粒子
より小さいものが好ましい。
The heat generating layer 1 further includes abrasion resistance,
In order to obtain a function such as slidability, a fluorocarbon resin particle or a functional filler such as a metal oxide may be filled to impart semiconductivity within the scope of the present invention.
When an organic filler such as fluororesin particles is added, since the density is close to that of the heat-resistant resin, it is difficult to inhibit the conductive particles from being unevenly distributed near the outer surface during rotational centrifugal molding. Further, even when an inorganic filler is added, it is preferable that the density is lower than that of the conductive particles.

【0032】発熱層の導電性粒子は、少なくとも励磁コ
イルにより発生した磁場により、発熱部に渦電流を生じ
させる導電性を有する粒子であり、ニッケル、鉄、コバ
ルト及びこれらを含有する合金等の強磁性材料、又はア
ルミ、銅、チタン及びこれらを含有する合金等の非磁性
材料を用いることができる。また、本発明における発熱
層を回転遠心成形により形成する場合、該導電性粒子は
耐熱性樹脂材料を溶解した溶液あるいは前駆体溶液より
も密度が大きいことが必要である。また、この密度の差
が小さいと回転遠心成形の際、高い回転速度を与えない
と所望の傾斜分散が得られない。従って、導電性粒子と
しては、密度が5×10-3g/L以上が好ましく、6×
10-3g/L以上がより好ましい。
The conductive particles of the heat generating layer are conductive particles that generate an eddy current in the heat generating portion by at least the magnetic field generated by the exciting coil, and are made of nickel, iron, cobalt, and alloys containing these. A magnetic material or a non-magnetic material such as aluminum, copper, titanium, and an alloy containing them can be used. When the heat generating layer in the present invention is formed by rotary centrifugal molding, the conductive particles need to have a higher density than a solution or precursor solution in which a heat-resistant resin material is dissolved. On the other hand, if the difference in density is small, a desired gradient dispersion cannot be obtained unless a high rotation speed is applied during rotary centrifugal molding. Therefore, the density of the conductive particles is preferably 5 × 10 −3 g / L or more, and 6 × 10 −3 g / L or more.
10 -3 g / L or more is more preferable.

【0033】また、導電性粒子の粒径は10μm以下が
好ましく、5μm以下がさらに好ましく、3μm以下が
最も好ましい。粒径が大きすぎると、成形後ベルト形状
とした場合に導電性粒子同志の接触、接近等が不十分と
なり電磁誘導発熱に適切な抵抗値を得られない場合が有
るためである。ここでいう粒径は平均粒径のことを指
す。また、所望の抵抗値を得るために粒径分布を調整し
て密な充填構造(例えば、大径粒子の隙間に小径粒子が
充填された構造)になるようにしてもよい。
The particle size of the conductive particles is preferably 10 μm or less, more preferably 5 μm or less, and most preferably 3 μm or less. If the particle size is too large, the conductive particles may have insufficient contact, approach, etc. when formed into a belt shape after molding, so that an appropriate resistance value for electromagnetic induction heating may not be obtained. The particle size here refers to the average particle size. Further, the particle size distribution may be adjusted to obtain a desired resistance value so that a dense packing structure (for example, a structure in which small-sized particles are filled in gaps between large-sized particles) may be obtained.

【0034】導電性粒子の添加量によって、ある程度、
発熱部の成形後の厚みを制御することができるが、発熱
部の好ましい厚みは、導電性粒子の性質によって異な
る。このため発熱層全体の好ましい厚みも同様に異なっ
てくる。例えば、導電性粒子に強磁性材料を用いた場合
は、発熱層全体の厚さ50〜200μmに対し、下記の
厚さが好ましく、また、非磁性材料を用いた場合20〜
150μmに対し、下記の厚さが好ましい。
Depending on the amount of the conductive particles added,
The thickness of the heat-generating portion after molding can be controlled, but the preferable thickness of the heat-generating portion varies depending on the properties of the conductive particles. For this reason, the preferable thickness of the entire heat generating layer also differs. For example, when a ferromagnetic material is used for the conductive particles, the following thickness is preferable for the thickness of the entire heat generating layer of 50 to 200 μm, and when a nonmagnetic material is used, the thickness is 20 to 200 μm.
The following thickness is preferable for 150 μm.

【0035】即ち、電磁誘導発熱において発熱量は発熱
部の厚みに支配される。コイルから発生する磁気が浸透
する時の深さσは、加熱コイルに印加する電流の周波数
f、物質の比抵抗ρ、比透磁率μτの影響を受け、次式
で表される。
That is, the amount of heat generated by the electromagnetic induction heat generation depends on the thickness of the heat generating portion. The depth σ at which the magnetism generated from the coil permeates is affected by the frequency f of the current applied to the heating coil, the specific resistance ρ of the substance, and the specific magnetic permeability μτ, and is expressed by the following equation.

【0036】σ=ρ1/2 /(π・f・μ0 ・μτ) ここでμ0 は真空中の透磁率を表す。厚みが浸透深さ以
下であると、コイルから発生する磁気が漏れるため、充
分な発熱が得られにくい。厚さが厚くなりすぎると金属
の剛性のためベルトの可撓性が低下するため、定着ベル
トとしての搬送性・紙分離性に劣る傾向がある。このた
め、導電性粒子として強磁性材料を用いる場合は、発熱
部の厚みは1〜50μmであると好ましい。一方非磁性
材料を使用する場合、厚みが薄い程発熱量が大きくなる
ため、成形後の発熱部の厚みが、20μm以下が好まし
く、10μm以下であるとより好ましい。
Σ = ρ 1/2 / (π · f · μ 0 · μτ) where μ 0 represents the magnetic permeability in a vacuum. If the thickness is less than the penetration depth, the magnetism generated from the coil leaks, making it difficult to obtain sufficient heat generation. If the thickness is too large, the flexibility of the belt is reduced due to the rigidity of the metal, so that the transportability and the paper separating property as a fixing belt tend to be inferior. Therefore, when a ferromagnetic material is used as the conductive particles, the thickness of the heat generating portion is preferably 1 to 50 μm. On the other hand, when a non-magnetic material is used, since the calorific value increases as the thickness decreases, the thickness of the heat generating portion after molding is preferably 20 μm or less, more preferably 10 μm or less.

【0037】本発明にかかる前記密度を満たした上で、
発熱部の厚さを上記の値とするためには、基材となる耐
熱性高分子材料への添加量や粘度等材料条件やその製造
条件や回転遠心成形条件が密接に絡んでいる。
After satisfying the density according to the present invention,
In order to set the thickness of the heat generating portion to the above value, material conditions such as the amount added to the heat-resistant polymer material serving as the base material, viscosity, manufacturing conditions thereof, and rotational centrifugal molding conditions are closely involved.

【0038】弾性層は定着温度での使用に耐えられるシ
リコーンゴム、フッ素ゴム等の耐熱性エラストマーを用
いることができる。弾性層にも熱伝導性、補強等を目的
として各種充填剤を混入してもかまわない。熱伝導性粒
子としては、ダイヤモンド、銀、銅、アルミニウム、大
理石、ガラス等あるが、実用的にはシリカ、アルミナ、
酸化マグネシウム、窒化ホウ素、酸化ベリリウムが挙げ
られる。
For the elastic layer, a heat-resistant elastomer such as silicone rubber or fluorine rubber which can withstand use at the fixing temperature can be used. Various fillers may be mixed into the elastic layer for the purpose of thermal conductivity, reinforcement, and the like. Examples of the thermally conductive particles include diamond, silver, copper, aluminum, marble, and glass, but practically silica, alumina,
Examples include magnesium oxide, boron nitride, and beryllium oxide.

【0039】弾性層の厚さは、10〜500μmが好ま
しく、50〜400μmがより好ましい。10μm未満
であると、目的である厚み方向の弾力性を得ることが難
しくなり、一方500μmを超える厚さになると発熱層
で発生した熱が定着フィルム外周面に達し難くなり、熱
効率が悪化する傾向がある。
The thickness of the elastic layer is preferably from 10 to 500 μm, more preferably from 50 to 400 μm. If the thickness is less than 10 μm, it is difficult to obtain the desired elasticity in the thickness direction. On the other hand, if the thickness exceeds 500 μm, the heat generated in the heating layer hardly reaches the outer peripheral surface of the fixing film, and the thermal efficiency tends to deteriorate. There is.

【0040】表面離型層は定着温度での使用に耐えられ
る上に、トナー離型性を有するものであり、例えばシリ
コーンゴム、フッ素ゴムや、PFA、PTFE、FEP
等のフッ素樹脂が好ましく用いられる。離型層の厚さ
は、5〜100μmが好ましく、10〜50μmがより
好ましい。また、層間接着力を向上させるためにプライ
マー等による接着処理を行ってもよい。
The surface release layer is not only capable of withstanding use at the fixing temperature but also has toner release properties. For example, silicone rubber, fluorine rubber, PFA, PTFE, FEP
And the like are preferably used. The thickness of the release layer is preferably from 5 to 100 μm, more preferably from 10 to 50 μm. In addition, an adhesive treatment with a primer or the like may be performed to improve the interlayer adhesive strength.

【0041】図1に示す電磁誘導発熱用定着ベルトの発
熱層は、上記導電性粒子を含有したポリアミド酸溶液を
原料液として回転遠心成形及びイミド転化を行うことで
得ることができる。ポリアミド酸溶液は、上記のように
カルボン酸二無水物とジアミンを溶媒中で重合反応させ
て得ることができる。機械的強度等の面からカルボン酸
二無水物として、芳香族カルボン酸二無水物が好まし
く、芳香族テトラカルボン酸二無水物であるとより好ま
しい。このような芳香族テトラカルボン酸二無水物の具
体例としては、ピロメリット酸二無水物、3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物、
3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物、2,3,3’,4−ビフェニルテトラカルボン酸
二無水物、2,3,6,7−ナフタレンテトラカルボン
酸二無水物、1,2,5,6−ナフタレンテトラカルボ
ン酸二無水物、1,4,5,8−ナフタレンテトラカル
ボン酸二無水物等が挙げられる。一方ジアミンの例とし
ては、4,4’−ジアミノジフェニルエ−テル、4,
4’−ジアミノジフェニルメタン、3,3’−ジアミノ
ジフェニルメタン、3,3’−ジクロロベンジジン、m
−フェニレンジアミン、p−フェニレンジアミン、ベン
ジジン、3,3’−ジメチルベンジジン等が挙げられ
る。
The heat-generating layer of the fixing belt for electromagnetic induction heating shown in FIG. 1 can be obtained by subjecting a polyamic acid solution containing the above-mentioned conductive particles to a raw material liquid and performing centrifugal molding and imide conversion. The polyamic acid solution can be obtained by polymerizing a carboxylic dianhydride and a diamine in a solvent as described above. From the viewpoint of mechanical strength and the like, the carboxylic dianhydride is preferably an aromatic carboxylic dianhydride, and more preferably an aromatic tetracarboxylic dianhydride. Specific examples of such aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′,
4,4′-benzophenonetetracarboxylic dianhydride,
3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,3,3', 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride , 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride and the like. On the other hand, examples of diamines include 4,4′-diaminodiphenyl ether,
4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3'-dichlorobenzidine, m
-Phenylenediamine, p-phenylenediamine, benzidine, 3,3'-dimethylbenzidine and the like.

【0042】上記カルボン酸二無水物とジアミンを重合
反応させる際の溶媒としては適宜なものを用いうるが、
溶解性等の点から極性溶媒が好ましく用いられる。この
ような極性溶媒としては、N,N−ジアルキルアミド類
が有用であり、例えば低分子量のN,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミド等が挙げら
れ、これらは蒸発、置換または拡散によりポリアミド酸
及びポリアミド酸成形品から容易に除去することができ
る。これ以外の有機極性溶媒として、N,N−ジエチル
ホルムアミド、N,N−ジエチルアセトアミド、N,N
−ジメチルメトキシアセトアミド、ジメチルスルホキシ
ド、ヘキサメチルホスホルトリアミド、N−メチル−2
−ピロリドン、ピリジン、ジメチルスルホキシド等が挙
げられ、これらは単独で使用してもよいし、併せて用い
てもよい。さらに、上記有機極性溶媒にクレゾール、フ
ェノール等のフェノール類、ベンゾニトリル、キシレ
ン、シクロヘキサン、ヘキサン、ベンゼン、トルエン等
を単独又は併せて混合することもできる。なお、ポリア
ミド酸は加水分解して低分子量化するため、ポリアミド
酸の重合は実質上無水条件下で行うことが好ましい。
As a solvent for the polymerization reaction of the carboxylic dianhydride and the diamine, any suitable solvent can be used.
A polar solvent is preferably used from the viewpoint of solubility and the like. As such a polar solvent, N, N-dialkylamides are useful, and examples thereof include low molecular weight N, N-dimethylformamide, N, N-dimethylacetamide and the like, which are obtained by evaporation, substitution or diffusion. It can be easily removed from polyamic acid and polyamic acid molded products. Other organic polar solvents include N, N-diethylformamide, N, N-diethylacetamide, N, N
-Dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphortriamide, N-methyl-2
-Pyrrolidone, pyridine, dimethylsulfoxide and the like, which may be used alone or in combination. Further, phenols such as cresol and phenol, benzonitrile, xylene, cyclohexane, hexane, benzene, toluene and the like can be used alone or in combination with the organic polar solvent. In addition, since the polyamic acid is hydrolyzed to lower the molecular weight, the polymerization of the polyamic acid is preferably carried out under substantially anhydrous conditions.

【0043】上記カルボン酸二無水物(a)とジアミン
(b)とを有機極性溶媒中で反応させることでポリアミ
ド酸が得られる。その際のモノマー濃度(溶媒中におけ
る(a)+(b)の濃度)は、種々の条件に応じて設定
されるが、5〜30重量%が好ましい。また、反応温度
は80℃以下に設定することが好ましく、特に好ましく
は5〜50℃である。
A polyamic acid is obtained by reacting the carboxylic dianhydride (a) with the diamine (b) in an organic polar solvent. At this time, the monomer concentration (the concentration of (a) + (b) in the solvent) is set according to various conditions, but is preferably 5 to 30% by weight. Further, the reaction temperature is preferably set to 80 ° C or lower, particularly preferably 5 to 50 ° C.

【0044】このようにして、カルボン酸二無水物とジ
アミンとを有機極性溶媒中で反応させることでポリアミ
ド酸が生成し、その反応の進行に伴い溶液粘度が上昇す
る。本発明においては、ポリアミド酸溶液が高粘度であ
ると回転遠心成形の際に所望の傾斜分散のベルトを得る
ためには、高い回転速度を長時間与えなければならず、
製造コストや省エネルギーなどの点からある程度低い粘
度のポリアミド酸溶液を用いる必要がある。この点を考
慮した上で、所望の厚み精度や作業性の面から適当な粘
度のポリアミド酸溶液を用いることができる。具体的に
は導電性粒子を含有するポリアミド酸溶液のB型粘度計
における粘度(25℃)が、0.1 10000ポアズ
が好ましく、1〜8000ポアズがより好ましい。
As described above, the polyamic acid is formed by reacting the carboxylic dianhydride with the diamine in the organic polar solvent, and the solution viscosity increases as the reaction proceeds. In the present invention, in order to obtain a belt having a desired inclined dispersion during rotational centrifugal molding when the polyamic acid solution has a high viscosity, a high rotational speed must be given for a long time,
It is necessary to use a polyamic acid solution having a somewhat low viscosity from the viewpoint of production cost and energy saving. In consideration of this point, a polyamic acid solution having an appropriate viscosity can be used in view of desired thickness accuracy and workability. Specifically, the viscosity (25 ° C.) of the polyamic acid solution containing the conductive particles in a B-type viscometer is preferably 0.1 10,000 poise, and more preferably 1 to 8000 poise.

【0045】図1における発熱層は回転遠心成形を用い
て作製される。すなわち、円筒状金型の内表面に上記ポ
リアミド酸溶液を塗布し、該金型を回転遠心させること
により発熱層の厚みを一定にさせる。この時、少なくと
も発熱層である管状体が自身支持できるまでは、一定の
熱量をかけて溶媒等を除去する必要がある。塗布に関し
ては、より容易に所望の密度の発熱部を有する発熱層を
得るために、予め高濃度の導電性粒子を合有したポリア
ミド酸溶液を塗布した後、低濃度もしくは導電性粒子を
含有しないポリアミド酸溶液を塗布し、回転遠心成形を
行うと容易に所望の効果を有した発熱層管状体を得るこ
とができる。発熱層管状体が自身支持できるようになっ
た後、イミド転化反応の完結及び閉環水の除去、溶媒の
除去等を行うために300℃以上の加熱を行う。
The heat generating layer in FIG. 1 is manufactured by using a rotary centrifugal molding. That is, the polyamic acid solution is applied to the inner surface of a cylindrical mold, and the thickness of the heat generating layer is made constant by rotating and centrifuging the mold. At this time, it is necessary to remove a solvent or the like by applying a certain amount of heat at least until the tubular body as the heat generating layer can support itself. Regarding the application, in order to more easily obtain a heat generating layer having a heat generating portion of a desired density, after applying a polyamic acid solution containing conductive particles of high concentration in advance, do not contain low concentration or conductive particles When the polyamic acid solution is applied and subjected to rotary centrifugal molding, a heat generating layer tubular body having a desired effect can be easily obtained. After the heat generating layer tubular body can support itself, heating at 300 ° C. or more is performed to complete the imide conversion reaction, remove ring-closing water, remove the solvent, and the like.

【0046】弾性層及び表面離型層は、発熱層の上に所
望によりプライマー等の接着処理を行い、この上にスプ
レー塗布、ディスペンサー塗布等公知の方法を用いて各
層を形成した後、溶媒の除去、硬化反応を行う。
The elastic layer and the surface release layer are subjected to an adhesive treatment such as a primer on the heat generating layer, if desired, and each layer is formed thereon by a known method such as spray coating or dispenser coating. Remove and cure reaction.

【0047】(転写定着ベルト)本発明の転写定着ベル
トは、自身に一旦転写された転写像を電磁誘導発熱を利
用して記録材に定着する転写定着ベルトであり、以上の
ような電磁誘導発熱用定着ベルトと同一の構成を有する
ものである。つまり、通常の定着ベルトでは、その導電
性などの点で、そのまま転写定着ベルトとして使用でき
ない場合があるが、本発明の電磁誘導発熱用定着ベルト
は、特に構成を変更することなく転写定着ベルトとして
好適に使用することができる。
(Transfer-fixing belt) The transfer-fixing belt of the present invention is a transfer-fixing belt for fixing a transfer image once transferred to itself to a recording material using electromagnetic induction heating. It has the same configuration as the fixing belt. In other words, although a normal fixing belt may not be used as a transfer fixing belt as it is in terms of its conductivity and the like, the fixing belt for electromagnetic induction heating of the present invention may be used as a transfer fixing belt without particularly changing the configuration. It can be suitably used.

【0048】(画像形成装置)一方、本発明の画像形成
装置は、上記いずれかに記載の電磁誘導発熱用定着ベル
トと、そのベルトに渦電流を生じさせるための励磁コイ
ルと、その励磁コイルに電流を印加するための電源とを
備えた定着装置を具備するものである。本発明の画像形
成装置は、従来公知の電磁誘導発熱用定着ベルトに代え
て本発明の定着ベルトを使用することを特徴とするた
め、その他の部分は、同種の画像形成装置における励磁
コイル、印加用電源などが何れも採用できる。例えば、
特開平9−146392号公報、特開平7−29541
1号公報、特開平7−114276号公報等に採用され
る定着装置、画像形成装置、又はそれを構成する各手段
が同様に適用可能である。
(Image Forming Apparatus) On the other hand, an image forming apparatus according to the present invention includes the fixing belt for electromagnetic induction heating described above, an exciting coil for generating an eddy current in the belt, and an exciting coil. The fixing device includes a power supply for applying a current. The image forming apparatus of the present invention is characterized in that the fixing belt of the present invention is used in place of the conventionally known fixing belt for electromagnetic induction heating. Any power supply can be used. For example,
JP-A-9-146392, JP-A-7-29541
No. 1, Japanese Patent Application Laid-Open No. 7-114276, etc., the fixing device, the image forming apparatus, or each unit constituting the same can be similarly applied.

【0049】また、本発明の別の画像形成装置は、上記
の転写定着ベルトと、そのベルトに渦電流を生じさせる
ための励磁コイルと、その励磁コイルに電流を印加する
ための電源とを備えた転写定着装置を具備するものであ
る。かかる画像形成装置は、従来公知の電磁誘導発熱を
利用した転写定着ベルトに代えて本発明の転写定着ベル
トを使用することを特徴とするため、その他の部分は、
同種の画像形成装置における励磁コイル、印加用電源な
どが何れも採用できる。例えば、特開平11−3528
04号公報、特開2000−268952号公報等に採
用される転写定着装置、画像形成装置、又はそれを構成
する各手段が同様に適用可能である。
Further, another image forming apparatus of the present invention includes the above-described transfer / fixing belt, an exciting coil for generating an eddy current on the belt, and a power supply for applying a current to the exciting coil. And a transfer fixing device. Since such an image forming apparatus is characterized in that the transfer fixing belt of the present invention is used in place of the conventionally known transfer fixing belt utilizing electromagnetic induction heating, the other parts are
Any of an excitation coil, an application power supply, and the like in the same type of image forming apparatus can be adopted. For example, JP-A-11-3528
The transfer fixing device, the image forming device, and the respective units constituting the same, which are adopted in JP-A No. 04, JP-A-2000-268952, etc., can be similarly applied.

【0050】[0050]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and the like specifically showing the configuration and effects of the present invention will be described below.

【0051】[実施例1]N−メチル−2−ピロリドン
(NMP)中に、3,3’,4,4’−ビフェニルテト
ラカルボン酸二無水物とp−フェニレンジアミンの略等
モルを(固形分濃度20%)溶解し、窒素雰囲気中にお
いて室温で攪拌しながら反応させて、1500ポアズの
ポリアミド酸溶液を得た。このポリアミド酸溶液中に平
均粒径2μmの銅粉末(密度8.9×10-3g/L)を
ポリイミド固形分に対し、7容量%となるように混合、
分散した。次いで円筒状金型(内径90mm,長さ50
0mm)の内面に上記ポリアミド酸溶液をディスペンサ
ーで厚さ400μm塗布後、1500rpmで10分間
回転させ均一な塗布面を得た。次に3000rpmで回
転させながら、金型の外側より60℃の熱風を60分間
あてた後、150℃で50分間加熱し、その後300℃
まで3℃/分の昇温速度で昇温し、更に300℃で20
分間加熱し、溶媒の除去、脱水閉環水の除去、及びイミ
ド転化反応を行った。その後室温に戻し、金型から剥離
し、総厚74〜78μmのシームレス状のベルトを得
た。このベルトの断面SEM観察を行ったところ、ベル
トの外表面に銅粉が偏在した状態で6〜7μmの均一な
厚みの発熱部を形成していた。このベルトを励磁コイル
に対向させて配置し、コイルに電流(例えば周波数10
0kHz)を流すと発熱層は発熱した。
Example 1 Approximately equimolar amounts of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine were added to N-methyl-2-pyrrolidone (NMP) (solid (20% concentration) and dissolved in a nitrogen atmosphere at room temperature with stirring to obtain a 1500 poise polyamic acid solution. A copper powder having an average particle size of 2 μm (density of 8.9 × 10 −3 g / L) was mixed with the polyamic acid solution so as to be 7% by volume with respect to the solid content of the polyimide.
Dispersed. Next, a cylindrical mold (inner diameter 90 mm, length 50
(0 mm) on the inner surface with a dispenser to apply a 400 μm-thick polyamic acid solution, and then rotated at 1500 rpm for 10 minutes to obtain a uniform applied surface. Next, while rotating at 3000 rpm, 60 ° C. hot air is blown from the outside of the mold for 60 minutes, and then heated at 150 ° C. for 50 minutes, and then 300 ° C.
Temperature at a rate of 3 ° C./min.
The mixture was heated for 1 minute to remove the solvent, remove the dehydrated ring-closing water, and perform the imide conversion reaction. Thereafter, the temperature was returned to room temperature, and the resultant was peeled from the mold to obtain a seamless belt having a total thickness of 74 to 78 μm. When a cross-sectional SEM observation of this belt was performed, a heating portion having a uniform thickness of 6 to 7 μm was formed in a state where copper powder was unevenly distributed on the outer surface of the belt. This belt is arranged so as to face the exciting coil, and a current (for example, a frequency of 10
(0 kHz), the heating layer generated heat.

【0052】[実施例2]実施例1における銅粉をニッ
ケル粉末(平均粒径1.8μm、密度8.9×10-3
/L)とし、ポリイミド固形分に対し、28容量%とし
た以外は同様にベルトを作製し、73〜78μmのシー
ムレス状のベルトを得た。このベルトの断面SEM観察
を行ったところ、ベルトの外表面にニッケル粉末が偏在
した状態で約20μmの均一な厚みの発熱部を形成して
いた。このベルトを励磁コイルに対向させて配置し、コ
イルに電流を流すと発熱層は発熱した。
Example 2 The copper powder used in Example 1 was replaced with nickel powder (average particle size 1.8 μm, density 8.9 × 10 −3 g).
/ L), and a belt was produced in the same manner except that the volume was 28% by volume with respect to the solid content of the polyimide, to obtain a seamless belt of 73 to 78 μm. When a cross-sectional SEM observation of this belt was performed, a heating portion having a uniform thickness of about 20 μm was formed in a state where the nickel powder was unevenly distributed on the outer surface of the belt. When the belt was arranged so as to face the exciting coil and a current was applied to the coil, the heat generating layer generated heat.

【0053】[実施例3]実施例1と同様の方法で作製
した銅粉入りのポリアミド酸溶液(3000ポアズ)を
円筒状金型の内面に塗布後、弾丸状走行体にて自重落下
させ厚みが400μmの均一な塗布面を得た。次に金型
を2500rpmで回転させながら金型の外側から60
℃の熱風を60分間あてた後、150℃で50分間加
熱、その後300℃まで3℃/分の昇温速度で昇温し、
更に300℃で20分間加熱し、溶媒の除去、脱水閉環
水の除去、及びイミド転化反応を行い、次いで室温に戻
して金型から剥離し、総厚73〜77μmのシームレス
状のベルトを得た。このベルトの断面SEM観察を行っ
たところ、ベルトの外表面に銅粉が偏在した状態で6〜
7μmの均一な厚みの発熱部を形成していた。このベル
トを励磁コイルに対向させて配置し、コイルに電流を流
すと発熱層は発熱した。
[Example 3] A polyamic acid solution containing copper powder (3000 poise) prepared in the same manner as in Example 1 was applied to the inner surface of a cylindrical mold, and was then dropped by its own weight using a bullet-shaped traveling body. Obtained a uniform coating surface of 400 μm. Next, while rotating the mold at 2500 rpm, 60
℃ hot air for 60 minutes, then heated at 150 ℃ for 50 minutes, then heated up to 300 ℃ at a rate of 3 ℃ / min,
The mixture was further heated at 300 ° C. for 20 minutes to remove the solvent, remove the dehydrated ring-closing water, and perform the imide conversion reaction, and then returned to room temperature and peeled off the mold to obtain a seamless belt having a total thickness of 73 to 77 μm. . When a cross-sectional SEM observation of this belt was performed, it was found that copper powder was unevenly distributed on the outer surface of the belt,
A heat generating portion having a uniform thickness of 7 μm was formed. When the belt was arranged so as to face the exciting coil and a current was applied to the coil, the heat generating layer generated heat.

【0054】[実施例4]NMP中にカーボンブラック
(ポリイミド樹脂固形分に対し23重量%)を加え、ボ
ールミルで8時間攪拌して均一に分散させた。このカー
ボンブラック分散液に3,3’,4,4’−ビフェニル
テトラカルボン酸二無水物とp−フェニレンジアミンの
略等モルを(固形分濃度20%)溶解し、窒素雰囲気中
において室温で攪拌しながら反応させて、1500ポア
ズのカーボンブラック分散ポリアミド酸溶液を得た。こ
のポリアミド酸溶液中に平均粒径2μmの銅粉末(密度
8.9×10-3g/L)をポリイミド固形分に対し、7
容量%となるように混合、分散した。次いで円筒状金型
(内径320mm,長さ500mm)の内面に上記ポリ
アミド酸溶液をディスペンサーで厚さ400μm塗布
後、1500rpmで10分間回転させ均一な塗布面を
得た。次に2500rpmで回転させながら、金型の外
側より60℃の熱風を60分間あてた後、150℃で5
0分間加熱し、その後300℃まで3℃/分の昇温速度
で昇温し、更に300℃で20分間加熱し、溶媒の除
去、脱水閉環水の除去、及びイミド転化反応を行った。
その後室温に戻し、金型から剥離し、総厚74〜77μ
mのシームレス状のベルトを得た。このベルトの断面S
EM観察を行ったところ、ベルトの外表面に銅粉が偏在
した状態で6〜7μmの均一な厚みの発熱部を形成し、
その他の基層部分はカーボンブラックが均一に分散して
いた。このベルトの内表面の表面抵抗率は1.5×10
11Ω/□であり、感光体上のトナー像を転写手段により
転写するための転写機能を発現できることが確認でき
た。このベルトを励磁コイルに対向させて配置し、コイ
ルに電流を流すと発熱層は発熱した。なお、表面抵抗率
の測定はハイレスタUP MCP−HTP16(三菱化
学社製、プローブ:UR−100)にて印加電圧100
V、10秒後、測定条件25℃、60%RHでの表面抵
抗率を測定した。
Example 4 Carbon black in NMP
(23% by weight with respect to the solid content of the polyimide resin).
The mixture was uniformly dispersed by stirring with a mill for 8 hours. This car
3,3 ', 4,4'-biphenyl in bon black dispersion
Of tetracarboxylic dianhydride and p-phenylenediamine
Dissolve approximately equimolar (solids concentration 20%), and in nitrogen atmosphere
At room temperature with stirring at 1500 pores
To obtain a carbon black-dispersed polyamic acid solution. This
Copper powder having an average particle size of 2 μm (density
8.9 × 10-3g / L) with respect to the polyimide solid content is 7
The mixture was mixed and dispersed so as to be a volume%. Then cylindrical mold
(Inner diameter 320mm, length 500mm)
Amidic acid solution is applied with a thickness of 400 μm using a dispenser.
Then, rotate at 1500 rpm for 10 minutes to obtain a uniform coating surface.
Obtained. Next, while rotating at 2500 rpm,
After blowing hot air at 60 ° C from the side for 60 minutes,
Heat for 0 minutes, then ramp up to 300 ° C at 3 ° C / min
And further heated at 300 ° C for 20 minutes to remove the solvent.
Thereafter, dehydration ring-closing water was removed, and an imide conversion reaction was performed.
Then return to room temperature, peel from the mold, total thickness 74-77μ
m was obtained. Section S of this belt
EM observation revealed that copper powder was unevenly distributed on the outer surface of the belt
In this state, a heating section having a uniform thickness of 6 to 7 μm is formed,
Other base layers have carbon black evenly dispersed
Was. The surface resistivity of the inner surface of this belt is 1.5 × 10
11Ω / □, and transfer the toner image on the photoreceptor
It can be confirmed that the transcription function for transcription can be expressed
Was. This belt is placed facing the excitation coil,
When a current was applied to the heating layer, the heating layer generated heat. The surface resistivity
Is measured by Hiresta UP MCP-HTP16 (Mitsubishi Chemical
Probe: UR-100), applied voltage 100
V, 10 seconds later, surface resistance at 25 ° C and 60% RH under measurement conditions.
The resistance was measured.

【0055】[比較例]弾丸状走行体を自重落下させた
後、金型を回転させなかったこと以外は、実施例3と同
様に作製し、総厚72〜78μmのシームレス状のベル
トを得た。このベルトの断面SEM観察を行ったとこ
ろ、断面全体に均一に銅粉が分散していた。このベルト
を励磁コイルに対向させて配置し、コイルの電流を流し
ても発熱層は発熱しなかった。
Comparative Example A seamless belt having a total thickness of 72 to 78 μm was obtained in the same manner as in Example 3 except that the mold was not rotated after the bullet-shaped traveling body was dropped by its own weight. Was. When a cross-sectional SEM observation of this belt was performed, copper powder was uniformly dispersed throughout the cross-section. This belt was arranged so as to face the exciting coil, and the heating layer did not generate heat even when the current of the coil was passed.

【0056】以上の結果を表1に示す。Table 1 shows the above results.

【0057】[0057]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁誘導発熱用定着ベルトの一例を示
す断面図
FIG. 1 is a cross-sectional view illustrating an example of a fixing belt for electromagnetic induction heating according to the present invention.

【符号の説明】 1 発熱層 2 発熱部(導電性粒子の偏在層) 3 弾性層 4 表面離型層[Explanation of Signs] 1 Heating layer 2 Heating portion (distributed layer of conductive particles) 3 Elastic layer 4 Surface release layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 正和 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 溝部 敬三 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 2H033 BA11 BA12 BE06 BE09 3K059 AB19 CD44 CD62 CD63  ──────────────────────────────────────────────────続 き Continued on the front page (72) Masakazu Sugimoto 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Keizo Mizobe 1-1-2 Shimohozumi, Ibaraki-shi, Osaka F-term in Nitto Denko Corporation (reference) 2H033 BA11 BA12 BE06 BE09 3K059 AB19 CD44 CD62 CD63

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも導電性粒子を含有した耐熱性
樹脂よりなる発熱層と、表面に設けられた表面離型層と
を備える電磁誘導発熱用定着ベルトにおいて、前記発熱
層は、前記導電性粒子が外表面付近に偏在してなる発熱
部を有し、その発熱部の厚みが50μm以下で、その密
度が前記導電性粒子の0.5倍以上1.0倍未満である
ことを特徴とする電磁誘導発熱用定着ベルト。
1. A fixing belt for electromagnetic induction heating comprising: a heat generating layer made of a heat-resistant resin containing at least conductive particles; and a surface release layer provided on a surface of the fixing belt, wherein the heat generating layer includes the conductive particles. Has a heating part unevenly distributed near the outer surface, the thickness of the heating part is 50 μm or less, and the density is 0.5 times or more and less than 1.0 times of the conductive particles. Fixing belt for electromagnetic induction heating.
【請求項2】 前記発熱層が回転遠心成形により形成さ
れていると共に、前記発熱部の密度が5×10-3g/L
以上である請求項1記載の電磁誘導発熱用定着ベルト。
2. The heating layer is formed by rotary centrifugal molding, and the density of the heating section is 5 × 10 −3 g / L.
The fixing belt for electromagnetic induction heating according to claim 1, wherein:
【請求項3】 前記導電性粒子がニッケル、鉄、コバル
ト及びこれらを含有する合金からなる群より選ばれる強
磁性材料の1種以上からなり、前記発熱部の厚みが1〜
50μmである請求項1又は2に記載の電磁誘導発熱用
定着ベルト。
3. The conductive particles are made of at least one of ferromagnetic materials selected from the group consisting of nickel, iron, cobalt and alloys containing these, and the thickness of the heat generating portion is 1 to 3.
The fixing belt for electromagnetic induction heating according to claim 1, wherein the fixing belt has a thickness of 50 μm.
【請求項4】 前記導電性粒子が銅及び銅を含有する合
金からなる群より選ばれる非磁性材料の1種以上からな
り、前記発熱部の厚みが20μm以下である請求項1又
は2に記載の電磁誘導発熱用定着ベルト。
4. The heat generating portion according to claim 1, wherein the conductive particles are made of one or more nonmagnetic materials selected from the group consisting of copper and an alloy containing copper, and the thickness of the heat generating portion is 20 μm or less. Fixing belt for electromagnetic induction heating.
【請求項5】 請求項1〜4いずれかに記載の電磁誘導
発熱用定着ベルトと、そのベルトに渦電流を生じさせる
ための励磁コイルと、その励磁コイルに電流を印加する
ための電源とを備えた定着装置を具備する画像形成装
置。
5. The fixing belt for electromagnetic induction heating according to claim 1, an exciting coil for generating an eddy current in the belt, and a power supply for applying a current to the exciting coil. Image forming apparatus provided with a fixing device provided with the fixing device.
【請求項6】 自身に一旦転写された転写像を電磁誘導
発熱を利用して記録材に定着する転写定着ベルトにおい
て、請求項1〜4いずれかに記載の電磁誘導発熱用定着
ベルトからなることを特徴とする転写定着ベルト。
6. A transfer fixing belt for fixing a transfer image once transferred to itself to a recording material by utilizing electromagnetic induction heating, comprising the fixing belt for electromagnetic induction heating according to any one of claims 1 to 4. A transfer fixing belt characterized by the following.
【請求項7】 請求項6記載の転写定着ベルトと、その
ベルトに渦電流を生じさせるための励磁コイルと、その
励磁コイルに電流を印加するための電源とを備えた転写
定着装置を具備する画像形成装置。
7. A transfer fixing device comprising: the transfer fixing belt according to claim 6; an exciting coil for generating an eddy current in the belt; and a power supply for applying a current to the exciting coil. Image forming device.
JP2001092150A 2000-07-05 2001-03-28 Fixing belt for electromagnetic induction heating and transfer fixing belt Pending JP2002082550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092150A JP2002082550A (en) 2000-07-05 2001-03-28 Fixing belt for electromagnetic induction heating and transfer fixing belt

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000203888 2000-07-05
JP2000-203888 2000-07-05
JP2001092150A JP2002082550A (en) 2000-07-05 2001-03-28 Fixing belt for electromagnetic induction heating and transfer fixing belt

Publications (1)

Publication Number Publication Date
JP2002082550A true JP2002082550A (en) 2002-03-22

Family

ID=26595437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092150A Pending JP2002082550A (en) 2000-07-05 2001-03-28 Fixing belt for electromagnetic induction heating and transfer fixing belt

Country Status (1)

Country Link
JP (1) JP2002082550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7299003B2 (en) 2004-01-29 2007-11-20 Ricoh Company, Limited Fixing unit and image forming apparatus providing a quick start-up and reduction in energy consumption
EP2410385A1 (en) * 2010-07-24 2012-01-25 Canon Kabushiki Kaisha Image heating device and pressing roller for use with the image heating device
KR20150036996A (en) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 exothermic fixing belt and manufacturing method the same
KR20150036997A (en) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 manufacturing method of exothermic fixing belt

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7299003B2 (en) 2004-01-29 2007-11-20 Ricoh Company, Limited Fixing unit and image forming apparatus providing a quick start-up and reduction in energy consumption
EP2410385A1 (en) * 2010-07-24 2012-01-25 Canon Kabushiki Kaisha Image heating device and pressing roller for use with the image heating device
CN102346415A (en) * 2010-07-24 2012-02-08 佳能株式会社 Image heating device and pressing roller for use with the image heating device
CN102346415B (en) * 2010-07-24 2014-07-09 佳能株式会社 Image heating device and pressing roller for use with the image heating device
US9110416B2 (en) 2010-07-24 2015-08-18 Canon Kabushiki Kaisha Image heating device and pressing roller for use with the image heating device
KR20150036996A (en) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 exothermic fixing belt and manufacturing method the same
KR20150036997A (en) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 manufacturing method of exothermic fixing belt
KR101592983B1 (en) * 2013-09-30 2016-02-11 코오롱인더스트리 주식회사 exothermic fixing belt and manufacturing method the same
KR101592980B1 (en) * 2013-09-30 2016-02-11 코오롱인더스트리 주식회사 manufacturing method of exothermic fixing belt

Similar Documents

Publication Publication Date Title
JP5109168B2 (en) Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus
US20080149211A1 (en) Tubing and Process for Production Thereof
JP2009109998A (en) Heat generation fixing roll and image fixing device
JP5533818B2 (en) Heat generating belt for fixing device and image forming apparatus
JP4619208B2 (en) Polyimide resin belt with isotropic dielectric constant in the surface direction
JP5768725B2 (en) Endless heating element, heating belt and fixing device
JP5129059B2 (en) Polyimide tubular body and method for producing the same
JP2002082550A (en) Fixing belt for electromagnetic induction heating and transfer fixing belt
US20020076515A1 (en) Heat resistant resin film with metal thin film, manufacturing method of the resin film, endless belt, manufacturing method of the belt, and image forming apparatus
JP2002162836A (en) Electrically semiconductive seamless belt
JP2011209578A (en) Tubular body and method for manufacturing the same
JP4071651B2 (en) Composite belt and manufacturing method thereof
JPH09274402A (en) Fixing film and manufacture thereof and fixing device and image forming device
JP2001215821A (en) Fixing belt and method of producing the same
JP2007163639A (en) Endless belt and its manufacturing method, and electrophotographic device equipped with same
JP2001040102A (en) Tubular article
JP2005017720A (en) Heat conductive seamless belt
JP2006301196A (en) Seamless belt
JP2003177630A (en) Transferring and fixing belt
JP2005264047A (en) Sheet-like film and method for manufacturing the same
JP2003280406A (en) Transferring fixing belt
JP2004291410A (en) Method of manufacturing thermosetting resin molded body, and thermosetting resin molded body manufactured by the method
JP2003270967A (en) Transfer fixing belt
JP2013025120A (en) Heat-generating fixing belt
JPH09227692A (en) Tubular body and its preparation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225