JP3921383B2 - Ceramic circuit board and semiconductor module - Google Patents

Ceramic circuit board and semiconductor module Download PDF

Info

Publication number
JP3921383B2
JP3921383B2 JP2001362389A JP2001362389A JP3921383B2 JP 3921383 B2 JP3921383 B2 JP 3921383B2 JP 2001362389 A JP2001362389 A JP 2001362389A JP 2001362389 A JP2001362389 A JP 2001362389A JP 3921383 B2 JP3921383 B2 JP 3921383B2
Authority
JP
Japan
Prior art keywords
metal
circuit board
brazing material
ceramic
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001362389A
Other languages
Japanese (ja)
Other versions
JP2003163429A (en
Inventor
健 古桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001362389A priority Critical patent/JP3921383B2/en
Publication of JP2003163429A publication Critical patent/JP2003163429A/en
Application granted granted Critical
Publication of JP3921383B2 publication Critical patent/JP3921383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基板の両面に金属回路板を取着し、それらをセラミック基板の内部に配置した金属柱により接続したセラミック回路基板に関するものである。
【0002】
【従来の技術】
近年、パワーモジュール用基板やスイッチングモジュール用基板等の回路基板として、セラミック基板上に被着させたメタライズ金属層に銀−銅合金等のロウ材を介して銅等から成る金属回路板を接合させたセラミック回路基板や、セラミック基板上に銀−銅共晶合金にチタン・ジルコニウム・ハフニウムあるいはその水素化物を添加した活性金属ロウ材を介して銅等から成る金属回路板を直接接合させたセラミック回路基板、あるいはセラミック基板上に銅板を載置して加熱し、セラミック基板と銅板とを直接接合させた、いわゆるDBC(Direct Bond Copper)法によって作製されたセラミック回路基板が用いられている。
【0003】
また、これら各セラミック回路基板は、金属回路板の実装密度を高めるために、セラミック基板の上下両面に金属回路板を接合させておき、これら上下両面の金属回路板間をセラミック基板に設けた貫通孔内に配置した金属柱により電気的に接続することが行なわれている。
【0004】
なお、これらセラミック回路基板、例えばセラミック基板上に活性金属ロウ材を介して銅等から成る金属回路板を直接接合させたセラミック回路基板は、一般に酸化アルミニウム質焼結体・窒化アルミニウム質焼結体・窒化珪素質焼結体・ムライト質焼結体等の電気絶縁性のセラミックス材料から成り、厚み方向に貫通する貫通孔を設けたセラミック基板を準備し、次にこのセラミック基板の貫通孔内に金属柱を配置し、銀ロウ粉末(銀と銅との合金粉末)に有機溶剤や溶媒を添加混合して得たロウ材ペーストを金属柱両面に塗布するとともに、セラミック基板上に間に銀−銅合金にチタン・ジルコニウム・ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属ロウ等のロウ材を挟んで所定パターンの金属回路板を載置当接させ、しかる後、これを還元雰囲気中にて約900℃の温度に加熱し、ロウ材ペーストおよびロウ材を溶融させて、メタライズ金属層と金属回路板とを活性金属ロウ材を介して、および金属回路板と金属柱とを銀ロウ等のロウ材を介して接合することによって製作される。
【0005】
このように製作されたセラミック回路基板は、IGBT(Insulated Gate Bipolar Transistor)やMOS−FET(Metal Oxide Semiconductor - Field Effect Transistor)等の半導体素子等の電子部品を半田等の接着剤を介して実装した後、外部入出力用の端子が一体成型された樹脂ケースに組み立てられ、半導体モジュールとなる。この半導体モジュールは、ロボット等の産業機器から電車の駆動部や電気自動車等の幅広い用途に使用され、厳しい環境下での高い信頼性が要求されている。
【0006】
【発明が解決しようとする課題】
しかしながら、パワーモジュールに流れる電流が500Aを超えるような大電流や数kHzに達する高周波になると、従来のセラミック回路基板は金属回路板と金属柱の間にメニスカスがなく垂直に接合されているので、金属回路板から金属柱へ、あるいは金属柱から金属回路板へ電流が流れる際に、金属板の表面や金属柱の側面の電流密度が高くなる現象により、接合された金属板の表面と金属柱の側面とのなすコーナー部分に電流が集中し、局所的にジュール発熱する。その熱が金属回路板上に半田等の接着材を介して接着固定される半導体素子等の電子部品に作用し、電子部品が高温となるため、電子部品を安定に作動させることができないという問題点を有していた。
【0007】
本発明は以上のような従来の技術の問題点を解決すべく案出されたものであり、その目的は、金属柱と金属回路板との接合部に電流が集中することによる発熱を抑えた、信頼性の高いセラミック回路基板を提供することにある。
【0008】
【課題を解決するための手段】
本発明のセラミック回路基板は、貫通孔を有するセラミック基板と、前記貫通孔内に配置された金属柱と、銅からなり、前記貫通孔を塞ぐ金属回路板とを有し、前記セラミック基板と前記金属回路板とが活性金属ロウ材を介して接合され、前記金属柱と前記金属回路板とが銀−銅共晶合金から成る銀ロウ材を介して接合されており、前記銀ロウ材は、前記金属柱の端部から前記金属回路板に向かって広がっていることを特徴とする。
【0009】
また、本発明のセラミック回路基板は、前記金属柱の厚みが前記セラミック基板の厚みよりも薄いことを特徴とする
【0010】
また、本発明のセラミック回路基板は、前記活性金属ロウ材が前記貫通孔の外周よりも100μm以上外側に配置されていることを特徴とする。
【0011】
また、本発明の半導体モジュールは、上述のいずれかに記載のセラミック回路基板と、該セラミック回路基板上に接着剤を介して固定された電子部品とを有することを特徴とする。
【0012】
【発明の実施の形態】
次に、本発明のセラミック回路基板について図面に基づいて説明する。
【0013】
図1は本発明のセラミック回路基板の実施の形態の一例を示す断面図であり、1はセラミック基板、2は活性金属ロウ材、3は金属回路板、4はセラミック基板1の貫通孔、5は金属柱、6はロウ材である。このセラミック回路基板は、セラミック基板1の上下両面に所定パターンの金属回路板3が活性金属ロウ材2を介して取着されており、同時にセラミック基板1に設けた厚み方向に貫通する貫通孔4内に金属柱5がその両端面をロウ材6を介して金属回路板3に接合されて配置されているものである。
【0014】
セラミック基板1に設けた貫通孔4内に配置されている金属柱5は、その両端が金属回路板3にロウ材6を介して接合されており、これによってセラミック基板1の上下両面に取着されている金属回路板3は金属柱5およびロウ材6を介して電気的に接続されることとなる。
【0015】
貫通孔4を有するセラミック基板1は、酸化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・窒化アルミニウム質焼結体・炭化珪素質焼結体等の電気絶縁材料で形成されている。例えば、窒化珪素質焼結体から成る場合であれば、窒化珪素・酸化アルミニウム・酸化マグネシウム・酸化イットリウム等の原料粉末に適当な有機バインダ・可塑剤・溶剤を添加混合して泥漿状となすとともに、この泥漿物に従来周知のドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、次にこのセラミックグリーンシートに適当な打ち抜き加工を施して所定形状となすとともに、必要に応じて複数枚を積層して成形体となし、しかる後、これを窒素雰囲気等の非酸化性雰囲気中にて1600〜2000℃の温度で焼成することによって製作される。
【0016】
金属回路板3は銅もしくはアルミニウムから成り、銅もしくはアルミニウムのインゴット(塊)に圧延加工法や打ち抜き加工法等、従来周知の金属加工法を施すことによって、例えば500μmの厚みで、所定パターンに形成される。
【0017】
金属回路板3は、銅から成る場合はこれを無酸素銅で形成しておくと、無酸素銅は活性金属ロウ材2を介して取着する際に銅の表面が銅中に存在する酸素により酸化されることなく活性金属ロウ材2との濡れ性が良好となるので、金属回路板3のセラミック基板1への活性金属ロウ材2を介しての取着接合が強固となる。従って、金属回路板3は、銅から成る場合はこれを無酸素銅で形成しておくことが好ましい。
【0018】
活性金属ロウ材2は、金属回路板3が銅から成る場合であれば、銀−銅共晶合金にチタン・ジルコニウム・ハフニウム等の金属もしくはその水素化物を2〜5重量%添加させたものが用いられ、また金属回路板3がアルミニウムから成る場合であれば、アルミニウム−シリコン共晶合金にチタン・ジルコニウム・ハフニウム等の金属もしくはその水素化物を2〜5重量%添加させたものが用いられる。
【0019】
金属柱5は、比抵抗が3μΩ・cm以下と非常に小さい良導電性の銅(1.72μΩ・cm)もしくはアルミニウム(2.65μΩ・cm)等により形成しておくと、金属柱5に大きな電流が流れたとしても金属回路板3・金属柱5およびその接続部分からジュール熱による大量の熱が発生することがなく、その結果、金属回路板3上に半田等の接着材を用いて接着固定される半導体素子等の電子部品を常に適温として、長期間にわたって正常かつ安定に作動させることが可能となる。
【0020】
また、金属柱5は、銅から成る場合にはこれを無酸素銅で形成しておくことが好ましい。これは、ロウ付けの際に金属回路板3の表面が金属柱5の銅中に存在する酸素により酸化されることがなく、活性金属ロウ材2との濡れ性が良好となり、金属回路板3のセラミック基板1への活性金属ロウ材2を介しての接合が強固となるからである。
【0021】
金属柱5の長さはセラミック基板1の厚みに対して0〜150μm短いものとすることが好ましい。金属柱5がセラミック基板1の厚みより長いと、金属柱5が上下に取着された金属回路板3を突き上げてしまい、セラミック基板1と上下の金属回路板3とが良好に接合されなくなってしまう。また、セラミック基板1の厚みに対して150μmより短いと、金属柱5に多くのロウ材6を被着させる必要がありコストアップになる他、ロウ材6を加熱溶融した際に金属柱5が上下に移動したり傾いたりして、金属柱5と金属回路板3とを良好に接合することが困難となる傾向がある。
【0022】
ロウ材6は、金属回路板3が銅から成る場合であれば、銀−銅共晶合金から成る銀ロウ材が、また金属回路板3がアルミニウムから成る場合であれば、アルミニウム−シリコン共晶合金から成るアルミニウムロウ材が用いられる。ロウ材6は貫通孔4の内部に配置され、金属柱5と金属回路板3とを接合するものであり、活性金属ロウ材2とは区別されて配置されている。
【0023】
本発明のセラミック回路基板においては、ロウ材6は金属柱5の端部から金属回路板3にかけて広がっていることが重要である。このようにロウ材6が広がっていることにより、電流はロウ材6に設けたメニスカス中を滑らかに流れ、金属柱5と金属回路板3とのロウ材6による接合部に電流の集中が発生しにくく、局所的な発熱が少なくなるため、金属回路板3上に半田等の接合材を用いて接着固定される半導体素子等の電子部品は常に適温となり、長期間にわたって正常かつ安定に作動させることが可能となる。
【0024】
また、そのロウ材6の広がりの幅は、金属柱5の最大幅の5%以上の幅で、金属柱5の全周にわたって広がっていることが望ましい。この最大幅は、図2(a)〜(c)にそれぞれ平面図で示すように、(a)のように金属柱5の断面が円形の場合であれば、その直径A1に相当し、(b)のように金属柱5の断面が四角形であれば、その最大の対角線A2の長さに相当し、(c)のように金属柱5の断面が十字形であれば、金属柱5の断面の最大の長さA3に相当する。なお、図2(a)〜(c)において、金属柱5の周りの点線は、金属回路板3側におけるロウ材6の広がりを示しており、この広がりの幅a1・a2・a3が、それぞれ最大幅A1・A2・A3の5%以上であることが望ましい。
【0025】
このロウ材6の広がりが5%以下だと、500Aかつ数kHzを超える大電流が金属回路板3から金属柱5へ大電流が流れ込む、あるいはその逆に金属柱5から金属回路板3に流れ出す際に、メニスカス内を滑らかに電流が通過することができないため、接合部分のコーナーに電流が集中し、局所的にジュール発熱する。その結果セラミック回路基板が高温になり、その熱が金属回路板上に半田等の接着材を介して接着固定される半導体素子等の電子部品に作用し、電子部品を高温として安定に作動させることが困難になるという傾向がある。
【0026】
また、ロウ材6は金属柱5の全周にわたって広がっているので、広がりが小さいことにより電流が集中し易くなる部分が存在しないことから、接合部分のコーナーに電流が集中し局所的にジュール発熱するということがない。
【0027】
貫通孔4の内壁面と金属柱5の外壁面との間の空間の長さ(両者の断面形状が円形の場合は、貫通孔4の半径と金属柱5の半径との差に相当する)は、30〜200μmの範囲としておくことが好ましい。これは、この空間の長さが30μm未満の場合は、セラミック回路基板に熱が加わった際に、セラミック基板1と金属柱5との熱膨張係数の差によって膨張した金属柱5の外壁面がセラミック基板1の貫通孔4の内壁面を押し広げようとするのをセラミック基板1の貫通孔4の内壁面と金属柱5の外壁面との間にある空間で確実に吸収することが困難となり、金属柱5の外壁面がセラミック基板1の貫通孔4の内壁面を押し広げてしまい、セラミック基板1にクラックや割れを発生させてしまうことがあるためである。また、この空間の長さが200μmを超えた場合は、セラミック基板1の貫通孔4にロウ材6付き金属柱5を挿着する際に、ロウ材6付き金属柱5が傾いてしまい金属回路板3と確実に接続できなくなることがあるためである。
【0028】
また、セラミック基板1と金属回路板3とを接合する活性金属ロウ材2は、貫通孔4の外周よりも100μm以上外側に配置することが望ましい。このことにより、金属柱5の熱膨張とセラミック基板1の熱膨張との差による熱応力がセラミック基板1の貫通孔4の周辺のマイクロクラックに作用してセラミック基板1にクラックや割れを発生させることがなくなり、また製造工程において活性金属ロウ材2が貫通孔4内に垂れ込んで、金属回路板3と金属柱5とを接合するためのロウ材6と融合してロウ材の組成が変化することがないので、金属回路板3とセラミック基板1および金属回路板3と金属柱5との接合が良好で、搭載される半導体素子等の電子部品を正常かつ安定に作動させることのできる信頼性の高いセラミック回路基板を得ることが可能となる。
【0029】
貫通孔4の内壁面と金属柱5の外壁面との間に空間を設けたり、セラミック基板1と金属回路板3とを接合する活性金属ロウ材2を貫通孔4の外周よりも100μm以上外側に配置したりすると、上述した効果以外にも、ロウ材6を金属柱5の端部から金属回路板4にかけて広がるような形状のメニスカスを形成しやすくなるという効果がある。
【0030】
貫通孔4を有するセラミック基板1への活性金属ロウ材2を使用しての金属回路板3の取着は、以下のようにして行なうとよい。
【0031】
まず、活性金属ロウ材2は、例えば金属回路板3が銅から成る場合であれば、銀−銅共晶合金にチタン・ジルコニウム・ハフニウム等の金属もしくはその水素化物を2〜5重量%添加させたものに有機溶剤・溶媒を混合して活性金属ロウ材ペーストを作製し、次にセラミック基板1の上下両面にこの活性金属ロウ材ペーストを従来周知のスクリーン印刷法を採用することによって約10〜40μmの厚みで所定パターンに印刷塗布する。
【0032】
次に、セラミック基板1の貫通孔4内にロウ材6付き金属柱5を挿入配置するとともに、セラミック基板1の上下両面に印刷塗布されている活性金属ロウ材ペースト上に金属回路板3を載置し、しかる後、これを真空中もしくは中性または還元雰囲気中にて、所定温度(銅の場合は約900℃)で加熱処理し、活性金属ロウ材ペーストおよびロウ材6付き金属柱5の両端面に被着されたロウ材6を溶融せしめ、溶融した活性金属ロウ材2でセラミック基板1と金属回路板3を、ロウ材6で金属回路板3と金属柱5とを接合させる。
【0033】
上述した製造方法において、ロウ材6付き金属柱5は、セラミック基板1の厚みに対して0〜150μm短い金属柱5の両端にロウ材6を被着して、セラミック基板1の厚みに対して40〜140μm長くしたものがよい。これは、金属柱5の長さがセラミック基板1の厚みよりも0〜150μm短いと、前述したように金属柱5が上下に取着された金属回路板3を突き上げることがなく、セラミック基板1とその両面の金属回路板3との良好な接合を損なうことがないからであり、また、ロウ材6付き金属柱5の長さがセラミック基板1の厚みに対して40〜140μm長いと、その両端のロウ材6が確実に上下の金属回路板3と接触し、その後の溶融工程で金属柱5と金属回路板3とがロウ材6を介して確実に接合され、信頼性の高い電気的接合が得られるからである。
【0034】
ロウ材6付き金属柱5は、例えば、銅もしくはアルミニウムのインゴット(塊)に圧延加工法や打ち抜き加工法・引き抜き加工法等の従来周知の金属加工法を施すことによって円柱状に形成して金属柱5を作製し、その後、金属柱5の上下両端面に、銅の場合には銀ロウ材を、アルミニウムの場合にはアルミニウムロウ材を被着させて作製される。また、他の方法としては、ロウ材/銅板もしくはアルミニウム板/ロウ材の順で積層し、圧延加工法によって所定の厚みにしたものに打ち抜き加工法・引き抜き加工法等の金属加工法を施すことにより作製する方法がある。
【0035】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0036】
例えば、上述の実施の形態の例ではセラミック基板1に活性金属ロウ材2を介して直接に金属回路板3をロウ付けしたが、これをセラミック基板1の表面に予めタングステンまたはモリブデン等のメタライズ金属層を被着させておき、このメタライズ金属層に金属回路板3をロウ材を介して接合させてもよい。
【0037】
また、上述の実施の形態の例ではセラミック基板1に活性金属ロウ材2を介してあらかじめ回路配線パターン形状に形成された金属回路板3をロウ付けしたが、セラミック基板1と略同形状の金属板をロウ付けした後にエッチングにより不要な金属部分を除去して回路配線パターン形成を行なって金属回路板3としてもよい。
【0038】
さらには、上述の実施の形態の例ではセラミック基板1の貫通孔4内にロウ材6付き金属柱5を挿入配置したが、金属柱5を挿入配置し、ロウ材ペーストをその上下両面に塗布するという方法を採ってもよい。
【0039】
【発明の効果】
本発明のセラミック回路基板によれば、金属柱と金属回路板とを接合するロウ材は金属柱の端部から金属回路板にかけて広がっているので、大電流を印加しても電流の集中が発生しにくいことにより、金属柱とセラミック基板両面の金属回路板との接続部分において発熱することがなく、その結果、金属回路板上に半田等の接着材を用いて接着固定される半導体素子等の電子部品は常に適温となり、長期間にわたって正常かつ安定に作動させることが可能となる。
【0040】
また、本発明のセラミック回路基板によれば、金属柱と金属回路板とを接合するロウ材を、金属柱の端部から金属回路板にかけて、金属柱の最大幅の5%以上の幅で、金属柱の全周にわたって広がっているものとしたときには、その広がりが充分に滑らかで、また広がりが小さくて電流が集中し易くなる部分が存在しないことから、電流がロウ材に設けたメニスカス中を滑らかに流れる効果がより顕著となり、500A以上・数kHz以上の大電流を印加しても金属柱と金属回路板とのロウ材による接合部に電流の集中が発生しにくく、局所的な発熱が少ないものとすることができる。
【図面の簡単な説明】
【図1】本発明のセラミック回路基板の実施の形態の一例を示す断面図である。
【図2】(a)〜(c)は、それぞれ本発明のセラミック回路基板の金属柱の最大幅およびその端部におけるロウ材の広がりの幅の例を示す平面図である。
【符号の説明】
1・・・・セラミック基板
2・・・・活性ロウ材
3・・・・金属回路板
4・・・・貫通孔
5・・・・金属柱
6・・・・ロウ材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic circuit board in which metal circuit boards are attached to both surfaces of a ceramic board and connected by metal pillars arranged inside the ceramic board.
[0002]
[Prior art]
In recent years, a metal circuit board made of copper or the like is bonded to a metallized metal layer deposited on a ceramic substrate through a brazing material such as a silver-copper alloy as a circuit board such as a power module board or a switching module board. Ceramic circuit board, or ceramic circuit in which a metal circuit board made of copper or the like is directly bonded to the ceramic board through an active metal brazing material in which titanium-zirconium hafnium or a hydride thereof is added to a silver-copper eutectic alloy. A ceramic circuit board produced by a so-called DBC (Direct Bond Copper) method in which a copper plate is placed on a substrate or a ceramic substrate and heated to directly bond the ceramic substrate and the copper plate is used.
[0003]
In addition, in order to increase the mounting density of the metal circuit boards, each of these ceramic circuit boards has a metal circuit board joined to both upper and lower surfaces of the ceramic board, and a through hole provided between the upper and lower metal circuit boards in the ceramic board. Electrical connection is performed by a metal column disposed in the hole.
[0004]
These ceramic circuit boards, for example, a ceramic circuit board in which a metal circuit board made of copper or the like is directly bonded to the ceramic board via an active metal brazing material are generally aluminum oxide sintered bodies / aluminum nitride sintered bodies.・ A ceramic substrate made of an electrically insulating ceramic material such as a silicon nitride sintered body or a mullite sintered body and having a through hole penetrating in the thickness direction is prepared. Next, in the through hole of the ceramic substrate A metal column is placed, and a brazing paste obtained by adding and mixing an organic solvent or solvent to silver braze powder (alloy powder of silver and copper) is applied to both sides of the metal column, and silver- A metal circuit board having a predetermined pattern is placed with a brazing material such as an active metal brazing material in which at least one of titanium, zirconium, hafnium and hydrides thereof is added to a copper alloy. Thereafter, this is heated to a temperature of about 900 ° C. in a reducing atmosphere to melt the brazing paste and brazing material, and the metallized metal layer and the metal circuit board through the active metal brazing material, and It is manufactured by joining a metal circuit board and a metal column via a brazing material such as silver brazing.
[0005]
The ceramic circuit board manufactured in this way has mounted electronic parts such as semiconductor elements such as IGBT (Insulated Gate Bipolar Transistor) and MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) via an adhesive such as solder. After that, an external input / output terminal is assembled into a resin case integrally molded to form a semiconductor module. This semiconductor module is used in a wide range of applications from industrial equipment such as robots to train drive units and electric vehicles, and is required to have high reliability in harsh environments.
[0006]
[Problems to be solved by the invention]
However, when the current flowing through the power module exceeds 500A and the high frequency reaches several kHz, the conventional ceramic circuit board is joined vertically without a meniscus between the metal circuit board and the metal pillar. When current flows from the metal circuit board to the metal column or from the metal column to the metal circuit board, the current density on the surface of the metal plate and the side surface of the metal column increases, resulting in a phenomenon that the surface of the bonded metal plate and the metal column Current concentrates on the corner formed by the side surface of the surface, and Joule heat is generated locally. The heat acts on electronic components such as semiconductor elements that are bonded and fixed on a metal circuit board via an adhesive such as solder, and the electronic components become high temperature, so that the electronic components cannot be operated stably. Had a point.
[0007]
The present invention has been devised to solve the above-described problems of the prior art, and its purpose is to suppress heat generation due to current concentration at the junction between the metal column and the metal circuit board. An object of the present invention is to provide a highly reliable ceramic circuit board.
[0008]
[Means for Solving the Problems]
The ceramic circuit board of the present invention includes a ceramic substrate having a through hole, a metal column disposed in the through hole, and a metal circuit board made of copper and closing the through hole. and a metal circuit plate is bonded through an active metal brazing material, wherein said metal column metal circuit plate and the silver - Dotomo are joined via a silver brazing material consisting of eutectic alloy, the silver brazing material, The metal pillar extends from the end of the metal pillar toward the metal circuit board.
[0009]
The ceramic circuit board of the present invention is characterized in that the thickness of the metal column is thinner than the thickness of the ceramic board .
[0010]
Moreover, the ceramic circuit board of the present invention is characterized in that the active metal brazing material is disposed at least 100 μm outside the outer periphery of the through hole.
[0011]
In addition, a semiconductor module of the present invention includes any one of the above-described ceramic circuit boards and an electronic component fixed on the ceramic circuit board with an adhesive.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the ceramic circuit board of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board according to the present invention. 1 is a ceramic board, 2 is an active metal brazing material, 3 is a metal circuit board, 4 is a through-hole of the ceramic board 1, Is a metal column, and 6 is a brazing material. In this ceramic circuit board, metal circuit boards 3 having a predetermined pattern are attached to both upper and lower surfaces of the ceramic board 1 through active metal brazing materials 2, and at the same time, through-holes 4 penetrating in the thickness direction provided in the ceramic board 1. The metal pillars 5 are disposed with their both end surfaces joined to the metal circuit board 3 via the brazing material 6.
[0014]
The metal pillars 5 arranged in the through holes 4 provided in the ceramic substrate 1 are joined to the metal circuit board 3 via the brazing material 6 at both ends thereof, and thereby attached to the upper and lower surfaces of the ceramic substrate 1. The metal circuit board 3 is electrically connected through the metal pillar 5 and the brazing material 6.
[0015]
The ceramic substrate 1 having the through holes 4 is formed of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, a silicon nitride sintered body, an aluminum nitride sintered body, or a silicon carbide sintered body. Has been. For example, in the case of a silicon nitride sintered body, an appropriate organic binder, plasticizer, and solvent are added to and mixed with raw material powders such as silicon nitride, aluminum oxide, magnesium oxide, yttrium oxide, etc. A ceramic green sheet (ceramic green sheet) is formed on the mud by using a conventionally known doctor blade method or calender roll method, and then the ceramic green sheet is appropriately punched to obtain a predetermined shape. At the same time, if necessary, a plurality of sheets are laminated to form a molded body, which is then manufactured by firing at a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere.
[0016]
The metal circuit board 3 is made of copper or aluminum, and is formed in a predetermined pattern with a thickness of, for example, 500 μm by applying a conventionally known metal processing method such as a rolling method or a punching method to a copper or aluminum ingot. Is done.
[0017]
If the metal circuit board 3 is made of copper and is formed of oxygen-free copper, the oxygen-free copper is an oxygen whose surface is present in the copper when attached via the active metal brazing material 2. As a result, the wettability with the active metal brazing material 2 is improved without being oxidized, so that the bonding of the metal circuit board 3 to the ceramic substrate 1 through the active metal brazing material 2 is strengthened. Therefore, when the metal circuit board 3 is made of copper, it is preferably formed of oxygen-free copper.
[0018]
When the metal circuit board 3 is made of copper, the active metal brazing material 2 is obtained by adding 2 to 5% by weight of a metal such as titanium, zirconium, hafnium or a hydride thereof to a silver-copper eutectic alloy. If the metal circuit board 3 is made of aluminum, an aluminum-silicon eutectic alloy added with a metal such as titanium, zirconium, hafnium or a hydride thereof is used in an amount of 2 to 5% by weight.
[0019]
If the metal column 5 is made of copper (1.72 μΩ · cm) or aluminum (2.65 μΩ · cm) having a very low specific resistance of 3 μΩ · cm or less, a large current will flow through the metal column 5. Even if it flows, a large amount of heat due to Joule heat is not generated from the metal circuit board 3 and the metal pillar 5 and the connection portion thereof, and as a result, the metal circuit board 3 is bonded and fixed to the metal circuit board 3 using an adhesive such as solder. Therefore, it is possible to operate electronic parts such as semiconductor elements at a proper temperature constantly and stably over a long period of time.
[0020]
Moreover, when the metal pillar 5 consists of copper, it is preferable to form this with an oxygen free copper. This is because the surface of the metal circuit board 3 is not oxidized by oxygen present in the copper of the metal pillars 5 during brazing, and the wettability with the active metal brazing material 2 is improved. This is because the bonding to the ceramic substrate 1 through the active metal brazing material 2 becomes strong.
[0021]
The length of the metal column 5 is preferably 0 to 150 μm shorter than the thickness of the ceramic substrate 1. If the metal pillar 5 is longer than the thickness of the ceramic substrate 1, the metal circuit board 3 with the metal pillar 5 attached up and down is pushed up, and the ceramic substrate 1 and the upper and lower metal circuit boards 3 are not well bonded. End up. In addition, if the thickness of the ceramic substrate 1 is shorter than 150 μm, it is necessary to deposit a large amount of brazing material 6 on the metal column 5, which increases costs, and when the brazing material 6 is heated and melted, the metal column 5 is formed. It tends to be difficult to bond the metal pillar 5 and the metal circuit board 3 well by moving up and down or tilting.
[0022]
The brazing material 6 is a silver brazing material made of a silver-copper eutectic alloy if the metal circuit board 3 is made of copper, or an aluminum-silicon eutectic if the metal circuit board 3 is made of aluminum. An aluminum brazing material made of an alloy is used. The brazing material 6 is disposed inside the through hole 4 and joins the metal pillar 5 and the metal circuit board 3, and is disposed separately from the active metal brazing material 2.
[0023]
In the ceramic circuit board of the present invention, it is important that the brazing material 6 spreads from the end of the metal pillar 5 to the metal circuit board 3. As the brazing material 6 spreads as described above, the current flows smoothly through the meniscus provided in the brazing material 6, and current concentration occurs at the joint of the metal pillar 5 and the metal circuit board 3 by the brazing material 6. Electronic components such as semiconductor elements, which are bonded and fixed on the metal circuit board 3 using a bonding material such as solder, are always at an appropriate temperature and operate normally and stably over a long period of time. It becomes possible.
[0024]
The width of the brazing material 6 is preferably 5% or more of the maximum width of the metal column 5 and spread over the entire circumference of the metal column 5. This maximum width corresponds to the diameter A 1 when the cross section of the metal pillar 5 is circular as shown in FIG. 2A to FIG. if the cross section of the metal post 5 is quadrangular as in (b), however, corresponds to the length of the largest diagonal a 2, if the cross section of the metal post 5 is cross as (c), the metal columns This corresponds to the maximum length A 3 of the cross section of 5. 2A to 2C, dotted lines around the metal pillar 5 indicate the spread of the brazing material 6 on the metal circuit board 3 side, and the widths a 1 , a 2, and a 3 of this spread. However, it is desirable that it is 5% or more of the maximum width A 1 , A 2 , or A 3 , respectively.
[0025]
If the spread of the brazing material 6 is 5% or less, a large current exceeding 500 A and several kHz flows into the metal circuit board 3 from the metal circuit board 3 or vice versa. At this time, since the current cannot smoothly pass through the meniscus, the current concentrates at the corner of the joint portion and locally generates Joule heat. As a result, the ceramic circuit board becomes hot, and the heat acts on electronic components such as semiconductor elements that are bonded and fixed on the metal circuit board via an adhesive such as solder, so that the electronic components can be operated stably at high temperatures. Tend to be difficult.
[0026]
Further, since the brazing material 6 spreads over the entire circumference of the metal column 5, there is no portion where the current tends to concentrate due to the small spread, so the current concentrates at the corner of the joint portion and locally generates Joule heat. There is nothing to do.
[0027]
The length of the space between the inner wall surface of the through hole 4 and the outer wall surface of the metal column 5 (corresponding to the difference between the radius of the through hole 4 and the radius of the metal column 5 when the cross-sectional shape of both is circular) Is preferably in the range of 30 to 200 μm. If the length of this space is less than 30 μm, the outer wall surface of the metal column 5 expanded due to the difference in thermal expansion coefficient between the ceramic substrate 1 and the metal column 5 when heat is applied to the ceramic circuit substrate. It becomes difficult to reliably absorb the inner wall surface of the through-hole 4 of the ceramic substrate 1 in the space between the inner wall surface of the through-hole 4 of the ceramic substrate 1 and the outer wall surface of the metal column 5. This is because the outer wall surface of the metal pillar 5 pushes the inner wall surface of the through hole 4 of the ceramic substrate 1 and may cause cracks or cracks in the ceramic substrate 1. If the length of the space exceeds 200 μm, when the metal pillar 5 with the brazing material 6 is inserted into the through hole 4 of the ceramic substrate 1, the metal pillar 5 with the brazing material 6 is inclined and the metal circuit This is because it may not be possible to reliably connect to the plate 3.
[0028]
In addition, the active metal brazing material 2 that joins the ceramic substrate 1 and the metal circuit board 3 is desirably disposed at least 100 μm outside the outer periphery of the through hole 4. As a result, thermal stress due to the difference between the thermal expansion of the metal pillar 5 and the thermal expansion of the ceramic substrate 1 acts on the microcracks around the through holes 4 of the ceramic substrate 1 to cause cracks and cracks in the ceramic substrate 1. In addition, the active metal brazing material 2 hangs down in the through hole 4 in the manufacturing process, and fuses with the brazing material 6 for joining the metal circuit board 3 and the metal pillar 5 to change the composition of the brazing material. Therefore, the metal circuit board 3 and the ceramic substrate 1 and the metal circuit board 3 and the metal pillar 5 are well bonded, and the mounted electronic component such as a semiconductor element can be operated normally and stably. It becomes possible to obtain a highly functional ceramic circuit board.
[0029]
A space is provided between the inner wall surface of the through hole 4 and the outer wall surface of the metal column 5, and the active metal brazing material 2 that joins the ceramic substrate 1 and the metal circuit board 3 is more than 100 μm outside the outer periphery of the through hole 4. In addition to the effects described above, there is an effect that it becomes easy to form a meniscus having a shape that spreads the brazing material 6 from the end of the metal pillar 5 to the metal circuit board 4.
[0030]
The attachment of the metal circuit board 3 using the active metal brazing material 2 to the ceramic substrate 1 having the through holes 4 is preferably performed as follows.
[0031]
First, if the metal circuit board 3 is made of copper, for example, the active metal brazing material 2 is added with 2-5% by weight of a metal such as titanium, zirconium, hafnium or a hydride thereof in a silver-copper eutectic alloy. An active metal brazing paste is prepared by mixing an organic solvent with a solvent, and the active metal brazing paste is applied to both the upper and lower surfaces of the ceramic substrate 1 by using a conventionally known screen printing method. Printing is applied in a predetermined pattern with a thickness of 40 μm.
[0032]
Next, the metal pillars 5 with the brazing material 6 are inserted and disposed in the through holes 4 of the ceramic substrate 1, and the metal circuit board 3 is mounted on the active metal brazing material paste that is printed and applied to the upper and lower surfaces of the ceramic substrate 1. After that, heat treatment is performed at a predetermined temperature (about 900 ° C. in the case of copper) in a vacuum or in a neutral or reducing atmosphere, and the active metal brazing material paste and the metal pillar 5 with the brazing material 6 are heated. The brazing material 6 applied to both end faces is melted, and the ceramic substrate 1 and the metal circuit board 3 are joined by the molten active metal brazing material 2, and the metal circuit board 3 and the metal pillar 5 are joined by the brazing material 6.
[0033]
In the manufacturing method described above, the metal pillar 5 with the brazing material 6 is attached to both ends of the metal pillar 5 shorter than the thickness of the ceramic substrate 1 by 0 to 150 μm. What lengthened 40-140 micrometers is good. This is because if the length of the metal pillar 5 is 0 to 150 μm shorter than the thickness of the ceramic substrate 1, as described above, the metal circuit board 3 with the metal pillar 5 attached up and down is not pushed up, and the ceramic substrate 1. This is because good bonding between the metal circuit board 3 on both sides thereof is not impaired, and when the length of the metal column 5 with the brazing material 6 is 40 to 140 μm longer than the thickness of the ceramic substrate 1, The brazing material 6 at both ends surely comes into contact with the upper and lower metal circuit boards 3, and the metal pillar 5 and the metal circuit board 3 are reliably joined via the brazing material 6 in the subsequent melting process, so that the electrical reliability is high. This is because joining is obtained.
[0034]
The metal column 5 with the brazing material 6 is formed into a cylindrical shape by subjecting a copper or aluminum ingot to a conventionally known metal processing method such as a rolling method, a stamping method, or a drawing method. The pillar 5 is manufactured, and then, the upper and lower end faces of the metal pillar 5 are made by depositing a silver brazing material in the case of copper and an aluminum brazing material in the case of aluminum. As another method, a metal material processing method such as a stamping method or a drawing method is applied to a material that is laminated in the order of a brazing material / copper plate or an aluminum plate / a brazing material and having a predetermined thickness by a rolling method. There is a method of manufacturing.
[0035]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0036]
For example, in the example of the above-described embodiment, the metal circuit board 3 is brazed directly to the ceramic substrate 1 via the active metal brazing material 2, but this is preliminarily metallized metal such as tungsten or molybdenum on the surface of the ceramic substrate 1. Alternatively, the metal circuit board 3 may be bonded to the metallized metal layer via a brazing material.
[0037]
In the example of the above-described embodiment, the metal circuit board 3 formed in a circuit wiring pattern shape in advance is brazed to the ceramic substrate 1 via the active metal brazing material 2. After the plate is brazed, an unnecessary metal portion may be removed by etching and a circuit wiring pattern may be formed to form the metal circuit plate 3.
[0038]
Furthermore, in the example of the above-described embodiment, the metal pillar 5 with the brazing material 6 is inserted and arranged in the through hole 4 of the ceramic substrate 1, but the metallic pillar 5 is inserted and arranged, and the brazing material paste is applied to both the upper and lower surfaces thereof. You may take the method of doing.
[0039]
【The invention's effect】
According to the ceramic circuit board of the present invention, since the brazing material for joining the metal pillar and the metal circuit board spreads from the end of the metal pillar to the metal circuit board, the current concentration occurs even when a large current is applied. As a result, there is no heat generation at the connection portion between the metal pillar and the metal circuit board on both sides of the ceramic substrate, and as a result, a semiconductor element or the like that is bonded and fixed on the metal circuit board using an adhesive such as solder. Electronic components are always at a suitable temperature, and can be operated normally and stably over a long period of time.
[0040]
Further, according to the ceramic circuit board of the present invention, the brazing material for joining the metal pillar and the metal circuit board is extended from the end of the metal pillar to the metal circuit board, with a width of 5% or more of the maximum width of the metal pillar, Assuming that the metal pillar spreads around the entire circumference of the metal column, the spread is sufficiently smooth, and there is no part where the current is easy to concentrate because the spread is small, so the current flows through the meniscus provided in the brazing material. The effect of smooth flow becomes more prominent, and even when a large current of 500 A or more and several kHz or more is applied, current concentration is unlikely to occur at the joint between the metal column and the metal circuit board due to the brazing material, and local heat generation occurs. It can be less.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a ceramic circuit board according to the present invention.
FIGS. 2A to 2C are plan views showing examples of the maximum width of a metal column and the width of spread of a brazing material at an end portion of the ceramic circuit board of the present invention, respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ceramic substrate 2 ... Active brazing material 3 ... Metal circuit board 4 ... Through-hole 5 ... Metal pillar 6 ... Brazing material

Claims (4)

貫通孔を有するセラミック基板と、
前記貫通孔内に配置された金属柱と、
銅からなり、前記貫通孔を塞ぐ金属回路板とを有し、
前記セラミック基板と前記金属回路板とが活性金属ロウ材を介して接合され、前記金属柱と前記金属回路板とが銀−銅共晶合金から成る銀ロウ材を介して接合されており、
前記銀ロウ材は、前記金属柱の端部から前記金属回路板に向かって広がっていることを特徴とするセラミック回路基板。
A ceramic substrate having a through hole;
A metal column disposed in the through hole;
A metal circuit board made of copper and closing the through hole;
The ceramic substrate and the metal circuit board are joined via an active metal brazing material, and the metal pillar and the metal circuit board are joined via a silver brazing material made of a silver-copper eutectic alloy ,
The ceramic circuit board, wherein the silver brazing material spreads from an end of the metal pillar toward the metal circuit board.
前記金属柱の厚みは、前記セラミック基板の厚みよりも薄いことを特徴とする請求項1に記載のセラミック回路基板。The ceramic circuit board according to claim 1, wherein a thickness of the metal column is thinner than a thickness of the ceramic board. 前記活性金属ロウ材が、前記貫通孔の外周よりも100μm以上外側に配置されていることを特徴とする請求項1または2に記載のセラミック回路基板。3. The ceramic circuit board according to claim 1, wherein the active metal brazing material is disposed at least 100 μm outside the outer periphery of the through hole. 請求項1〜3のいずれかに記載のセラミック回路基板と、
該セラミック回路基板上に接着剤を介して固定された電子部品と
を有することを特徴とする半導体モジュール。
The ceramic circuit board according to any one of claims 1 to 3,
A semiconductor module comprising: an electronic component fixed on the ceramic circuit board via an adhesive.
JP2001362389A 2001-11-28 2001-11-28 Ceramic circuit board and semiconductor module Expired - Fee Related JP3921383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362389A JP3921383B2 (en) 2001-11-28 2001-11-28 Ceramic circuit board and semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362389A JP3921383B2 (en) 2001-11-28 2001-11-28 Ceramic circuit board and semiconductor module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007007003A Division JP4493664B2 (en) 2007-01-16 2007-01-16 Ceramic circuit board and semiconductor module

Publications (2)

Publication Number Publication Date
JP2003163429A JP2003163429A (en) 2003-06-06
JP3921383B2 true JP3921383B2 (en) 2007-05-30

Family

ID=19172894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362389A Expired - Fee Related JP3921383B2 (en) 2001-11-28 2001-11-28 Ceramic circuit board and semiconductor module

Country Status (1)

Country Link
JP (1) JP3921383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114469A (en) * 2010-02-08 2010-05-20 Kyocera Corp Ceramic circuit board and semiconductor module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741604B (en) * 2020-07-04 2021-05-18 吉安满坤科技股份有限公司 Manufacturing method of automobile printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114469A (en) * 2010-02-08 2010-05-20 Kyocera Corp Ceramic circuit board and semiconductor module

Also Published As

Publication number Publication date
JP2003163429A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP2003101184A (en) Ceramic circuit board and production method therefor
JP4334054B2 (en) Ceramic circuit board
JP5066197B2 (en) Semiconductor module
US6787706B2 (en) Ceramic circuit board
JP4493664B2 (en) Ceramic circuit board and semiconductor module
JP3830372B2 (en) Ceramic circuit board
JP5780777B2 (en) Ceramic circuit board and electronic device using the same
JP3921383B2 (en) Ceramic circuit board and semiconductor module
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP4646417B2 (en) Ceramic circuit board
JPH11340600A (en) Ceramic circuit board
JP4331830B2 (en) Ceramic circuit board
JP2002043478A (en) Ceramic circuit board
JP2003324167A (en) Ceramic circuit board
JP4493158B2 (en) Ceramic circuit board
JP4721533B2 (en) Ceramic circuit board
JP2003100983A (en) Ceramic circuit board
JP4299421B2 (en) Manufacturing method of ceramic circuit board
JP2001210948A (en) Ceramic circuit board
JP3677398B2 (en) Ceramic circuit board and electronic device
JP2001094223A (en) Ceramic circuit board
JP2006319313A (en) Circuit board and electronic parts module
JP2006066752A (en) Ceramic circuit board
JP3709085B2 (en) Ceramic circuit board
JP4721534B2 (en) Ceramic circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3921383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees