JP3920592B2 - 試料の滴下方法およびスポッティング装置 - Google Patents

試料の滴下方法およびスポッティング装置 Download PDF

Info

Publication number
JP3920592B2
JP3920592B2 JP2001146513A JP2001146513A JP3920592B2 JP 3920592 B2 JP3920592 B2 JP 3920592B2 JP 2001146513 A JP2001146513 A JP 2001146513A JP 2001146513 A JP2001146513 A JP 2001146513A JP 3920592 B2 JP3920592 B2 JP 3920592B2
Authority
JP
Japan
Prior art keywords
sample
substrate
spotting
dropped
biochemical analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001146513A
Other languages
English (en)
Other versions
JP2002357615A (ja
Inventor
信彦 小倉
清水  仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001146513A priority Critical patent/JP3920592B2/ja
Publication of JP2002357615A publication Critical patent/JP2002357615A/ja
Application granted granted Critical
Publication of JP3920592B2 publication Critical patent/JP3920592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の滴下方法およびスポッティング装置に関するものであり、さらに詳細には、担体の表面に、試料を滴下して、多数のスポットを均一に形成することのできる試料の滴下方法およびスポッティング装置に関するものである。
【0002】
【従来の技術】
放射線が照射されると、放射線のエネルギーを吸収して、蓄積、記録し、その後に、特定の波長域の電磁波を用いて励起すると、照射された放射線のエネルギーの量に応じた光量の輝尽光を発する特性を有する輝尽性蛍光体を、放射線の検出材料として用い、放射性標識を付与した物質を、生物体に投与した後、その生物体あるいはその生物体の組織の一部を試料とし、この試料を、輝尽性蛍光体層が設けられた蓄積性蛍光体シートと一定時間重ね合わせることにより、放射線エネルギーを輝尽性蛍光体に、蓄積、記録し、しかる後に、電磁波によって、輝尽性蛍光体層を走査して、輝尽性蛍光体を励起し、輝尽性蛍光体から放出された輝尽光を光電的に検出して、ディジタル画像信号を生成し、画像処理を施して、CRTなどの表示手段上あるいは写真フイルムなどの記録材料上に、画像を再生するように構成されたオートラジオグラフィ解析システムが知られている(たとえば、特公平1−70884号公報、特公平1−70882号公報、特公平4−3962号公報など)。
【0003】
蓄積性蛍光体シートを放射線の検出材料として使用するオートラジオグラフィ解析システムは、写真フイルムを用いる場合とは異なり、現像処理という化学的処理が不必要であるだけでなく、得られたディジタルデータにデータ処理を施すことにより、所望のように、解析用データを再生し、あるいは、コンピュータによる定量解析が可能になるという利点を有している。
【0004】
他方、オートラジオグラフィ解析システムにおける放射性標識物質に代えて、蛍光色素などの蛍光物質を標識物質として使用した蛍光(fluorescence)解析システムが知られている。この蛍光解析システムによれば、蛍光物質から放出された蛍光を検出することによって、遺伝子配列、遺伝子の発現レベル、実験用マウスにおける投与物質の代謝、吸収、排泄の経路、状態、蛋白質の分離、同定、あるいは、分子量、特性の評価などをおこなうことができ、たとえば、電気泳動されるべき複数種の蛋白質分子を含む溶液を、ゲル支持体上で、電気泳動させた後に、ゲル支持体を蛍光色素を含んだ溶液に浸すなどして、電気泳動された蛋白質を染色し、励起光によって、蛍光色素を励起して、生じた蛍光を検出することによって、画像を生成し、ゲル支持体上の蛋白質分子の位置および量的分布を検出したりすることができる。あるいは、ウェスタン・ブロッティング法により、ニトロセルロースなどの転写支持体上に、電気泳動された蛋白質分子の少なくとも一部を転写し、目的とする蛋白質に特異的に反応する抗体を蛍光色素で標識して調製したプローブと蛋白質分子とを会合させ、特異的に反応する抗体にのみ結合する蛋白質分子を選択的に標識し、励起光によって、蛍光色素を励起して、生じた蛍光を検出することにより、画像を生成し、転写支持体上の蛋白質分子の位置および量的分布を検出したりすることができる。また、電気泳動させるべき複数のDNA断片を含む溶液中に、蛍光色素を加えた後に、複数のDNA断片をゲル支持体上で電気泳動させ、あるいは、蛍光色素を含有させたゲル支持体上で、複数のDNA断片を電気泳動させ、あるいは、複数のDNA断片を、ゲル支持体上で、電気泳動させた後に、ゲル支持体を、蛍光色素を含んだ溶液に浸すなどして、電気泳動されたDNA断片を標識し、励起光により、蛍光色素を励起して、生じた蛍光を検出することにより、画像を生成し、ゲル支持体上のDNAを分布を検出したり、あるいは、複数のDNA断片を、ゲル支持体上で、電気泳動させた後に、DNAを変性(denaturation)し、次いで、サザン・ブロッティング法により、ニトロセルロースなどの転写支持体上に、変性DNA断片の少なくとも一部を転写し、目的とするDNAと相補的なDNAもしくはRNAを蛍光色素で標識して調製したプローブと変性DNA断片とをハイブリダイズさせ、プローブDNAもしくはプローブRNAと相補的なDNA断片のみを選択的に標識し、励起光によって、蛍光色素を励起して、生じた蛍光を検出することにより、画像を生成し、転写支持体上の目的とするDNAの分布を検出したりすることができる。さらに、標識物質によって標識した目的とする遺伝子を含むDNAと相補的なDNAプローブを調製して、転写支持体上のDNAとハイブリダイズさせ、酵素を、標識物質により標識された相補的なDNAと結合させた後、蛍光基質と接触させて、蛍光基質を蛍光を発する蛍光物質に変化させ、励起光によって、生成された蛍光物質を励起して、生じた蛍光を検出することにより、画像を生成し、転写支持体上の目的とするDNAの分布を検出したりすることもできる。この蛍光解析システムは、放射性物質を使用することなく、簡易に、遺伝子配列などを検出することができるという利点がある。
【0005】
また、同様に、蛋白質や核酸などの生体由来の物質を支持体に固定し、化学発光基質と接触させることによって化学発光を生じさせる標識物質により、選択的に標識し、標識物質によって選択的に標識された生体由来の物質と化学発光基質とを接触させて、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を、光電的に検出して、ディジタル画像信号を生成し、画像処理を施して、CRTなどの表示手段あるいは写真フィルムなどの記録材料上に、化学発光画像を再生して、遺伝子情報などの生体由来の物質に関する情報を得るようにした化学発光解析システムも知られている。
【0006】
さらに、近年、スライドガラス板やメンブレンフィルタなどの担体表面上の異なる位置に、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、RNAなど、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、スポッター装置を用いて、滴下して、多数の独立したスポットを形成し、次いで、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、mRNAなど、抽出、単離などによって、生体から採取され、あるいは、さらに、化学的処理、化学修飾などの処理が施された生体由来の物質であって、蛍光物質、色素などの標識物質によって標識された物質を、ハイブリダイゼーションなどによって、特異的結合物質に、特異的に結合させたマイクロアレイに、励起光を照射して、蛍光物質、色素などの標識物質から発せられた蛍光などの光を光電的に検出して、生体由来の物質を解析するマイクロアレイ解析システムが開発されている。このマイクロアレイ解析システムによれば、スライドガラス板やメンブレンフィルタなどの担体表面上の異なる位置に、数多くの特異的結合物質のスポットを高密度に形成して、標識物質によって標識された生体由来の物質をハイブリダイズさせることによって、短時間に、生体由来の物質を解析することが可能になるという利点がある。
【0007】
また、メンブレンフィルタなどの担体表面上の異なる位置に、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、RNAなど、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、スポッター装置を用いて、滴下して、多数の独立したスポットを形成し、次いで、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、mRNAなど、抽出、単離などによって、生体から採取され、あるいは、さらに、化学的処理、化学修飾などの処理が施された生体由来の物質であって、放射性標識物質によって標識された物質を、ハイブリダイゼーションなどによって、特異的結合物質に、特異的に結合させたマクロアレイを、輝尽性蛍光体を含む輝尽性蛍光体層が形成された蓄積性蛍光体シートと密着させて、輝尽性蛍光体層を露光し、しかる後に、輝尽性蛍光体層に励起光を照射し、輝尽性蛍光体層から発せられた輝尽光を光電的に検出して、生化学解析用データを生成し、生体由来の物質を解析する放射性標識物質を用いたマクロアレイ解析システムも開発されている。
【0008】
【発明が解決しようとする課題】
しかしながら、放射性標識物質を用いたマクロアレイ解析システムにあっては、輝尽性蛍光体層を露光する際、スライドガラス板やメンブレンフィルタなどの担体表面上に形成されたスポットに含まれた放射性標識物質の放射線エネルギーが非常に大きいため、放射性標識物質から発せられる電子線がスライドガラス板やメンブレンフィルタなどの担体内で散乱し、隣接するスポットに含まれた放射性標識物質によって露光されるべき輝尽性蛍光体層の領域に入射し、あるいは、放射性標識物質から発せられた電子線が散乱し、隣接するスポット含まれた放射性標識物質から発せられた電子線が混ざり合って、輝尽性蛍光体層の領域に入射し、その結果、輝尽光を光電的に検出して生成されたデータ中にノイズを生成し、各スポットの放射線量を定量して、生体由来の物質を解析する際、定量性が悪化するという問題があった。
【0009】
さらに、生化学解析の分野においては、スライドガラス板やメンブレンフィルタなどの担体表面上の異なる位置に、スポット状に形成されたホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、RNAなど、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質に、放射性標識物質に加えて、化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質を特異的に結合させて、選択的に標識し、放射性標識物質によって、輝尽性蛍光体層を露光した後、あるいは、放射性標識物質による輝尽性蛍光体層の露光に先立って、化学発光基質とを接触させて、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を光電的に検出し、あるいは、特異的結合物質に、放射性標識物質に加えて、蛍光物質によって標識された生体由来の物質を特異的に結合させて、選択的に標識し、放射性標識物質によって、輝尽性蛍光体層を露光した後、あるいは、放射性標識物質による輝尽性蛍光体層の露光に先立って、励起光を照射して、蛍光物質から発せられる蛍光を光電的に検出して、生体由来の物質を解析することも要求されているが、かかる場合にも、スポットから発せられた化学発光や蛍光がスライドガラス板やメンブレンフィルタなどの担体内で散乱し、あるいは、スポットから発せられた化学発光や蛍光が散乱して、隣接するスポットから発せられた化学発光や蛍光と混ざり合い、その結果、化学発光を光電的に検出して生成した生化学解析用データや蛍光を光電的に検出して生成した生化学解析用データ中にノイズを生成するという問題があった。
【0010】
かかる問題を解消するためには、隣接するスポット間の間隔が一定になるように、スライドガラス板やメンブレンフィルタなどの担体表面に、多数のスポットを均一に形成することが必要不可欠であるが、従来のスポッティング装置は、機械的精度に頼って、スライドガラス板やメンブレンフィルタなどの担体表面に、多数のスポットを形成するものであるため、多数のスポットを均一に形成することが困難であった。
【0011】
したがって、本発明は、担体表面に、試料を滴下して、多数のスポットを均一に形成することのできる試料の滴下方法およびスポッティング装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明のかかる目的は、基板に、互いに離間して、ドット状に形成され、多孔質材料によって形成された複数のドット状の多孔質領域に、試料を滴下するスポッティング方法であって、センサによって、前記基板の基準位置を検出し、スポッティングヘッドと、前記基板とを、少なくとも一次元的に、相対的に移動させつつ、前記スポッティングヘッドによって、試料を滴下することを特徴とする試料の滴下方法によって達成される。
【0013】
本発明によれば、基板には、多孔質材料によって形成された複数の多孔質領域が、互いに離間して、ドット状に形成されているから、複数のドット状の多孔質領域を、隣接する多孔質領域の間隔が一定になるように、基板に均一に形成し、スポッティング装置と、複数のドット状の多孔質領域が形成された基板とを、少なくとも一次元的に、相対的に移動させつつ、センサによって、ドット状の各多孔質領域の中心部や周縁部などの基板の基準位置を検出して、スポッティング装置によって、試料を滴下することによって、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0014】
本発明の好ましい実施態様においては、前記スポッティングヘッドと、前記基板とを、二次元的に相対的に移動させつつ、試料を滴下するように構成されている。
【0015】
本発明の好ましい実施態様においては、前記センサによって、それぞれ、前記基板の前記複数の孔の基準位置を検出して、試料を滴下するように構成されている。
【0016】
本発明のさらに好ましい実施態様においては、前記センサによって、それぞれ、前記基板の前記複数の孔の中心部を検出して、試料を滴下するように構成されている。
【0017】
本発明の別の好ましい実施態様においては、前記センサによって、それぞれ、前記基板の前記複数の孔の周縁部を検出して、試料を滴下するように構成されている。
【0018】
本発明の別の好ましい実施態様においては、前記基板の少なくとも2つの基準位置を、前記センサによって検出して、試料を滴下するように構成されている。
【0019】
本発明の別の好ましい実施態様によれば、複数のドット状の多孔質領域を、隣接する多孔質領域の間隔が一定になるように、基板に、規則的なパターンで、均一に形成し、対角関係にある角部などの基板の少なくとも2つの基準位置を、センサによって検出して、試料を滴下することによって、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0020】
本発明の好ましい実施態様においては、前記複数のドット状の多孔質領域を、前記基板に規則的に形成し、前記基板の少なくとも2つの基準位置を、前記センサにより検出することによって、規則的に形成された前記複数のドット状の多孔質領域の位置データを算出し、算出された前記複数のドット状の多孔質領域の位置データにしたがって、前記スポッティングヘッドと、前記基板とを、移動機構を用いて、相対的に移動させつつ、前記スポッティングヘッドによって、試料を滴下するように構成されている。
【0021】
本発明の好ましい実施態様によれば、複数のドット状の多孔質領域を、基板に規則的に形成し、基板の少なくとも2つの基準位置を、センサにより検出することによって、規則的に形成された複数のドット状の多孔質領域の位置データを算出し、算出された複数のドット状の多孔質領域の位置データにしたがって、スポッティングヘッドと、基板とを、移動機構を用いて、相対的に移動させつつ、スポッティングヘッドによって、試料を滴下するように構成されているから、基板の少なくとも2つの基準位置を、センサによって検出することによって、自動的に、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0022】
本発明の好ましい実施態様においては、前記スポッティングヘッドを、基準スポッティングヘッド位置に位置させて、前記スポッティングヘッドから、試料を滴下し、前記センサによって、試料の滴下位置を検出し、前記基準スポッティングヘッド位置と前記試料の滴下位置との相対的位置関係にしたがって、スポッティングヘッドと、前記基板とを、相対的に移動させつつ、試料を滴下するように構成されている。
【0023】
本発明の好ましい実施態様によれば、スポッティングヘッドを、基準スポッティングヘッド位置に位置させて、スポッティングヘッドから、試料を滴下し、センサによって、試料の滴下位置を検出し、基準スポッティングヘッド位置と試料の滴下位置との相対的位置関係にしたがって、スポッティングヘッドと、基板とを、相対的に移動させつつ、試料を滴下するように構成されているから、インクジェットインジェクタあるいは滴下ピンに滴下誤差があり、インクジェットインジェクタの先端部に対向する位置に、試料を滴下することができない場合にも、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0024】
本発明の好ましい実施態様においては、前記スポッティングヘッドが、試料を噴射して、滴下するインクジェットインジェクタを備えている。
【0025】
本発明の別の好ましい実施態様においては、前記スポッティングヘッドが、試料を滴下する滴下ピンを備えている。
【0026】
本発明の好ましい実施態様においては、前記基板が、放射線および/または光を減衰させる材料によって形成され、前記複数のドット状の多孔質領域が、前記基板に、ドット状に形成された複数の孔に、多項質材料が埋め込まれて形成されている。
【0027】
本発明の好ましい実施態様によれば、基板を、放射線を減衰させる材料によって形成する場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後、輝尽性蛍光体層と密着させて、輝尽性蛍光体層を放射性標識物質によって露光するときに、放射性標識物質から発せられた電子線が、基板内で散乱し、隣接する多孔質領域から発せられた放射性標識物質によって露光されるべき輝尽性蛍光体層の領域内に、散乱した電子線が入射することを確実に防止することができ、したがって、放射性標識物質によって露光された輝尽性蛍光体層に励起光を照射して、輝尽性蛍光体層から放出された輝尽光を光電的に検出して、生化学解析用データを生成し、生体由来の物質を解析する場合にも、放射性標識物質から発せられる電子線の散乱に起因するノイズが生化学解析用データ中に生成されることを効果的に防止することが可能になる。
【0028】
また、本発明の好ましい実施態様によれば、基板を、光を透過しない材料によって形成する場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質に代えて、化学発光基質と接触させることによって化学発光を生じさせる標識物質および/または蛍光物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後に、化学発光基質と接触させて、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を光電的に検出し、および/または、励起光を照射して、蛍光物質から発せられる蛍光を光電的に検出して、生化学解析用データを生成するときに、化学発光および/または蛍光が、基板内で散乱することを確実に防止することができ、したがって、化学発光を光電的に検出して生成した生化学解析用データおよび/または蛍光を光電的に検出して生成した生化学解析用データ中に、化学発光および/または蛍光の散乱に起因するノイズが生成されることを効果的に防止することが可能となる。
【0029】
さらに、本発明の好ましい実施態様によれば、基板を、放射線および光を透過しない材料によって形成する場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質に加えて、化学発光基質と接触させることによって化学発光を生じさせる標識物質および/または蛍光物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後、輝尽性蛍光体層と密着させて、輝尽性蛍光体層を放射性標識物質によって露光するときに、放射性標識物質から発せられた電子線が基板内で散乱し、隣接する多孔質領域から発せられた放射性標識物質によって露光されるべき輝尽性蛍光体層の領域内に、散乱した電子線が入射することを確実に防止することができ、したがって、放射性標識物質によって露光された輝尽性蛍光体層に励起光を照射して、輝尽性蛍光体層から放出された輝尽光を光電的に検出して、生化学解析用データを生成し、生体由来の物質を解析する場合にも、放射性標識物質から発せられる電子線の散乱に起因するノイズが生化学解析用データ中に生成されることを効果的に防止することが可能になり、他方、特異的結合物質に、生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後に、化学発光基質と接触させ、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を光電的に検出し、および/または、励起光を照射して、蛍光物質から発せられる蛍光を光電的に検出して、生化学解析用データを生成するときに、基板が放射線および光を透過しない材料によって形成されているため、化学発光および/または蛍光が基板内で散乱することを確実に防止することができ、したがって、化学発光を光電的に検出して生成した生化学解析用データおよび/または蛍光を光電的に検出して生成した生化学解析用データ中に、化学発光および/または蛍光の散乱に起因するノイズが生成されることを効果的に防止することが可能となる。
【0030】
本発明の好ましい実施態様においては、前記基板が、多孔質材料によって形成され、前記基板の少なくとも一方の面に、放射線および/または光を減衰させる材料によって形成され、複数の開口部を有する多孔板が設けられ、それによって、前記複数のドット状の多孔質領域が形成されている。
【0031】
本発明の好ましい実施態様によれば、多孔板が、放射線を減衰させる材料によって形成されている場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後、輝尽性蛍光体層と密着させて、輝尽性蛍光体層を放射性標識物質によって露光するときに、各多孔質領域に含まれた放射性標識物質から発せられた電子線と、隣接する多孔質領域に含まれた放射性標識物質から発せられた電子線とが、放射線を減衰させる性質を有する材料によって形成された多孔板によって確実に分離され、各多孔質領域に含まれた放射性標識物質によって露光されるべき輝尽性蛍光体層の領域内に、隣接する多孔質領域から発せられ、散乱した電子線が入射することを確実に防止することが可能になり、したがって、放射性標識物質によって露光された輝尽性蛍光体層に励起光を照射して、輝尽性蛍光体層から放出された輝尽光を光電的に検出して、生化学解析用データを生成し、生体由来の物質を解析する場合にも、放射性標識物質から発せられる電子線の散乱に起因するノイズが生化学解析用データ中に生成されることを効果的に防止することが可能になる。
【0032】
また、本発明の好ましい実施態様によれば、多孔板が、光を透過しない材料によって形成されている場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質に代えて、化学発光基質と接触させることによって化学発光を生じさせる標識物質および/または蛍光物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後に、化学発光基質と接触させて、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を光電的に検出し、および/または、励起光を照射して、蛍光物質から発せられる蛍光を光電的に検出して、生化学解析用データを生成するときに、基板の表面に、放射線および/または光を減衰させる材料によって形成され、複数の開口部を有する多孔板が設けられているから、多孔板によって、各多孔質領域から放出された化学発光および/または蛍光を、隣接する多孔質領域から放出された化学発光および/または蛍光から確実に分離することができ、したがって、化学発光および/または蛍光を光電的に検出して生成した生化学解析用データ中に、化学発光および/または蛍光の散乱に起因するノイズが生成されることを効果的に防止することが可能になる。
【0033】
さらに、本発明の好ましい実施態様によれば、多孔板が、放射線および光を透過しない材料によって形成されている場合には、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質を、複数のドット状の多孔質領域内に滴下し、特異的結合物質に、放射性標識物質に加えて、化学発光基質と接触させることによって化学発光を生じさせる標識物質および/または蛍光物質によって標識された生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後、輝尽性蛍光体層と密着させて、輝尽性蛍光体層を放射性標識物質によって露光する際に、各多孔質領域に含まれた放射性標識物質から発せられた電子線と、隣接する多孔質領域に含まれた放射性標識物質から発せられた電子線とが、放射線を減衰させる性質を有する材料によって形成された多孔板によって確実に分離され、各多孔質領域に含まれた放射性標識物質によって露光されるべき輝尽性蛍光体層の領域内に、隣接する多孔質領域から発せられ、散乱した電子線が入射することを確実に防止することが可能になり、したがって、放射性標識物質によって露光された輝尽性蛍光体層に励起光を照射して、輝尽性蛍光体層から放出された輝尽光を光電的に検出して、生化学解析用データを生成し、生体由来の物質を解析する場合にも、放射性標識物質から発せられる電子線の散乱に起因するノイズが生化学解析用データ中に生成されることを効果的に防止することが可能になり、他方、特異的結合物質に、生体由来の物質を、ハイブリダイゼーションなどによって、特異的に結合させて、選択的に標識した後に、化学発光基質と接触させ、化学発光基質と標識物質との接触によって生ずる可視光波長域の化学発光を光電的に検出し、および/または、励起光を照射して、蛍光物質から発せられる蛍光を光電的に検出して、生化学解析用データを生成する際、基板の表面に、放射線および/または光を減衰させる材料によって形成され、複数の開口部を有する多孔板が設けられているから、多孔板によって、各多孔質領域から放出された化学発光および/または蛍光を、隣接する多孔質領域から放出された化学発光および/または蛍光から確実に分離することができ、したがって、化学発光を光電的に検出して生成した生化学解析用データおよび/または蛍光を光電的に検出して生成した生化学解析用データ中に、化学発光および/または蛍光の散乱に起因するノイズが生成されることを効果的に防止することが可能となる。
【0034】
本発明のさらに好ましい実施態様においては、前記多孔板が、前記基板の表面に、密着されて、前記複数のドット状の多孔質領域が形成されている。
【0035】
本発明のさらに好ましい実施態様においては、前記多孔板が、前記基板の両面に、密着されて、前記複数のドット状の多孔質領域が形成されている。
【0036】
本発明の別の好ましい実施態様においては、前記多孔板が、前記基板の表面に被覆されて、前記複数のドット状の多孔質領域が形成されている。
【0037】
本発明の前記目的はまた、試料を滴下すべき担体が載置される基板と、前記担体の表面に、試料を噴射して、滴下可能なインクジェットインジェクタと、試料を滴下すべき前記担体の表面の基準位置を検出可能なセンサを備えたことを特徴とするスポッティング装置によって達成される。
【0038】
本発明によれば、スポッティング装置は、試料を滴下すべき基準位置を検出可能なセンサを備えているから、スポッティング装置を、試料を滴下すべき担体に対して、相対的に移動させつつ、センサによって、試料を滴下すべき基準位置を検出し、試料を滴下することによって、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0039】
また、本発明によれば、担体の対角関係にある角部など、担体の少なくとも2つの基準位置を、センサによって検出し、スポッティング装置と、試料を滴下すべき担体とを、相対的に、一定のピッチで、相対的に間欠移動させつつ、試料を滴下することによって、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0040】
本発明の好ましい実施態様においては、前記センサが、前記インクジェットインジェクタに設けられている。
【0041】
本発明のさらに好ましい実施態様においては、前記センサが、二次元センサによって構成されてる。
【0042】
本発明のさらに好ましい実施態様においては、前記二次元センサが、CCDカメラによって構成されている。
【0043】
本発明の好ましい実施態様においては、スポッティング装置は、前記インクジェットインジェクタと、前記基板とを、相対的に、少なくとも一次元方向に、間欠的に移動させる駆動機構を備えている。
【0044】
本発明の好ましい実施態様によれば、スポッティング装置が、インクジェットインジェクタと、基板とを、相対的に、少なくとも一次元方向に、間欠的に移動させる駆動機構を備えているから、センサによって、基板に載置され、試料の滴下を滴下すべき担体の基準位置を検出して、スポッティング装置のインクジェットインジェクタと、担体が載置された基板との相対的位置関係を求めた後、駆動機構により、インクジェットインジェクタと、基板とを、相対的に、少なくとも一次元方向に、間欠的に移動させつつ、インクジェットインジェクタから試料を滴下することによって、少なくとも1次元方向において、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0045】
本発明のさらに好ましい実施態様においては、前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、少なくとも一次元方向に、一定のピッチで移動させるように構成されている。
【0046】
本発明のさらに好ましい実施態様によれば、駆動機構が、インクジェットインジェクタと、基板とを、相対的に、少なくとも一次元方向に、一定のピッチで移動させるように構成されているから、センサによって、基板に載置され、試料の滴下を滴下すべき担体の基準位置を検出して、スポッティング装置のインクジェットインジェクタと、担体が載置された基板との相対的位置関係を求めた後、駆動機構により、インクジェットインジェクタと、基板とを、相対的に、少なくとも一次元方向に、一定のピッチで間欠的に移動させつつ、インクジェットインジェクタから試料を滴下することによって、少なくとも1次元方向において、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0047】
本発明の好ましい実施態様においては、前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、二次元方向に、間欠的に移動させるように構成されている。
【0048】
本発明の好ましい実施態様によれば、駆動機構が、インクジェットインジェクタと、基板とを、相対的に、二次元方向に、間欠的に移動させるように構成されているから、センサによって、基板に載置され、試料の滴下を滴下すべき担体の基準位置を検出して、スポッティング装置のインクジェットインジェクタと、担体が載置された基板との相対的位置関係を求めた後、駆動機構により、インクジェットインジェクタと、基板とを、相対的に、二次元方向に、間欠的に移動させつつ、インクジェットインジェクタから試料を滴下することによって、二次元方向において、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0049】
本発明のさらに好ましい実施態様においては、前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、二次元方向に、それぞれ、一定のピッチで移動させるように構成されている。
【0050】
本発明のさらに好ましい実施態様によれば、駆動機構が、インクジェットインジェクタと、基板とを、相対的に、二次元方向に、それぞれ、一定のピッチで移動させるように構成されているから、センサによって、基板に載置され、試料の滴下を滴下すべき担体の基準位置を検出して、スポッティング装置のインクジェットインジェクタと、担体が載置された基板との相対的位置関係を求めた後、駆動機構によって、インクジェットインジェクタと、基板とを、相対的に、二次元方向に、一定のピッチで間欠的に移動させつつ、インクジェットインジェクタから試料を滴下することによって、二次元方向において、隣接するスポット間の間隔が一定になるように、試料を滴下して、試料の多数のスポット領域を、担体上に、均一に形成することが可能になる。
【0051】
本発明の好ましい実施態様においては、前記基板に、前記担体を位置決めするための少なくとも2つの位置決め部材が形成されている。
【0052】
本発明の好ましい実施態様によれば、基板に、担体を位置決めするための少なくとも2つの位置決め部材が形成されているから、試料を滴下すべき担体を、基板の所定の位置に位置決めして、載置することが可能になる。
【0053】
本発明のさらに好ましい実施態様においては、前記位置決め部材が、前記基板に立設されたピンによって構成されている。
【0054】
本発明のさらに好ましい実施態様によれば、位置決め部材が、前記基板に立設されたピンによって構成されているから、担体に対応する位置決め用の貫通孔を形成することによって、簡易に、試料を滴下すべき担体を、基板の所定の位置に位置決めして、載置することが可能になる。
【0055】
本発明の好ましい実施態様においては、スポッティング装置は、前記センサによって検出された前記担体の少なくとも2つの基準位置に基づいて、試料を滴下すべき前記担体の表面の位置データを算出する位置データ算出手段と、前記位置データ算出手段によって算出された試料を滴下すべき前記担体の表面の位置データを記憶するメモリと、前記メモリに記憶された試料を滴下すべき前記担体の表面の位置データにしたがって、前記駆動手段を制御する位置制御手段を備えている。
【0056】
本発明の好ましい実施態様によれば、スポッティング装置が、センサによって検出された担体の少なくとも2つの基準位置に基づいて、試料を滴下すべき担体の表面の位置データを算出する位置データ算出手段と、位置データ算出手段によって算出された試料を滴下すべき担体の表面の位置データを記憶するメモリと、メモリに記憶された試料を滴下すべき担体の表面の位置データにしたがって、駆動手段を制御する位置制御手段を備えているから、自動的に、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0057】
本発明のさらに好ましい実施態様においては、前記位置データ算出手段が、前記インクジェットインジェクタ基準位置に位置させて、前記インクジェットインジェクタから、前記担体の表面に試料を滴下し、試料が滴下され、前記センサによって検出された基準滴下位置と、前記基準位置との相対的位置データを算出し、前記メモリに記憶された試料を滴下すべき前記担体の表面の位置データを補正するように構成されている。
【0058】
本発明のさらに好ましい実施態様によれば、位置データ算出手段が、インクジェットインジェクタ基準位置に位置させて、インクジェットインジェクタから、担体の表面に試料を滴下し、試料が滴下され、センサによって検出された基準滴下位置と、基準位置との相対的位置データを算出し、メモリに記憶された試料を滴下すべき担体の表面の位置データを補正するように構成されているから、インクジェットインジェクタに滴下誤差があり、インクジェットインジェクタの先端部に対向する位置に、試料を滴下することができない場合にも、基板に、互いに離間して、ドット状に形成された複数の多孔質領域に、試料を確実に滴下することが可能になる。
【0061】
本発明の好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/5以下に減衰させる性質を有している。
【0062】
本発明のさらに好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/10以下に減衰させる性質を有している。
【0063】
本発明のさらに好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/50以下に減衰させる性質を有している。
【0064】
本発明のさらに好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/100以下に減衰させる性質を有している。
【0065】
本発明のさらに好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/500以下に減衰させる性質を有している。
【0066】
本発明のさらに好ましい実施態様においては、前記放射線を減衰させる材料が、透過した放射線のエネルギーを、1/1000以下に減衰させる性質を有している。
【0067】
本発明の好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/5以下に減衰させる性質を有している。
【0068】
本発明のさらに好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/10以下に減衰させる性質を有している。
【0069】
本発明のさらに好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/50以下に減衰させる性質を有している。
【0070】
本発明のさらに好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/100以下に減衰させる性質を有している。
【0071】
本発明のさらに好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/500以下に減衰させる性質を有している。
【0072】
本発明のさらに好ましい実施態様においては、前記光を減衰させる材料が、透過した光のエネルギーを、1/1000以下に減衰させる性質を有している。
【0073】
本発明において、好ましくは、前記基板が、金属材料、セラミック材料またはプラスチック材料によって形成される。
【0074】
本発明において、前記基板を形成することのできる金属材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、基板を形成することのできる金属材料としては、たとえば、金、銀、銅、亜鉛、アルミニウム、チタン、タンタル、クロム、鉄、ニッケル、コバルト、鉛、錫、真鍮などの金属あるいはステンレスなどのこれらの合金を挙げることができる。
【0075】
本発明において、前記基板を形成することのできるセラミック材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、基板を形成することのできるセラミック材料としては、たとえば、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素、タングステンカーバイトなどを挙げることができる。
【0076】
本発明において、前記基板を形成することのできるプラスチック材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、基板を形成することのできるプラスチック材料としては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリスチレン、ポリメチルメタクリレートなどのアクリル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリカーボネート、ポリエチレンナフタレートやポリエチレンテレフタレートなどのポリエステル、ナイロン6、ナイロン66などのナイロン、ポリイミド、ポリスルホン、ポリフェニレンサルファイド、ポリジフェニルシロキサンなどのケイ素樹脂、ノボラックなどのフェノール樹脂、エポキシ樹脂、ポリウレタン、酢酸セルロースやニトロセルロースなどのセルロース類、ブタジエン−スチレン共重合体などのコポリマーなどを挙げることができる。必要に応じて、前記プラスチック材料に、金属酸化物粒子やガラス繊維などを充填することもでき、また、前記プラスチック材料をブレンドして、使用することもできる。
【0077】
本発明において、好ましくは、前記多孔板は、金属材料、セラミック材料またはプラスチック材料によって形成される。
【0078】
本発明において、前記多孔板を形成することのできる金属材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、多孔板を形成することのできる金属材料としては、たとえば、金、銀、銅、亜鉛、アルミニウム、チタン、タンタル、クロム、鉄、ニッケル、コバルト、鉛、錫、真鍮などの金属あるいはステンレスなどのこれらの合金を挙げることができる。
【0079】
本発明において、前記多孔板を形成することのできるセラミック材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、多孔板を形成することのできるセラミック材料としては、たとえば、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素、タングステンカーバイトなどを挙げることができる。
【0080】
本発明において、前記多孔板を形成することのできるプラスチック材料は、放射線および/または光を減衰させる性質を有するものであれば、とくに限定されるものではないが、多孔板を形成することのできるプラスチック材料としては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリスチレン、ポリメチルメタクリレートなどのアクリル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリカーボネート、ポリエチレンナフタレートやポリエチレンテレフタレートなどのポリエステル、ナイロン6、ナイロン66などのナイロン、ポリイミド、ポリスルホン、ポリフェニレンサルファイド、ポリジフェニルシロキサンなどのケイ素樹脂、ノボラックなどのフェノール樹脂、エポキシ樹脂、ポリウレタン、酢酸セルロースやニトロセルロースなどのセルロース類、ブタジエン−スチレン共重合体などのコポリマーなどを挙げることができる。必要に応じて、前記プラスチック材料に、金属酸化物粒子やガラス繊維などを充填することもでき、また、前記プラスチック材料をブレンドして、使用することもできる。
【0081】
本発明の好ましい実施態様においては、前記多孔質領域が規則的に形成されている。
【0082】
本発明の好ましい実施態様においては、前記多孔質領域が、それぞれ、略円形に形成されている。
【0083】
本発明の好ましい実施態様においては、50以上の多孔質領域が形成されている。
【0084】
本発明のさらに好ましい実施態様においては、100以上の多孔質領域が形成されている。
【0085】
本発明のさらに好ましい実施態様においては、1000以上の多孔質領域が形成されている。
【0086】
本発明のさらに好ましい実施態様においては、10000以上の多孔質領域が形成されている。
【0087】
本発明のさらに好ましい実施態様においては、100000以上の多孔質領域が形成されている。
【0088】
本発明の好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、5平方ミリメートル未満のサイズを有している。
【0089】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、1平方ミリメートル未満のサイズを有している。
【0090】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、0.5平方ミリメートル未満のサイズを有している。
【0091】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、0.1平方ミリメートル未満のサイズを有している。
【0092】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、0.05平方ミリメートル未満のサイズを有している。
【0093】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、それぞれ、0.01平方ミリメートル未満のサイズを有している。
【0094】
本発明の好ましい実施態様においては、前記複数の多孔質領域が、50個/平方センチメートル以上の密度で、形成されている。
【0095】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、100個/平方センチメートル以上の密度で、形成されている。
【0096】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、500個/平方センチメートル以上の密度で、形成されている。
【0097】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、1000個/平方センチメートル以上の密度で、形成されている。
【0098】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、5000個/平方センチメートル以上の密度で、形成されている。
【0099】
本発明のさらに好ましい実施態様においては、前記複数の多孔質領域が、10000個/平方センチメートル以上の密度で、形成されている。
【0100】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の好ましい実施態様につき、詳細に説明を加える。
【0101】
図1は、本発明の好ましい実施態様にかかるスポッティング装置によって、資料が滴下される生化学解析用ユニットの略斜視図である。
【0102】
図1に示されるように、生化学解析用ユニット1は、放射線および光を減衰させる性質を有し、可撓性を有するアルミニウムなどの金属によって形成され、多数の略円形の貫通孔3が高密度に形成された基板2を備え、多数の貫通孔3の内部には、酢酸セルロースなどのメンブレンフィルタを形成することのできる多孔質材料が充填されて、ドット状に、多孔質領域4が形成されている。
【0103】
図1には、正確に示されていないが、本実施態様においては、約100000の約0.01平方ミリメートルのサイズを有する貫通孔3が、約1000個/平方センチメートルの密度で、規則的に、基板2に形成されている。
【0104】
図2は、本発明の好ましい実施態様にかかるスポッティング装置の略正面図である。
【0105】
図2に示されるように、スポッティング装置のスポッティングヘッド5は、特異的結合物質の溶液を、生化学解析用ユニット1に向けて、噴射して、滴下するインジェクタ6とCCDカメラ7を備え、CCDカメラ7によって、インジェクタ6の先端部と、たとえば、cDNAなどの特異的結合物質を滴下すべき生化学解析用ユニット1の貫通孔3を観察しながら、インジェクタ6の先端部と、cDNAなどの特異的結合物質を滴下すべき貫通孔3の中心とが合致したときに、インジェクタ6から、特異的結合物質を放出するように構成され、多孔質材料が充填され、多孔質領域4が形成された多数の貫通孔3内に、特異的結合物質を、正確に滴下することができるように保証されている。
【0106】
図3は、ハイブリダイズ容器の略横断面図である。
【0107】
図3に示されるように、ハイブリダイズ容器8は円筒状をなし、内部に、標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が収容されている。
【0108】
放射性標識物質によって、特異的結合物質、たとえば、cDNAを選択的に標識する場合には、放射性標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、ハイブリダイズ容器8内に収容される。
【0109】
一方、化学発光基質と接触させることによって化学発光を生じさせる標識物質によって、特異的結合物質を選択的に標識する場合には、化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、ハイブリダイズ容器8内に収容される。
【0110】
さらに、蛍光色素などの蛍光物質によって、特異的結合物質を選択的に標識する場合には、蛍光色素などの蛍光物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、ハイブリダイズ容器8内に収容される。
【0111】
放射性標識物質によって標識された生体由来の物質、化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質および蛍光色素などの蛍光物質によって標識された生体由来の物質のうち、2以上の生体由来の物質を含むハイブリダイズ液9を調製して、ハイブリダイズ容器8内に収容させることもでき、本実施態様においては、放射性標識物質によって標識された生体由来の物質、蛍光色素などの蛍光物質によって標識された生体由来の物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、ハイブリダイズ容器8内に収容されている。
【0112】
ハイブリダイゼーションにあたって、多孔質材料4が充填された多数の貫通孔3内に、特異的結合物質、たとえば、複数のcDNAなどの特異的結合物質が滴下された生化学解析用ユニット1が、ハイブリダイズ容器8内に挿入されるが、基板2は可撓性を有する金属によって形成されているため、図3に示されるように、生化学解析用ユニット1を湾曲させて、ハイブリダイズ容器8の内壁の沿うように、ハイブリダイズ容器8内に挿入することができる。
【0113】
図3に示されるように、ハイブリダイズ容器8は、駆動手段(図示せず)によって、軸まわりに回転可能に構成され、生化学解析用ユニット1が湾曲状態で、ハイブリダイズ容器8の内壁の沿うように、ハイブリダイズ容器8内に挿入されているため、ハイブリダイズ容器8を回転させることによって、ハイブリダイズ液9が少量の場合でも、多数の貫通孔3内の多孔質領域4に滴下された特異的結合物質に、放射性標識物質によって標識され、ハイブリダイズ液9に含まれた生体由来の物質および蛍光色素などの蛍光物質によって標識され、ハイブリダイズ液9に含まれた生体由来の物質を、選択的に、ハイブリダイズさせることができるように構成されている。
【0114】
ハイブリダイゼーションの結果、生化学解析用ユニット1に形成された多数の貫通孔3内の多孔質領域4に、標識物質である蛍光色素などの蛍光物質の蛍光データおよび化学発光基質と接触させることによって化学発光を生じさせる標識物質の化学発光データが記録される。多孔質領域4に記録された蛍光データおよび化学発光データは、後述するスキャナによって読み取られ、生化学解析用データが生成される。
【0115】
図4は、蓄積性蛍光体シート10の略斜視図である。
【0116】
図4に示されるように、蓄積性蛍光体シート10は、支持体11を備え、支持体11の一方の面には、生化学解析用ユニット1に、ドット状に形成された多数の貫通孔3のパターンと同一のパターンで、多数の略円形のドット状の輝尽性蛍光体層領域12が形成されている。
【0117】
本実施態様においては、支持体11は、放射線を減衰させる性質を有するステンレスによって、形成されている。
【0118】
図5は、多数の貫通孔3内のドット状の多孔質領域4に含まれた放射性標識物質によって、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12を露光する方法を示す略断面図である。
【0119】
図5に示されるように、露光にあたっては、蓄積性蛍光体シート10に形成されたドット状輝尽性蛍光体層領域12の各々が、生化学解析用ユニット1に形成されたドット状の多数の貫通孔3の各々の内部に収容され、ドット状の輝尽性蛍光体層領域12の各々の表面が、生化学解析用ユニット1に形成された多数の貫通孔3の各々の内部に形成された多孔質領域4の表面と密着するように、蓄積性蛍光体シート10が生化学解析用ユニット1上に重ね合わされる。
【0120】
本実施態様においては、生化学解析用ユニット1の基板2はアルミニウムなどの金属によって形成されているので、ハイブリダイゼーションなど、液体による処理を受けても、ほとんど伸縮することがなく、したがって、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12の各々が、生化学解析用ユニット1に、ドット状に形成された多数の貫通孔3の各々の内部に収容され、ドット状の輝尽性蛍光体層領域12の各々の表面が、生化学解析用ユニット1の多数の貫通孔3の各々の内部に形成された多孔質領域4の表面と密着するように、蓄積性蛍光体シート10と生化学解析用ユニット1とを、容易にかつ確実に重ね合わせて、ドット状の輝尽性蛍光体層領域12を露光することが可能になる。
【0121】
こうして、所定の時間にわたって、ドット状の輝尽性蛍光体層領域12の各々の表面と、ドット状の多孔質領域4のそれぞれの表面と密着させることによって、ドット状の多孔質領域4に含まれた放射性標識物質によって、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12が露光される。
【0122】
この際、基板2が、放射線および光を減衰させる性質を有する金属によって形成されているため、放射性標識物質から発せられた電子線が、基板2内で散乱されることが確実に防止され、また、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12の各々は、生化学解析用ユニット1に形成された多数の貫通孔3の各々の内部に収容されているため、放射性標識物質から発せられた電子線が、ドット状の輝尽性蛍光体層領域12内で散乱して、隣接する貫通孔3内に位置するドット状の輝尽性蛍光体層領域12に到達することが確実に防止される。
【0123】
さらに、本実施態様においては、蓄積性蛍光体シート10の支持体11が、放射線を減衰させる性質を有するステンレスによって、形成されているから、電子線が、蓄積性蛍光体シート10の支持体11内で散乱し、隣接するドット状の輝尽性蛍光体層領域12に入射することも確実に防止することができる。
【0124】
したがって、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12を、対応する貫通孔3の内部に形成された多孔質領域4に含まれた放射性標識物質のみによって、確実に露光することが可能になる。
【0125】
こうして、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12に、放射性標識物質の放射線データが記録される。
【0126】
図6は、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12に記録された放射性標識物質の放射線データおよび生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された蛍光色素などの蛍光データを読み取って、生化学解析用データを生成するスキャナの一例を示す略斜視図であり、図7は、フォトマルチプライア近傍のスキャナの詳細を示す略斜視図である。
【0127】
図6に示されるスキャナは、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12に記録された放射性標識物質の放射線データおよび生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された蛍光色素などの蛍光データを読み取り可能に構成されており、640nmの波長のレーザ光24を発する第1のレーザ励起光源21と、532nmの波長のレーザ光24を発する第2のレーザ励起光源22と、473nmの波長のレーザ光24を発する第3のレーザ励起光源23とを備えている。本実施態様においては、第1のレーザ励起光源21は、半導体レーザ光源によって構成され、第2のレーザ励起光源22および第3のレーザ励起光源23は、第二高調波生成(Second Harmonic Generation)素子によって構成されている。
【0128】
第1のレーザ励起光源21により発生されたレーザ光24は、コリメータレンズ25によって、平行光とされた後、ミラー26によって反射される。第1のレーザ励起光源21から発せられ、ミラー26によって反射されたレーザ光24の光路には、640nmのレーザ光4を透過し、532nmの波長の光を反射する第1のダイクロイックミラー27および532nm以上の波長の光を透過し、473nmの波長の光を反射する第2のダイクロイックミラー28が設けられており、第1のレーザ励起光源21により発生されたレーザ光24は、第1のダイクロイックミラー27および第2のダイクロイックミラー28を透過して、ミラー29に入射する。
【0129】
他方、第2のレーザ励起光源22より発生されたレーザ光24は、コリメータレンズ30により、平行光とされた後、第1のダイクロイックミラー27によって反射されて、その向きが90度変えられて、第2のダイクロイックミラー28を透過し、ミラー29に入射する。
【0130】
また、第3のレーザ励起光源23から発生されたレーザ光24は、コリメータレンズ31によって、平行光とされた後、第2のダイクロイックミラー28により反射されて、その向きが90度変えられた後、ミラー29に入射する。
【0131】
ミラー29に入射したレーザ光24は、ミラー29によって反射され、さらに、ミラー32に入射して、反射される。
【0132】
ミラー32によって反射されたレーザ光24の光路には、中央部に穴33が形成された凹面ミラーによって形成された穴開きミラー34が配置されており、ミラー32によって反射されたレーザ光24は、穴開きミラー34の穴33を通過して、凹面ミラー38に入射する。
【0133】
凹面ミラー38に入射したレーザ光24は、凹面ミラー38によって反射されて、光学ヘッド35に入射する。
【0134】
光学ヘッド35は、ミラー36と、非球面レンズ37を備えており、光学ヘッド35に入射したレーザ光24は、ミラー36によって反射されて、非球面レンズ37によって、ステージ40のガラス板41上に載置された蓄積性蛍光体シート10あるいは生化学解析用ユニット1に入射する。図6においては、生化学解析用ユニット1が、特異的結合物質が滴下された多孔質領域4の表面が、下方を向くように、ステージ40のガラス板41上に載置されている。
【0135】
蓄積性蛍光体シート10のドット状の輝尽性蛍光体層領域12にレーザ光24が入射すると、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12に含まれている輝尽性蛍光体が励起されて、輝尽光45が発せられ、生化学解析用ユニット1にレーザ光24が入射すると、多数の貫通孔3内に形成された多孔質領域4に含まれている蛍光色素などが励起されて、蛍光45が放出される。
【0136】
蓄積性蛍光体シート10のドット状の輝尽性蛍光体層領域12から放出された輝尽光45あるいは生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4から放出された蛍光45は、光学ヘッド35に設けられた非球面レンズ37によって、ミラー36に集光され、ミラー36によって、レーザ光24の光路と同じ側に反射され、平行な光とされて、凹面ミラー38に入射する。
【0137】
凹面ミラー38に入射した輝尽光45あるいは蛍光45は、凹面ミラー38によって反射されて、穴開きミラー34に入射する。
【0138】
穴開きミラー34に入射した輝尽光45あるいは蛍光45は、図7に示されるように、凹面ミラーによって形成された穴開きミラー34によって、下方に反射されて、フィルタユニット48に入射し、所定の波長の光がカットされて、フォトマルチプライア50に入射し、光電的に検出される。
【0139】
図7に示されるように、フィルタユニット48は、4つのフィルタ部材51a、51b、51c、51dを備えており、フィルタユニット48は、モータ(図示せず)によって、図7において、左右方向に移動可能に構成されている。
【0140】
図8は、図7のA−A線に沿った略断面図である。
【0141】
図8に示されるように、フィルタ部材51aはフィルタ52aを備え、フィルタ52aは、第1のレーザ励起光源21を用いて、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれている蛍光色素などの蛍光物質を励起して、蛍光45を読み取るときに使用されるフィルタ部材であり、640nmの波長の光をカットし、640nmよりも波長の長い光を透過する性質を有している。
【0142】
図9は、図7のB−B線に沿った断面図である。
【0143】
図9に示されるように、フィルタ部材51bはフィルタ52bを備え、フィルタ52bは、第2のレーザ励起光源22を用いて、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれている蛍光色素などの蛍光物質を励起して、蛍光45を読み取るときに使用されるフィルタ部材であり、532nmの波長の光をカットし、532nmよりも波長の長い光を透過する性質を有している。
【0144】
図10は、図7のC−C線に沿った断面図である。
【0145】
図10に示されるように、フィルタ部材51cはフィルタ52cを備え、フィルタ52cは、第3のレーザ励起光源23を用いて、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれている蛍光色素などの蛍光物質を励起して、蛍光45を読み取るときに使用されるフィルタ部材であり、473nmの波長の光をカットし、473nmよりも波長の長い光を透過する性質を有している。
【0146】
図11は、図7のD−D線に沿った断面図である。
【0147】
図11に示されるように、フィルタ部材51dはフィルタ52dを備え、フィルタ52dは、第1のレーザ励起光源21を用いて、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12に含まれた輝尽性蛍光体を励起し、ドット状の輝尽性蛍光体層領域12から発せられた輝尽光45を読み取るときに使用されるフィルタであり、ドット状の輝尽性蛍光体層領域12から放出される輝尽光の波長域の光のみを透過し、640nmの波長の光をカットする性質を有している。
【0148】
したがって、使用すべきレーザ励起光源に応じて、フィルタ部材51a、51b、51c、51dを選択的にフォトマルチプライア50の前面に位置させることによって、フォトマルチプライア50は、検出すべき光のみを光電的に検出することができる。
【0149】
フォトマルチプライア50によって光電的に検出されて、生成されたアナログデータは、A/D変換器53によって、ディジタルデータに変換され、データ処理装置54に送られる。
【0150】
図6には図示されていないが、光学ヘッド35は、走査機構によって、図6において、X方向およびY方向に移動可能に構成され、蓄積性蛍光体シート10に形成されたすべてのドット状の輝尽性蛍光体層領域12あるいは生化学解析用ユニット1の全面が、レーザ光24によって走査されるように構成されている。
【0151】
図12は、光学ヘッドの走査機構の略平面図である。図12においては、簡易化のため、光学ヘッド35を除く光学系ならびにレーザ光24および輝尽光45あるいは蛍光45の光路は省略されている。
【0152】
図12に示されるように、光学ヘッド35を走査する走査機構は、基板60を備え、基板60上には、副走査パルスモータ61と一対のレール62、62とが固定され、基板60上には、さらに、図12において、矢印Yで示された副走査方向に、移動可能な基板63が設けられている。
【0153】
移動可能な基板63には、ねじが切られた穴(図示せず)が形成されており、この穴内には、副走査パルスモータ61によって回転されるねじが切られたロッド64が係合している。
【0154】
移動可能な基板63上には、主走査パルスモータ65が設けられ、主走査パルスモータ65は、エンドレスベルト66を、生化学解析用ユニット1に形成された隣接するの貫通孔3の距離に等しいピッチで、間欠的に駆動可能に構成されている。光学ヘッド35は、エンドレスベルト66に固定されており、主走査パルスモータ65により、エンドレスベルト66が駆動されると、図12において、矢印Xで示された主走査方向に移動されるように構成されている。図12において、67は、光学ヘッド35の主走査方向における位置を検出するリニアエンコーダであり、68は、リニアエンコーダ67のスリットである。
【0155】
したがって、主走査パルスモータ65によって、エンドレスベルト66が、主走査方向に駆動され、1ラインの走査が完了すると、副走査パルスモータ61によって、基板63が、副走査方向に間欠的に移動されることによって、光学ヘッド35は、図12において、X−Y方向に移動され、レーザ光24によって、蓄積性蛍光体シート10に形成されたすべてのドット状の輝尽性蛍光体層領域12あるいは生化学解析用ユニット1の全面が走査される。
【0156】
図13は、図6に示されたスキャナの制御系、入力系および駆動系を示すブロックダイアグラムである。
【0157】
図13に示されるように、スキャナの制御系は、スキャナ全体を制御するコントロールユニット70を備えており、また、スキャナの入力系は、オペレータによって操作され、種々の指示信号を入力可能なキーボード71を備えている。
【0158】
図13に示されるように、スキャナの駆動系は、4つのフィルタ部材51a、51b、51c、51dを備えたフィルタユニット48を移動させるフィルタユニットモータ72を備えている。
【0159】
コントロールユニット70は、第1のレーザ励起光源21、第2のレーザ励起光源22または第3のレーザ励起光源23に選択的に駆動信号を出力するとともに、フィルタユニットモータ72に駆動信号を出力可能に構成されている。
【0160】
以上のように構成されたスキャナは、以下のようにして、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に担持されている蛍光色素などの蛍光物質の蛍光データを読み取って、生化学解析用ディジタルデータを生成する。
【0161】
まず、オペレータによって、生化学解析用ユニット1が、ステージ40のガラス板41上にセットされる。
【0162】
次いで、オペレータによって、キーボード71に、標識物質である蛍光物質の種類が特定され、蛍光データを読み取るべき旨の指示信号が入力される。
【0163】
キーボード71に入力された指示信号は、コントロールユニット70に入力され、コントロールユニット70は、指示信号を受けると、メモリ(図示せず)に記憶されているテーブルにしたがって、使用すべきレーザ励起光源を決定するとともに、フィルタ52a、52b、52c、52dのいずれを蛍光45の光路内に位置させるかを決定する。
【0164】
たとえば、生体由来の物質を標識する蛍光物質として、532nmの波長のレーザによって、最も効率的に励起することのできるローダミン(登録商標)が使用され、その旨がキーボード71に入力されたときは、コントロールユニット70は第2のレーザ励起光源22を選択するとともに、フィルタ52bを選択し、フィルタユニットモータ72に駆動信号を出力して、フィルタユニット48を移動させ、532nmの波長の光をカットし、532nmよりも波長の長い光を透過する性質を有するフィルタ52bを備えたフィルタ部材51bを、蛍光45の光路内に位置させる。
【0165】
次いで、コントロールユニット70は、第2のレーザ励起光源22に駆動信号を出力し、第2のレーザ励起光源22を起動させ、532nmの波長のレーザ光24を発せさせる。
【0166】
第2のレーザ励起光源22から発せられたレーザ光24は、コリメータレンズ30によって、平行な光とされた後、第1のダイクロイックミラー27に入射して、反射される。
【0167】
第1のダイクロイックミラー27によって反射されたレーザ光24は、第2のダイクロイックミラー28を透過し、ミラー29に入射する。
【0168】
ミラー29に入射したレーザ光24は、ミラー29によって反射されて、さらに、ミラー32に入射して、反射される。
【0169】
ミラー32によって反射されたレーザ光24は、穴開きミラー34の穴33を通過して、凹面ミラー38に入射する。
【0170】
凹面ミラー38に入射したレーザ光24は、凹面ミラー38によって反射されて、光学ヘッド35に入射する。
【0171】
光学ヘッド35に入射したレーザ光24は、ミラー36によって反射され、非球面レンズ37によって、ステージ40ガラス板41上に載置された生化学解析用ユニット1に集光される。
【0172】
その結果、レーザ光24によって、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれている蛍光色素などの蛍光物質、たとえば、ローダミン(登録商標)が励起されて、蛍光が発せられる。
【0173】
ここに、本実施態様にかかる生化学解析用ユニット1にあっては、生化学解析用ユニット1の基板2が、放射線および光を減衰させる性質を有する金属によって形成されているので、蛍光物質から放出された蛍光45が、基板2内で散乱して、隣接する貫通孔3内に形成された多孔質領域4に含まれる蛍光物質から放出された蛍光45と混ざり合うことを確実に防止することができる。
【0174】
ローダミン(登録商標)から放出された蛍光45は、光学ヘッド35に設けられた非球面レンズ37によって集光され、ミラー36によって、レーザ光24の光路と同じ側に反射され、平行な光とされて、穴開きミラー34に入射する。
【0175】
穴開きミラー34に入射した蛍光45は、凹面ミラーによって形成された穴開きミラー34によって、図7に示されるように、下方に反射され、フィルタユニット48のフィルタ52bに入射する。
【0176】
フィルタ52bは、532nmの波長の光をカットし、532nmよりも波長の長い光を透過する性質を有しているので、励起光である532nmの波長の光がカットされ、ローダミン(登録商標)から放出された蛍光45の波長域の光のみがフィルタ52bを透過して、フォトマルチプライア50によって、光電的に検出される。
【0177】
前述のように、光学ヘッド35は、基板62に設けられた主走査パルスモータ65によって、基板62上を、図12において、X方向に移動されるとともに、副走査パルスモータ61によって、基板62が、図12において、Y方向に移動されるため、生化学解析用ユニット1の全面がレーザ光24によって走査され、ドット状に形成されたすべての多孔質領域4内に含まれているローダミン(登録商標)から放出された蛍光45を、フォトマルチプライア50によって光電的に検出することによって、生化学解析用ユニット1に記録されたローダミン(登録商標)の蛍光データを読み取り、生化学解析用のアナログデータを生成することができる。
【0178】
フォトマルチプライア50によって光電的に検出されて、生成されたアナログデータは、A/D変換器53によって、ディジタルデータに変換され、データ処理装置54に送られる。
【0179】
他方、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれた放射性標識物質によって、ドット状の輝尽性蛍光体層領域12が露光されて、蓄積性蛍光体シート10に記録された放射線データを読み取って、画像データを生成するときは、ドット状の輝尽性蛍光体層領域12がガラス板41と接触するように、ステージ40のガラス板41上に、蓄積性蛍光体シート10が載置される。
【0180】
次いで、オペレータによって、キーボード71に、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12に記録された放射線データを読み取るべき旨の指示信号が入力される。
【0181】
キーボード71に入力された指示信号は、コントロールユニット70に入力され、コントロールユニット70は、指示信号にしたがって、フィルタユニットモータ72に駆動信号を出力し、フィルタユニット48を移動させ、輝尽性蛍光体から放出される輝尽光の波長域の光のみを透過し、640nmの波長の光をカットする性質を有するフィルタ52dを備えたフィルタ部材51dを、輝尽光45の光路内に位置させる。
【0182】
次いで、コントロールユニット70は、第1のレーザ励起光源21に駆動信号を出力し、第1のレーザ励起光源21を起動させ、640nmの波長のレーザ光24を発せさせる。
【0183】
第1のレーザ励起光源21から発せられたレーザ光24は、コリメータレンズ25によって、平行な光とされた後、ミラー26に入射して、反射される。
【0184】
ミラー26によって反射されたレーザ光24は、第1のダイクロイックミラー27および第2のダイクロイックミラー28を透過し、ミラー29に入射する。
【0185】
ミラー29に入射したレーザ光24は、ミラー29によって反射されて、さらに、ミラー32に入射して、反射される。
【0186】
ミラー32によって反射されたレーザ光24は、穴開きミラー34の穴33を通過して、凹面ミラー38に入射する。
【0187】
凹面ミラー38に入射したレーザ光24は、凹面ミラー38によって反射されて、光学ヘッド35に入射する。
【0188】
光学ヘッド35に入射したレーザ光24は、ミラー36によって反射され、非球面レンズ37によって、ステージ40ガラス板41上に載置された蓄積性蛍光体シート10のドット状の輝尽性蛍光体層領域12に集光される。
【0189】
その結果、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12に含まれる輝尽性蛍光体が、レーザ光24によって励起されて、輝尽性蛍光体から輝尽光45が放出される。
【0190】
ドット状の輝尽性蛍光体層領域12に含まれる輝尽性蛍光体から放出された輝尽光45は、光学ヘッド35に設けられた非球面レンズ37によって集光され、ミラー36によって、レーザ光24の光路と同じ側に反射され、平行な光とされて、穴開きミラー34に入射する。
【0191】
穴開きミラー34に入射した輝尽光45は、凹面ミラーによって形成された穴開きミラー34によって、図7に示されるように、下方に反射され、フィルタユニット48のフィルタ52dに入射する。
【0192】
フィルタ52dは、輝尽性蛍光体から放出される輝尽光の波長域の光のみを透過し、640nmの波長の光をカットする性質を有しているので、励起光である640nmの波長の光がカットされ、輝尽光の波長域の光のみがフィルタ52dを透過して、フォトマルチプライア50によって、光電的に検出される。
【0193】
前述のように、光学ヘッド35は、基板62に設けられた主走査パルスモータ65によって、基板62上を、図12において、X方向に移動されるとともに、副走査パルスモータ61によって、基板62が、図12において、Y方向に移動されるため、蓄積性蛍光体シート10に形成されたすべてのドット状の輝尽性蛍光体層領域12がレーザ光24によって走査され、ドット状の輝尽性蛍光体層領域12に含まれた輝尽性蛍光体から放出された輝尽光45を、フォトマルチプライア50によって光電的に検出することによって、多数のドット状の輝尽性蛍光体層領域12に記録された放射性標識物質の放射線データを読み取って、生化学解析用のアナログデータを生成することができる。
【0194】
フォトマルチプライア50によって光電的に検出されて、生成されたアナログデータは、A/D変換器53によって、ディジタルデータに変換され、データ処理装置54に送られる。
【0195】
図14は、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された化学発光基質と接触させることによって化学発光を生じさせる標識物質の化学発光データを読み取って、生化学解析用データを生成する生化学解析用データ生成システムの略正面図である。図14に示された生化学解析用データ生成システムは、生化学解析用ユニット1に形成された多数の貫通孔3内に形成された多孔質領域4に記録された蛍光色素などの蛍光物質の蛍光データをも生成可能に構成されている。
【0196】
図14に示されるように、生化学解析用データ生成システムは、冷却CCDカメラ81、暗箱82およびパーソナルコンピュータ83を備えている。パーソナルコンピュータ83は、CRT84とキーボード85を備えている。
【0197】
図15は、生化学解析用データ生成システムの冷却CCDカメラ81の略縦断面図である。
【0198】
図15に示されるように、冷却CCDカメラ81は、CCD86と、アルミニウムなどの金属によって作られた伝熱板87と、CCD86を冷却するためのペルチエ素子88と、CCD86の前面に配置されたシャッタ89と、CCD86が生成したアナログデータをディジタルデータに変換するA/D変換器90と、A/D変換器90によってディジタル化されたデータを一時的に記憶するデータバッファ91と、冷却CCDカメラ81の動作を制御するカメラ制御回路92とを備えている。暗箱82との間に形成された開口部は、ガラス板95によって閉じられており、冷却CCDカメラ81の周囲には、ペルチエ素子88が発する熱を放熱するための放熱フィン96が長手方向のほぼ全面にわたって形成されている。
【0199】
ガラス板95の前面の暗箱82内には、レンズフォーカス調整機能を有するカメラレンズ97が取付けられている。
【0200】
図16は、生化学解析用データシステムの暗箱82の略縦断面図である。
【0201】
図16に示されるように、暗箱82内には、励起光を発するLED光源100が設けられており、LED光源100は、取り外し可能に設けられたフィルタ101と、フィルタ101の上面に設けられた拡散板103を備え、拡散板103を介して、励起光が、その上に載置される生化学解析用ユニット(図示せず)に向けて、照射されることによって、生化学解析用ユニットが均一に照射されるように保証されている。フィルタ101は、励起光の近傍の波長以外の蛍光物質の励起に有害な光をカットし、励起光近傍の波長の光のみを透過する性質を有している。カメラレンズ97の前面には、励起光近傍の波長の光をカットするフィルタ102が、取り外し可能に設けられている。
【0202】
図17は、生化学解析用データシステムのパーソナルコンピュータ83の周辺のブロックダイアグラムである。
【0203】
図17に示されるように、パーソナルコンピュータ83は、冷却CCDカメラ81の露出を制御するCPU110と、冷却CCDカメラ81の生成したディジタルデータをデータバッファ91から読み出すデータ転送手段111と、ディジタルデータを記憶するデータ記憶手段112と、データ記憶手段112に記憶されたディジタルデータにデータ処理を施すデータ処理手段113と、データ記憶手段112に記憶されたディジタルデータに基づいて、CRT84の画面上に可視データを表示するデータ表示手段114とを備えている。ここに、LED光源100は、光源制御手段115によって制御されており、光源制御手段115には、キーボード85から、CPU110を介して、指示信号が入力されるように構成されている。CPU110は、冷却CCDカメラ81のカメラ制御回路92に種々の信号を出力可能に構成されている。
【0204】
図14ないし図17に示された生化学解析用データ生成システムは、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれた標識物質と、化学発光基質との接触により生ずる化学発光を、カメラレンズ97を介して、冷却CCDカメラ81のCCD86によって検出し、生化学解析用データを生成するとともに、生化学解析用ユニット1に、LED光源100から励起光を照射して、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれた蛍光色素などの蛍光物質が励起されて、放出した蛍光を、カメラレンズ97を介して、冷却CCDカメラ81のCCD66によって検出し、生化学解析用データを生成可能に構成されている。
【0205】
化学発光データを読み取って、生化学解析用データを生成する場合には、フィルタ102を取り外し、LED光源100をオフ状態に保持して、拡散板103上に、生化学解析用ユニット1に形成された多数の貫通孔3内に形成された多孔質領域4に含まれた標識物質に化学発光基質が接触されて、化学発光を発している生化学解析用ユニット1が載置される。
【0206】
次いで、オペレータにより、カメラレンズ97を用いて、レンズフォーカス合わせがなされ、暗箱82が閉じられる。
【0207】
その後、オペレータが、キーボード85に露出開始信号を入力すると、露出開始信号が、CPU110を介して、冷却CCDカメラ81のカメラ制御回路92に入力され、カメラ制御回路92によって、シャッタ89が開かれ、CCD86の露出が開始される。
【0208】
生化学解析用ユニット1から発せられた化学発光は、カメラレンズ97を介して、冷却CCDカメラ81のCCD86の光電面に入射して、光電面に画像を形成する。CCD86は、こうして、光電面に形成された画像の光を受け、これを電荷の形で蓄積する。
【0209】
ここに、本実施態様においては、生化学解析用ユニット1の基板2は、放射線および光を減衰させる性質を有する金属によって形成されているので、標識物質から放出された化学発光が、基板2内で散乱して、隣接する貫通孔3内に形成された多孔質領域4に含まれる標識物質から放出された化学発光と混ざり合うことを確実に防止することができる。
【0210】
所定の露出時間が経過すると、CPU110は、冷却CCDカメラ81のカメラ制御回路92に露出完了信号を出力する。
【0211】
カメラ制御回路92は、CPU110から、露出完了信号を受けると、CCD86が電荷の形で蓄積したアナログデータをA/D変換器100に転送して、ディジタル化し、データバッファ91に一時的に記憶させる。
【0212】
カメラ制御回路92に露出完了信号を出力するのと同時に、CPU110は、データ転送手段111にデータ転送信号を出力して、冷却CCDカメラ81のデータバッファ91からディジタルデータを読み出させ、データ記憶手段112に記憶させる。
【0213】
オペレータが、キーボード85にデータ表示信号を入力すると、CPU110はデータ記憶手段112に記憶されたディジタルデータを、データ処理手段113に出力させ、オペレータの指示にしたがって、データ処理を施した後、データ表示手段114にデータ表示信号を出力して、ディジタルデータに基づき、化学発光データを、CRT84の画面上に表示させる。
【0214】
これに対して、蛍光データを読み取って、生化学解析用データを生成するときは、まず、生化学解析用ユニット1が、拡散板103上に載置される。
【0215】
次いで、オペレータにより、LED光源100がオンされ、カメラレンズ97を用いて、レンズフォーカス合わせがなされ、暗箱82が閉じられる。
【0216】
その後、オペレータがキーボード85に露出開始信号を入力すると、光源制御手段115によって、LED光源100がオンされて、生化学解析用ユニット1に向けて、励起光が発せられる。同時に、露出開始信号は、CPU110を介して、冷却CCDカメラ81のカメラ制御回路92に入力され、カメラ制御回路92によって、シャッタ89が開かれ、CCD86の露出が開始される。
【0217】
LED光源100から発せられた励起光は、フィルタ101により、励起光以外の波長成分がカットされ、拡散板23によって、一様な光とされて、生化学解析用ユニット1に照射される。
【0218】
生化学解析用ユニット1から発せられた蛍光は、フィルタ102およびカメラレンズ97を介して、冷却CCDカメラ81のCCD86の光電面に入射し、光電面に像を形成する。CCD86は、こうして、光電面に形成された像の光を受けて、これを電荷の形で蓄積する。フィルタ102によって、励起光の波長の光がカットされるため、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれた蛍光物質から発せられた蛍光のみが、CCD86によって受光される。
【0219】
ここに、本実施態様においては、生化学解析用ユニット1の基板2は、放射線および光を減衰させる性質を有する金属によって形成されているので、蛍光色素などの蛍光物質から放出された蛍光が、基板2内で散乱して、隣接する貫通孔3内に形成された多孔質領域4に含まれる蛍光物質から放出された蛍光と混ざり合うことを確実に防止することができる。
【0220】
所定の露出時間が経過すると、CPU110は、冷却CCDカメラ81のカメラ制御回路92に露出完了信号を出力する。
【0221】
カメラ制御回路92は、CPU40から露出完了信号を受けると、CCD86が電荷の形で蓄積したアナログデータを、A/D変換器10に転送して、ディジタル化し、データバッファ91に一時的に記憶させる。
【0222】
カメラ制御回路92に露出完了信号を出力するのと同時に、CPU110は、データ転送手段211にデータ転送信号を出力して、冷却CCDカメラ81のデータバッファ91からディジタルデータを読み出させ、データ記憶手段112に記憶させる。
【0223】
オペレータが、キーボード85にデータ表示信号を入力すると、CPU110はデータ記憶手段112に記憶されたディジタルデータを、データ処理手段113に出力させ、オペレータの指示にしたがって、データ処理を施した後、データ表示手段114に画像表示信号を出力して、ディジタルデータに基づき、蛍光データを、CRT84の画面上に表示させる。
【0224】
本実施態様においては、生化学解析用ユニット1は、放射線および光を減衰させる性質を有し、可撓性を有する金属によって形成され、多数の貫通孔3が高密度に形成された基板2を備え、多数の貫通孔3の内部には、多孔質材料が充填されて、多項質領域4が形成されている。cDNAなどの塩基配列が既知の互いに異なった複数の特異的結合物質は、スポッティング装置5によって、生化学解析用ユニット1に形成された多数の貫通孔3内に滴下され、多孔質領域4によって保持される。
【0225】
放射性標識物質によって標識された生体由来の物質、蛍光色素などの蛍光物質によって標識された生体由来の物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、収容されているハイブリダイズ容器8内に、生化学解析用ユニット1が挿入されて、多数の貫通孔3内に形成された多孔質領域4に滴下された特異的結合物質に、ハイブリダイズ液9に含まれた生体由来の物質がハイブリダイズされ、特異的結合物質が、放射性標識物質、蛍光色素などの蛍光物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって、選択的に標識される。
【0226】
放射性標識物質による蓄積性蛍光体シート10の露光にあたっては、支持体11の一方の面に、生化学解析用ユニット1に形成された多数の貫通孔3のパターンと同一のパターンにしたがって、多数のドット状の輝尽性蛍光体層領域12が形成された蓄積性蛍光体シート10が、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12の各々が、生化学解析用ユニット1に形成された多数の貫通孔3の各々の内部に収容され、ドット状の輝尽性蛍光体層領域12の各々の表面が、生化学解析用ユニット1の多数の貫通孔3の各々の内部に形成された多孔質領域4の表面と密着するように、生化学解析用ユニット1上に重ね合わされて、多数のドット状の輝尽性蛍光体層領域12が放射性標識物質によって露光される。
【0227】
したがって、本実施態様によれば、生化学解析用ユニット1の基板2が、放射線および光を減衰させる性質を有する金属によって形成されているため、露光に際して、放射性標識物質から発せられた電子線が、基板2内で散乱することが確実に防止され、さらに、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12の各々は、生化学解析用ユニット1にドット状に形成された多数の貫通孔3の各々の内部に収容されているため、放射性標識物質から発せられた電子線が、輝尽性蛍光体層内で散乱して、隣接する貫通孔3内に位置するドット状の輝尽性蛍光体層領域12に到達することが確実に防止され、したがって、基板2に貫通孔3を高密度に形成しても、蓄積性蛍光体シート10に形成された多数のドット状の輝尽性蛍光体層領域12を、対応する貫通孔3の内部に形成された多孔質領域4に含まれた放射性標識物質のみによって、確実に露光することが可能になるから、放射性標識物質から発せられる電子線が散乱して、露光すべき輝尽性蛍光体層以外の部分に入射することに起因して、生化学解析用データ中に生成されるノイズを効果的に低減して、生化学解析の定量性を大幅に向上させることが可能になる。
【0228】
また、本実施態様によれば、生化学解析用ユニット1の基板2が、放射線および光を減衰させる性質を有する金属によって形成されているため、レーザ光24あるいはLED光源100から発せられた励起光の照射を受け、蛍光色素などの蛍光物質が励起されて、放出される蛍光が、基板2内で散乱することが確実に防止され、隣接する貫通孔3内に形成された多孔質領域4に含まれた蛍光色素などの蛍光物質から放出された蛍光と混ざり合うことが確実に防止されるから、基板2に貫通孔3、したがって、多孔質領域4を高密度に形成しても、蛍光を光電的に検出して生成した生化学解析用データ中に、蛍光の散乱に起因するノイズが生成されることを効果的に防止して生化学解析の定量性を向上させることが可能になる。
【0229】
さらに、本実施態様によれば、生化学解析用ユニット1の基板2が、放射線および光を減衰させる性質を有する金属によって形成されているため、化学発光基質と接触されることによって、標識物質から放出された化学発光が、基板2内で散乱することが確実に防止され、したがって、隣接する貫通孔3内に形成された多孔質領域4に含まれる標識物質から放出された化学発光と混ざり合うことを確実に防止されるから、基板2に貫通孔3を高密度に形成しても、化学発光を光電的に検出して生成した生化学解析用データ中に、化学発光の散乱に起因するノイズが生成されることを効果的に防止して生化学解析の定量性を向上させることが可能になる。
【0230】
さらに、本実施態様によれば、スポッティング装置のスポッティングヘッド5は、インジェクタ6とCCDカメラ7を備え、CCDカメラ7によって、インジェクタ6の先端部と、cDNAなどの特異的結合物質を滴下すべき生化学解析用ユニット1の貫通孔3を観察しながら、インジェクタ6の先端部と、cDNAなどの特異的結合物質を滴下すべき貫通孔3の中心とが合致したときに、インジェクタ6から、特異的結合物質を放出するように構成されているから、多数の貫通孔3内に形成された多孔質材料よりなる多孔質領域4に、特異的結合物質を、正確に滴下することができ、したがって、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に含まれ、特異的結合物質を選択的に標識している放射性標識物質によって、生化学解析用ユニット1の多数の貫通孔3に対応する蓄積性蛍光体シート10の位置に形成されたドット状の輝尽性蛍光体領域12を、所望のように、露光することができるから、放射性標識物質から発せられる電子線が散乱して、露光すべき輝尽性蛍光体層以外の部分に入射することに起因して、生化学解析用データ中に生成されるノイズを効果的に低減して、生化学解析の定量性を大幅に向上させることが可能になるとともに、生化学解析用ユニット1の基板に、貫通孔3、したがって、多孔質領域4を高密度に形成しても、蛍光や化学発光の散乱に起因して、生化学解析用データ中に生成されるノイズを効果的に低減して、生化学解析の定量性を大幅に向上させることが可能になる。
【0231】
また、本実施態様によれば、生化学解析用ユニット1の基板2は、可撓性を有する金属によって形成されているから、円筒状横断面を有し、回転可能に構成され、ハイブリダイズ液9を収容したハイブリダイズ容器8内に、生化学解析用ユニット1を、ハイブリダイズ容器8の内壁に沿うように、湾曲させて、挿入し、特異的結合物質に、生体由来の物質をハイブリダイズさせることができ、したがって、少量のハイブリダイズ液9を用いて、ハイブリダイゼーションを実行させることが可能になる。
【0232】
さらに、本実施態様によれば、生化学解析用ユニット1の基板2は金属によって形成されているので、ハイブリダイゼーションなど、液体による処理を受けても、ほとんど伸縮することがなく、したがって、蓄積性蛍光体シート10に形成されたドット状の輝尽性蛍光体層領域12の各々が、生化学解析用ユニット1に形成された多数の貫通孔3の各々の内部に収容され、ドット状の輝尽性蛍光体層領域12の各々の表面が、生化学解析用ユニット1に形成された多数の貫通孔3の各々の内部に形成された多孔質領域4の表面と密着するように、蓄積性蛍光体シート10と生化学解析用ユニット1とを、容易にかつ確実に重ね合わせて、ドット状の輝尽性蛍光体層領域12を露光することが可能になる。
【0233】
図18は、本発明の他の好ましい実施態様にかかるスポッティング装置の略平面図である。
【0234】
図18に示されるように、本実施態様にかかるスポッティング装置は、駆動機構を備えており、スポッティング装置の駆動機構は、たとえば、cDNAなどの特異的結合物質を滴下すべき生化学解析用ユニット1が載置される基板120に固定されたフレーム121に取り付けられている。
【0235】
図18に示されるように、フレーム121上には、副走査パルスモータ122と一対のレール123、123とが固定され、フレーム121上には、さらに、一対のレール123、123に沿って、図18において、矢印Yで示された副走査方向に、移動可能な基板124が設けられている。
【0236】
移動可能な基板124には、ねじが切られた穴(図示せず)が形成されており、この穴内には、副走査パルスモータ122によって回転されるねじが切られたロッド125が係合している。
【0237】
移動可能な基板124上には、主走査パルスモータ126が設けられ、主走査パルスモータ126は、エンドレスベルト127を、所定のピッチで、間欠的に駆動可能に構成されている。
【0238】
スポッティング装置のスポッティングヘッド5は、エンドレスベルト127に固定されており、主走査パルスモータ126により、エンドレスベルト127が駆動されると、図18において、矢印Xで示された主走査方向に移動されるように構成されている。
【0239】
図18には図示されていないが、本実施態様においても、スポッティングヘッド5は、特異的結合物質の溶液を、生化学解析用ユニット1に向けて、噴射して、滴下するインジェクタ6とCCDカメラ7を備えている。
【0240】
図18において、128は、スポッティングヘッド5の主走査方向における位置を検出するリニアエンコーダであり、129は、リニアエンコーダ128のスリットである。
【0241】
図19は、本実施態様にかかるスポッティング装置によって、特異的結合物質が滴下されるべき生化学解析用ユニット1の略斜視図である。
【0242】
図19に示された生化学解析用ユニット1は、基板2に、2つの位置決め用の貫通孔130、131が形成されている点を除き、図1に示された生化学解析用ユニット1と同様の構成を有している。
【0243】
図18に示されるように、スポッティング装置の基板120には、生化学解析用ユニット1の基板2に形成された2つの位置決め用の貫通孔130、131に対応する位置に、2つの位置決めピン132、133が立設されており、スポッティング装置の基板120に形成された2つの位置決めピン132、133が、2つの位置決め用の貫通孔130、131内に挿通されるように、生化学解析用ユニット1を基板120上に載置することによって、つねに、生化学解析用ユニット1が、基板120上のほぼ同じ位置に載置されるように保証されている。
【0244】
図20は、スポッティング装置の制御系、入力系、駆動系および検出系を示すブロックダイアグラムである。
【0245】
図20に示されるように、スポッティング装置の制御系は、スポッティング装置全体の動作を制御するコントロールユニット135を備え、スポッティング装置の入力系は、キーボード136を備えている。
【0246】
また、スポッティング装置の駆動系は、主走査パルスモータ126および副走査パルスモータ122を備え、スポッティング装置の検出系は、スポッティングヘッド5の主走査方向における位置を検出するリニアエンコーダ128と、ロッド125の回転量を検出するロータリーエンコーダ137と、CCDカメラ7を備えている。
【0247】
以上のように構成された本実施態様にかかるスポッティング装置は、以下のようにして、生化学解析用ユニット1に形成された多数の多孔質領域4に、cDNAなどの特異的結合物質を滴下する。
【0248】
まず、スポッティング装置の基板120に形成された2つの位置決めピン132、133が、対応する2つの位置決め用の貫通孔130、131内に挿通されるように、生化学解析用ユニット1が基板120上に載置される。
【0249】
このように、本実施態様にかかるスポッティング装置においては、生化学解析用ユニット1が、スポッティング装置の基板120上のほぼ一定の位置に載置されるように構成されているが、本実施態様においては、多孔質領域4のサイズが約0.01平方ミリメートルであるので、こうして、基板120上に載置された生化学解析用ユニット1の多数の多孔質領域4の中心が、スポッティングヘッド5の主走査方向および副走査方向に、正確に整列していることは保証されない。
【0250】
したがって、本実施態様にかかるスポッティング装置は、基板120上に載置された生化学解析用ユニット1の位置と、スポッティングヘッド5の主走査方向および副走査方向における移動位置との相対的位置関係を、あらかじめ検出し、インジェクタ6によって、特異的結合物質が各多孔質領域4に正確に滴下されるように、主走査パルスモータ126および副走査パルスモータ122によって、スポッティングヘッド5を移動させるように構成されている。
【0251】
次いで、ユーザーにより、スポッティング開始信号がキーボード136に入力され、スポッティング開始信号がコントロールユニット135に入力されると、コントロールユニット135は、主走査パルスモータ126に駆動信号を出力して、基準位置に位置しているスポッティングヘッド5を、図18において、矢印Xで示される主走査方向に移動させ、次いで、副走査パルスモータ122に駆動信号を出力して、スポッティングヘッド5を、図18において、矢印Yで示される副走査方向に移動させる。
【0252】
こうして、スポッティングヘッド5を、図18において、矢印Xで示される主走査方向および矢印Yで示される副走査方向に移動させる間、コントロールユニット135は、CCDカメラ7から入力される検出信号をモニターし、生化学解析用ユニット1の4つの角部の位置を検出し、スポッティングヘッド5の基準位置を座標系の原点として、生化学解析用ユニット1の4つの角部の座標値を算出し、メモリ(図示せず)に記憶する。
【0253】
生化学解析用ユニット1の4つの角部の位置が検出され、その座標値がメモリに記憶されると、コントロールユニット135は、生化学解析用ユニット1の4つの角部の座標値に基づいて、スポッティングヘッド5の基準位置を座標系の原点として、生化学解析用ユニット1に形成された各多孔質領域4の座標値を算出し、メモリ(図示せず)に記憶する。
【0254】
生化学解析用ユニット1に形成された多数の多孔質領域4の座標値が、スポッティングヘッド5の基準位置を座標系の原点として、算出されて、メモリに記憶されると、コントロールユニット135は、主走査パルスモータ126および副走査パルスモータ122に駆動信号を出力して、スポッティングヘッド5を元の基準位置に復帰させる。
【0255】
スポッティングヘッド5のインジェクタ6から放出される特異的結合物質が、インジェクタ6の先端部に対向する位置に、正確に滴下されるときには、以上のようにして、スポッティングヘッド5の基準位置を座標系の原点として決定された生化学解析用ユニット1の各多孔質領域4の座標値に基づいて、スポッティングヘッド5のインジェクタ6から、特異的結合物質を放出させることによって、生化学解析用ユニット1に形成された各多孔質領域4に、特異的結合物質を正確に滴下することができるが、スポッティングヘッド5のインジェクタ6から放出される特異的結合物質が、インジェクタ6の先端部に対向する位置から、X方向および/またはY方向に偏倚した位置に滴下されるときは、以上のようにして、スポッティングヘッド5の基準位置を座標系の原点として決定された生化学解析用ユニット1の各多孔質領域4の座標値に基づいて、スポッティングヘッド5のインジェクタ6から、特異的結合物質を放出させても、生化学解析用ユニット1に形成された各多孔質領域4に、特異的結合物質を正確に滴下することはできない。
【0256】
そこで、本実施態様においては、さらに、基準位置に復帰させたスポッティングヘッド5のインジェクタ6から、生化学解析用ユニット1の表面に向けて、特異的結合物質を放出させ、特異的結合物質が滴下された位置を、CCDカメラ7によって検出し、CCDカメラ7の検出信号に基づいて、コントロールユニット135が、インジェクタ6の先端部に対向する位置からのX方向およびY方向の偏倚量を算出して、メモリに記憶する。
【0257】
すなわち、図21に示されるように、基準位置に位置するスポッティングヘッド5のインジェクタ6から、生化学解析用ユニット1の表面に向けて、特異的結合物質を放出させ、特異的結合物質が滴下された位置を、CCDカメラ7によって検出し、CCDカメラ7の検出信号に基づいて、コントロールユニット135が、インジェクタ6の先端部に対向する位置0からのX方向の偏倚量δxおよびY方向の偏倚量δyを算出して、メモリに記憶させる。
【0258】
ここに、特異的結合物質が滴下された位置のインジェクタ6の先端部に対向する位置0からのX方向の偏倚量δxおよびY方向の偏倚量δyは、各スポッティングヘッド5のインジェクタ6に固有のものであるので、スポッティングヘッド5が基準位置以外に位置している場合に、インジェクタ6から、生化学解析用ユニット1の表面に向けて、放出された特異的結合物質の滴下位置も、インジェクタ6の先端部に対向する位置0から、X方向に、δxだけ偏倚し、Y方向に、δyだけ偏倚することになる。
【0259】
次いで、コントロールユニット135は、こうして、メモリに記憶されたスポッティングヘッド5の基準位置を座標系の原点として決定された生化学解析用ユニット1の4つの角部の座標値、生化学解析用ユニット1に形成された多数の多孔質領域4の座標値および特異的結合物質滴下位置のX方向の偏倚量δxおよびY方向の偏倚量δyに基づいて、スポッティングヘッド5のインジェクタ6の先端部が、各多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスを算出し、駆動パルスデータを、メモリに記憶する。
【0260】
ここに、本実施態様においては、多数の多孔質領域4は、規則的に、生化学解析用ユニット1の基板2に形成されているから、スポッティング装置のインジェクタ6の先端部が、三番目以降に、特異的結合物質を滴下すべき多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスは、スポッティング装置のインジェクタ6の先端部が、最初に、特異的結合物質を滴下すべき多孔質領域4に対向する位置から、二番目に、特異的結合物質を滴下すべき多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスと同一であり、したがって、スポッティング装置のインジェクタ6の先端部が、最初に、特異的結合物質を滴下すべき多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスおよびスポッティング装置のインジェクタ6の先端部が、最初に、特異的結合物質を滴下すべき多孔質領域4に対向する位置から、二番目に、特異的結合物質を滴下すべき多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスを算出して、メモリに記憶させれば、十分である。
【0261】
スポッティング装置のインジェクタ6の先端部が、各多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスが算出され、駆動パルスデータがメモリに記憶されると、コントロールユニット135は、メモリに記憶された駆動パルスデータに基づき、主走査パルスモータ126および副走査パルスモータ122に所定の駆動パルスを与えて、スポッティングヘッド5を間欠的に移動させ、スポッティング装置のインジェクタ6の先端部が、生化学解析用ユニット1に形成された各多孔質領域4に対向する位置に達した時点で、主走査パルスモータ126および副走査パルスモータ122に駆動停止信号を出力して、スポッティングヘッド5を停止させ、スポッティングヘッド5のインジェクタ6に滴下信号を出力して、特異的結合物質を滴下させる。
【0262】
スポッティングヘッド5のインジェクタ6の先端部が、二番目以降に、特異的結合物質を滴下すべき多孔質領域4に対向する位置に、スポッティングヘッド5を移動させる場合には、スポッティングヘッド5は、矢印Xで示される主走査方向および矢印Yで示される副走査方向に、それぞれ、一定のピッチで、移動される。
【0263】
こうして、主走査パルスモータ126および副走査パルスモータ122によって、スポッティングヘッド5が間欠的に移動され、生化学解析用ユニット1に形成された多数の多孔質領域4に、順次、特異的結合物質が滴下される。
【0264】
本実施態様によれば、あらかじめ、CCDカメラ7によって、スポッティングヘッド5に対する生化学解析用ユニット1の位置を検出し、スポッティングヘッド5の基準位置を座標系の原点として、生化学解析用ユニット1に形成された各多孔質領域4の座標値を、コントロールユニット135によって算出して、メモリに記憶するとともに、基準位置に位置するスポッティングヘッド5のインジェクタ6から、生化学解析用ユニット1の表面に向けて、特異的結合物質を放出させ、特異的結合物質が滴下された位置を、CCDカメラ7によって検出して、コントロールユニット135によって、インジェクタ6の先端部に対向する位置0からのX方向の偏倚量δxおよびY方向の偏倚量δyを算出して、メモリに記憶させ、これらのデータに基づいて、コントロールユニット135が、スポッティング装置のインジェクタ6の先端部が、各多孔質領域4に対向する位置に、スポッティングヘッド5を移動させるために、主走査パルスモータ126および副走査パルスモータ122に与えるべき駆動パルスを算出して、駆動パルスデータをメモリに記憶し、特異的結合物質の滴下にあたって、メモリに記憶された駆動パルスデータに基づき、所定の駆動パルスを、主走査パルスモータ126および副走査パルスモータ122に与え、スポッティング装置のインジェクタ6の先端部が、生化学解析用ユニット1に形成された多孔質領域4に対向する位置に達した時点で、主走査パルスモータ126および副走査パルスモータ122に駆動停止信号を出力して、スポッティングヘッド5を停止し、インジェクタ6に滴下信号を出力して、特異的結合物質を放出させて、滴下しているから、生化学解析用ユニット1が、つねに、正確に、スポッティング装置と一定の位置関係で、基板120上にセットされなくても、cDNAなどの特異的結合物質を、確実に、生化学解析用ユニット1に形成された多孔質領域のそれぞれに滴下することが可能になる。
【0265】
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0266】
たとえば、前記実施態様においては、いずれも、スポッティング装置のスポッティングヘッド5は、特異的結合物質の溶液を、生化学解析用ユニット1に向けて、噴射して、滴下するインジェクタ6とCCDカメラ7を備えているが、インジェクタ6に代えて、特異的結合物質を、生化学解析用ユニット1に滴下する滴下ピンを備えていてもよい。
【0267】
また、図18ないし図21に示された実施態様においては、スポッティング装置のスポッティングヘッド5は、CCDカメラ7を備えているが、スポッティングヘッド5が、CCDカメラ7を備えていることは必ずしも必要でなく、CID(電荷注入素子)、PDA(フォトダイオードアレイ)、MOS型撮像素子などの他の固体撮像素子を用いることもできる。
【0268】
さらに、図18ないし図21に示された実施態様においては、スポッティング装置のスポッティングヘッド5は、CCDカメラ7を備えているが、スポッティングヘッド5が、CCDカメラ7を備えていることは必ずしも必要でなく、多孔質領域4が、生化学解析用ユニット1の基板2に規則的に形成されている場合には、他のセンサによって、基板120に載置された生化学解析用ユニット1のスポッティングヘッド5に対する相対的位置を検出して、スポッティングヘッド5の基準位置を座標系の原点として、生化学解析用ユニット1に形成された多数の多孔質領域4の座標値を算出し、スポッティングヘッド5を移動させて、多孔質領域4のそれぞれに、特異的結合物質を滴下するようにしてもよい。
【0269】
また、図18ないし図21に示された実施態様においては、生化学解析用ユニット1の4つの角部を検出し、スポッティングヘッド5の基準位置を座標系の原点として、その座標値を求めているが、スポッティング装置のスポッティングヘッド5に対する生化学解析用ユニット1の相対的位置関係が特定されれば、生化学解析用ユニット1の4つの角部を検出し、その座標値を求めることは必ずしも必要でなく、生化学解析用ユニット1の少なくとも対角関係にある角部を検出し、スポッティングヘッド5の基準位置を座標系の原点として、その座標値を求め、対角関係にある角部の座標値にしたがって、主走査パルスモータ126および副走査パルスモータ122に与える駆動パルスを算出し、スポッティングヘッド5を移動させるようにしてもよい。
【0270】
さらに、図18ないし図21に示された実施態様においては、スポッティング装置は、多数の多孔質領域4が、ドット状に形成された生化学解析用ユニット1に、特異的結合物質を滴下するように構成されているが、本実施態様にかかるスポッティング装置は、メンブレンフィルタを形成可能な多孔質材料によって形成された多孔質基板上に、規則的に、特異的結合物質を滴下する場合にも適用することができる。
【0271】
さらに、図18ないし図21に示された実施態様においては、スポッティング装置の基板120に形成された2つの位置決めピン132、133が、2つの位置決め用の貫通孔130、131内に挿通されるように、生化学解析用ユニット1を基板120上に載置することによって、つねに、生化学解析用ユニット1が、基板120上のほぼ同じ位置に載置されるように保証しているが、3以上の位置決めピンを基板120に形成するとともに、生化学解析用ユニット1に対応する貫通孔を形成してもよいし、さらに、2つの位置決めピン132、133に代えて、たとえば、スポッティング装置の基板120の表面に、それぞれが、互いに直交する側面を有する一対のガイドを形成し、各ガイドに、生化学解析用ユニット1の角部に隣接する側面を当接させて、生化学解析用ユニット1を、スポッティング装置の基板120上に、位置決めするように構成してもよい。
【0272】
また、図18ないし図21に示された実施態様においては、スポッティングヘッド5を基準位置に位置させて、インジェクタ6から、特異的結合物質を放出させて、特異的結合物質が滴下された位置を、CCD7により、検出し、インジェクタ6の先端部に対向する生化学解析用ユニット1の位置とのX方向における偏倚量δxおよびY方向における偏倚量δyを算出して、各多孔質領域4に対応するスポッティングヘッド5の座標値を補正するように構成されているが、インジェクタ6に代えて、滴下ピンによって、特異的結合物質を滴下する場合にも、同様にして、各多孔質領域4に対応するスポッティングヘッド5の座標値を補正することができ、一方、あらかじめ、インジェクタ6から、特異的結合物質を放出させたときに、特異的結合物質が、インジェクタ6の先端部に対向する位置に滴下されることが確認されているときは、特異的結合物質の滴下の際に、スポッティングヘッド5を基準位置に位置させて、インジェクタ6から、特異的結合物質を放出させて、各多孔質領域4に対応するスポッティングヘッド5の座標値を補正する必要はない。
【0273】
さらに、図18ないし図21に示された実施態様においては、基板120に固定されたフレーム121上に固定された副走査パルスモータ122によって、基板124を、一対のレール123、123に沿って、図18において、矢印Yで示された副走査方向に移動させるとともに、移動可能な基板124上に設けられた主走査パルスモータ126によって、エンドレスベルト127を、所定のピッチで、間欠的に駆動して、エンドレスベルト127に固定されたスポッティングヘッド5を、図18において、矢印Xで示された主走査方向に移動させて、スポッティングヘッド5を、主走査方向および副走査方向に移動させているが、スポッティングヘッド5を駆動する機構は、かかる機構に限定されるものではなく、任意の機構によって、スポッティングヘッド5を、主走査方向および副走査方向に移動させることができる。
【0274】
また、図18ないし図21に示された実施態様においては、生化学解析用ユニット1が静止状態に保持され、スポッティングヘッド5が、基板120に載置された生化学解析用ユニット1に対して、主走査方向および副走査方向に移動されるように構成されているが、スポッティングヘッド5を静止状態に保持し、生化学解析用ユニット1が載置された基板120を、スポッティングヘッド5に対して、主走査方向および副走査方向に移動するように構成することもでき、さらには、スポッティングヘッド5を、主走査方向または副走査方向に移動させるとともに、生化学解析用ユニット1が載置された基板120を、副走査方向または主走査方向に移動するように構成してもよい。
【0275】
さらに、図18ないし図21に示された実施態様においては、生化学解析用ユニット1に規則的に多数の多孔質領域が形成されているため、CCDカメラ7を用いて、スポッティングヘッド5の基準位置を座標系の原点として、多数の多孔質領域の座標値を求めた後は、CCDカメラ7を用いることなく、スポッティングヘッド5を、一定のピッチで、移動させているが、多数の多孔質領域が規則的に生化学解析用ユニット1に形成されていない場合などには、スポッティングヘッド5を移動させつつ、CCDカメラ7を用いて、特異的結合物質の滴下位置を確認して、特異的結合物質を滴下するようにしてもよい。
【0276】
また、前記実施態様においては、特異的結合物質として、塩基配列が既知の互いに異なった複数のcDNAが用いられているが、本発明において使用可能な特異的結合物質はcDNAに限定されるものではなく、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク質、核酸、cDNA、DNA、RNAなど、生体由来の物質と特異的に結合可能で、かつ、塩基配列や塩基の長さ、組成などが既知の特異的結合物質はすべて、本発明の特異的結合物質として使用することができる。
【0277】
また、前記実施態様においては、生化学解析用ユニット1の基板2は、金属によって形成されているが、基板2が放射線および光を減衰させる材料によって形成されていれば、金属によって形成されている必要は必ずしもなく、セラミック材料やプラスチック材料によって、基板2を構成するようにしてもよい。
【0278】
さらに、前記実施態様においては、生化学解析用ユニット1の基板2は、可撓性を有しているが、可撓性を有していることも必ずしも必要ではない。
【0279】
また、前記実施態様においては、生化学解析用ユニット1の基板2は、放射線および光を減衰させる性質を有する材料によって形成されているが、蓄積性蛍光体シートのドット状輝尽性蛍光体層領域12に記録された放射線データのみを検出して、生化学解析を実行する場合には、基板2を、光を透過するが、放射線を減衰させる性質を有する材料によって形成するようにしてもよく、その一方で、化学発光データあるいは蛍光データのみを検出して、生化学解析を実行する場合には、基板2を、放射線を透過するが、光を減衰させる性質を有する材料によって形成されすることができ、基板2が放射線および光を減衰させる性質を有する材料で形成されていることは必ずしも必要でない。
【0280】
さらに、前記実施態様においては、基板2に形成された多数の貫通孔3内に、多孔質材料が充填されて、多孔質領域4が形成されているが、貫通孔3に代えて、基板2に、多数の凹部を形成し、多数の凹部内に、多孔質材料を充填ないし埋め込んで、多孔質領域4を形成するようにしてもよい。
【0281】
また、前記実施態様においては、約100000の約0.01平方ミリメートルのサイズを有する貫通孔3が、約1000個/平方センチメートルの密度で、規則的に、基板2に形成されているが、貫通孔3の数およびサイズは、目的に応じて、任意に選択をすることができ、好ましくは、50以上の貫通孔3が、50個/平方センチメートル以上の密度で、基板2に形成され、貫通孔3は、5平方ミリメートル未満のサイズで、基板2に形成される。
【0282】
さらに、前記実施態様においては、約100000の約0.01平方ミリメートルのサイズを有する貫通孔3が、約1000個/平方センチメートルの密度で、規則的に、基板2に形成されているが、貫通孔3を規則的に基板2に形成することは必ずしも必要でない。
【0283】
また、前記実施態様においては、放射性標識物質によって標識された生体由来の物質、蛍光色素などの蛍光物質によって標識された生体由来の物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質を含むハイブリダイズ液9が調製され、多孔質材料4に滴下された特異的結合物質にハイブリダイズさせているが、生体由来の物質が、放射性標識物質、蛍光色素などの蛍光物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識されていることは必ずしも必要がなく、放射性標識物質、蛍光物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質よりなる群から選ばれる少なくとも1種の標識物質によって標識されていればよい。
【0284】
また、前記実施態様においては、放射性標識物質、蛍光色素などの蛍光物質および化学発光基質と接触させることによって化学発光を生じさせる標識物質によって標識された生体由来の物質が、特異的結合物質にハイブリダイズされているが、生体由来の物質を、特異的結合物質にハイブリダイズさせていることは必ずしも必要でなく、生体由来の物質を、ハイブリダイゼーションに代えて、抗原抗体反応、リセプター・リガンドなどの反応によって、特異的結合物質に特異的に結合させることもできる。
【0285】
さらに、前記実施態様においては、蓄積性蛍光体シート10の支持体11の一方の面に、生化学解析用ユニット1に形成された多数の貫通孔3のパターンと同一のパターンで、多数のドット状輝尽性蛍光体層領域12が形成されているが、ドット状輝尽性蛍光体層領域12が形成されていることは必ずしも必要かなく、蓄積性蛍光体シート10の支持体11の一方の面に、輝尽性蛍光体層が形成されていてもよい。
【0286】
また、前記実施態様においては、生化学解析用ユニット1の貫通孔3内に充填された多孔質材料4と、蓄積性蛍光体シート10のドット状輝尽性蛍光体層領域12とが密着するように、生化学解析用ユニット1と蓄積性蛍光体シート10とが重ね合わされて、放射性標識物質により、ドット状輝尽性蛍光体層領域12が露光されているが、蓄積性蛍光体シート10のドット状輝尽性蛍光体層領域12と、生化学解析用ユニット1の貫通孔3内に形成された多孔質領域4とが、互いに対向するように、生化学解析用ユニット1と蓄積性蛍光体シート10とが重ね合わされて、放射性標識物質により、ドット状輝尽性蛍光体層領域12が露光されれば、蓄積性蛍光体シート10のドット状輝尽性蛍光体層領域12と、生化学解析用ユニット1の貫通孔3内に形成された多孔質領域4とを密着させて、放射性標識物質により、ドット状輝尽性蛍光体層領域12を露光することは必ずしも必要でない。
【0287】
さらに、前記実施態様においては、蓄積性蛍光体シート10の多数のドット状輝尽性蛍光体層領域12は、支持体11の表面上に形成されているが、多数のドット状輝尽性蛍光体層領域12を支持体11の表面上に形成することは必ずしも必要でなく、支持体11に多数の貫通孔を形成し、多数の貫通孔内に、輝尽性蛍光体を充填あるいは埋め込んで、多数のドット状輝尽性蛍光体層領域12を形成してもよいし、支持体11に多数の凹部を形成し、多数の凹部内に、輝尽性蛍光体を充填あるいは埋め込んで、多数のドット状輝尽性蛍光体層領域12を形成するようにしてもよい。
【0288】
また、前記実施態様においては、蓄積性蛍光体シート10の多数のドット状輝尽性蛍光体層領域12は、その表面が、支持体11の表面の上方に位置するように形成されているが、その表面が、支持体11の表面と一致するように、多数のドット状輝尽性蛍光体層領域12を形成しても、その表面が、支持体11の下方に位置するように、多数のドット状輝尽性蛍光体層領域12を形成してもよい。
【0289】
さらに、前記実施態様においては、蓄積性蛍光体シート10の支持体11は、ステンレスによって、形成されているが、支持体11は、放射線を減衰させる性質を有する材料によって、形成されていればよく、ステンレスに代えて、金、銀、銅、亜鉛、アルミニウム、チタン、タンタル、クロム、鉄、ニッケル、コバルト、鉛、錫、真鍮などの金属あるいはこれらの合金、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイトなどのセラミック材料、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリウレタン樹脂、アクリル樹脂などのプラスチック材料によって、支持体11を形成することもできる。
【0290】
また、前記実施態様においては、図6ないし図13に示されたスキャナを用いて、蓄積性蛍光体シート10に形成された多数のドット状輝尽性蛍光体層領域12に記録された放射性標識物質の放射線データおよび生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された蛍光色素などの蛍光物質の蛍光データを読み取って、生化学解析用データを生成しているが、放射性標識物質の放射線データおよび蛍光物質の蛍光データを1つのスキャナによって読み取ることは必ずしも必要でなく、放射性標識物質の放射線データと、蛍光物質の蛍光データを、別個のスキャナによって読み取って、生化学解析用データを生成するようにしてもよい。
【0291】
さらに、前記実施態様においては、蓄積性蛍光体シート10に形成された多数のドット状輝尽性蛍光体層領域12に記録された放射性標識物質の放射線データおよび生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された蛍光色素などの蛍光物質の蛍光データを読み取って、生化学解析用データを生成する場合に、図6ないし図13に示されたスキャナを用いているが、放射性標識物質の放射線データを読み取るためのスキャナとしては、レーザ光24によって、多数のドット状輝尽性蛍光体層領域12を走査して、励起することができるものあればよく、図6ないし図13に示されたスキャナを用いて、放射性標識物質の放射線データを読み取ることは必ずしも必要がない。
【0292】
また、図6ないし図13に示されたスキャナは、第1のレーザ励起光源21、第2のレーザ励起光源22および第3のレーザ励起光源23を備えているが、3つのレーザ励起光源を備えていることは必ずしも必要ない。
【0293】
さらに、前記実施態様においては、図14ないし図17に示された蛍光データをも生成可能なデータ生成システムによって、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された化学発光基質と接触させることによって化学発光を生じさせる標識物質の化学発光データを読み取って、生化学解析用データを生成しているが、蛍光データをも生成可能なデータ生成システムによって、化学発光データを読み取って、生化学解析用データを生成することは必ずしも必要でなく、生化学解析用ユニット1の多数の貫通孔3内に形成された多孔質領域4に記録された化学発光基質と接触させることによって化学発光を生じさせる標識物質の化学発光データのみを読み取る場合には、LED光源100、フィルタ101、フィルタ102および拡散板103を省略することができる。
【0294】
さらに、前記実施態様においては、走査機構によって、図12において、X方向およびY方向に、光学ヘッド35を移動させることによって、レーザ光24により、蓄積性蛍光体シート10のすべてのドット状輝尽性蛍光体層領域12あるいは生化学解析用ユニット1の全面を走査して、輝尽性蛍光体あるいは蛍光色素などの蛍光物質を励起しているが、光学ヘッド35を静止状態に維持し、ステージ40を、図12において、X方向およびY方向に移動させることによって、レーザ光24により、蓄積性蛍光体シート10のすべてのドット状輝尽性蛍光体層領域12あるいは生化学解析用ユニット1の全面を走査して、輝尽性蛍光体あるいは蛍光色素などの蛍光物質を励起するようにしてもよく、また、光学ヘッド35を、図12において、X方向およびY方向の一方に移動させるとともに、ステージ40をX方向およびY方向の他方に移動させることもできる。
【0295】
また、図6ないし図13に示されたスキャナにおいては、穴33が形成された穴開きミラー34を用いているが、穴33に代えて、レーザ光24を透過可能なコーティングを施すこともできる。
【0296】
さらに、図6ないし図13に示されたスキャナにおいては、光検出器として、フォトマルチプライア50を用いて、蛍光あるいは輝尽光を光電的に検出しているが、本発明において用いられる光検出器としては、蛍光あるいは輝尽光を光電的に検出可能であればよく、フォトマルチプライア50に限らず、ラインCCDや二次元CCDなどの他の光検出器を用いることもできる。
【0297】
【発明の効果】
本発明によれば、担体表面に、試料を滴下して、多数のスポットを均一に形成することのできる試料の滴下方法およびスポッティング装置を提供することが可能になる。
【図面の簡単な説明】
【図1】図1は、本発明の好ましい実施態様にかかるスポッティング装置によって、多数のスポットが形成される試料担体の略斜視図である。
【図2】図2は、本発明の好ましい実施態様にかかるスポッティング装置の略正面図である。
【図3】図3は、ハイブリダイズ容器の略横断面図である。
【図4】図4は、蓄積性蛍光体シートの略斜視図である。
【図5】図5は、多数の孔内のメンブレンに含まれた放射性標識物質によって、蓄積性蛍光体シートに形成された多数の輝尽性蛍光体のスポットを露光する方法を示す略断面図である。
【図6】図6は、蓄積性蛍光体シートに形成された多数の輝尽性蛍光体のスポットに記録された放射性標識物質のデータおよび試料担体に形成された多数の孔に充填されたメンブレンに記録された蛍光色素などの蛍光データを読み取って、ディジタルデータを生成するスキャナの一例を示す略斜視図である。
【図7】図7は、フォトマルチプライア近傍の詳細を示す略斜視図である。
【図8】図8は、図7のA−A線に沿った略断面図である。
【図9】図9は、図7のB−B線に沿った断面図である。
【図10】図10は、図7のC−C線に沿った断面図である。
【図11】図11は、図7のD−D線に沿った断面図である。
【図12】図12は、光学ヘッドの走査機構の略平面図である。
【図13】図13は、スキャナの制御系、入力系、駆動系および検出系を示すブロックダイアグラムである。
【図14】図14は、生化学解析用ユニットの多数の貫通孔内に形成された多孔質領域に記録された化学発光基質と接触させることによって化学発光を生じさせる標識物質の化学発光データを読み取って、生化学解析用データを生成する生化学解析用データ生成システムの略正面図である。
【図15】図15は、生化学解析用データ生成システムの冷却CCDカメラの略縦断面図である。
【図16】図16は、生化学解析用データ生成システムの暗箱の略縦断面図である。
【図17】図17は、生化学解析用データ生成システムのパーソナルコンピュータの周辺のブロックダイアグラムである。
【図18】図18は、本発明の他の好ましい実施態様にかかるスポッティング装置の略平面図である。
【図19】図19は、特異的結合物質が滴下されるべき生化学解析用ユニットの略斜視図である。
【図20】図20は、スポッティング装置の制御系、入力系、駆動系および検出系を示すブロックダイアグラムである。
【図21】図21は、基準位置に位置するインジェクタから、特異的結合物質を滴下した状態を示す生化学解析用ユニットの略一部平面図である。
【符号の説明】
1 生化学解析用ユニット
2 基板
3 貫通孔
4 多孔質領域
5 スポッティングヘッド
6 インジェクタ
7 CCDカメラ
8 ハイブリダイズ容器
9 ハイブリダイズ液
10 蓄積性蛍光体シート
11 支持体
12 輝尽性蛍光体層
21 第1のレーザ励起光源
22 第2のレーザ励起光源
23 第3のレーザ励起光源
24 レーザ光
25 コリメータレンズ
26 ミラー
27 第1のダイクロイックミラー
28 第2のダイクロイックミラー
29 ミラー
30 コリメータレンズ
31 コリメータレンズ
32 ミラー
33 穴開きミラーの穴
34 穴開きミラー
35 光学ヘッド
36 ミラー
37 非球面レンズ
38 凹面ミラー
40 ステージ
41 ガラス板
45 蛍光あるいは輝尽光
48 フィルタユニット
50 フォトマルチプライア
51a、51b、51c、51d フィルタ部材
52a、52b、52c、52d フィルタ
53 A/D変換器
54 データ処理装置
60 基板
61 副走査パルスモータ
62 一対のレール
63 移動可能な基板
64 ロッド
65 主走査ステッピングモータ
66 エンドレスベルト
67 リニアエンコーダ
68 リニアエンコーダのスリット
70 コントロールユニット
71 キーボード
72 フィルタユニットモータ
81 冷却CCDカメラ
82 暗箱
83 パーソナルコンピュータ
84 CRT
85 キーボード
86 CCD
87 伝熱板
88 ペルチエ素子
89 シャッタ
90 A/D変換器
91 画像データバッファ
92 カメラ制御回路
95 ガラス板
96 放熱フィン
97 カメラレンズ
100 LED光源
101 フィルタ
102 フィルタ
103 拡散板
110 CPU
111 データ転送手段
112 データ記憶手段
113 データ処理手段
114 データ表示手段
115 光源制御手段
120 基板
121 フレーム
122 副走査パルスモータ
123 一対のレール
124 移動可能な基板
125 ロッド
126 主走査パルスモータ
127 エンドレスベルト
128 リニアエンコーダ
129 リニアエンコーダのスリット
130 位置決め用の貫通孔
131 位置決め用の貫通孔
132 位置決めピン
133 位置決めピン
135 コントロールユニット
136 キーボード
137 ロータリーエンコーダ

Claims (25)

  1. 基板に、互いに離間して、ドット状に形成され、多孔質材料によって形成された複数のドット状の多孔質領域に、試料を滴下するスポッティング方法であって、センサによって、前記基板の基準位置を検出し、スポッティングヘッドと、前記基板とを、少なくとも一次元的に、相対的に移動させつつ、前記スポッティングヘッドによって、試料を滴下することを特徴とする試料の滴下方法。
  2. 前記スポッティングヘッドと、前記基板とを、二次元的に相対的に移動させつつ、試料を滴下することを特徴とする請求項1に記載の試料の滴下方法。
  3. 前記センサによって、それぞれ、前記基板の前記複数の孔の基準位置を検出して、試料を滴下することを特徴とする請求項1または2に記載の試料の滴下方法。
  4. 前記基板の少なくとも2つの基準位置を、前記センサによって検出して、試料を滴下することを特徴とする請求項1または2に記載の試料の滴下方法。
  5. 前記複数のドット状の多孔質領域を、前記基板に規則的に形成し、前記基板の少なくとも2つの基準位置を、前記センサにより検出することによって、規則的に形成された前記複数のドット状の多孔質領域の位置データを算出し、算出された前記複数のドット状の多孔質領域の位置データにしたがって、前記スポッティングヘッドと、前記基板とを、移動機構を用いて、相対的に移動させつつ、前記スポッティングヘッドによって、試料を滴下することを特徴とする請求項1ないし4のいずれか1項に記載の試料の滴下方法。
  6. 前記スポッティングヘッドを、基準スポッティングヘッド位置に位置させて、前記スポッティングヘッドから、試料を滴下し、前記センサによって、試料の滴下位置を検出し、前記基準スポッティングヘッド位置と前記試料の滴下位置との相対的位置関係にしたがって、スポッティングヘッドと、前記基板とを、相対的に移動させつつ、試料を滴下することを特徴とする請求項1ないし5のいずれか1項に記載の試料の滴下方法。
  7. 前記スポッティングヘッドが、試料を噴射して、滴下するインクジェットインジェクタを備えたことを特徴とする請求項1ないし6のいずれか1項に記載の試料の滴下方法。
  8. 前記スポッティングヘッドが、試料を滴下する滴下ピンを備えたことを特徴とする請求項1ないし6のいずれか1項に記載の試料の滴下方法。
  9. 前記基板が、放射線および/または光を減衰させる材料によって形成され、前記複数のドット状の多孔質領域が、前記基板に、ドット状に形成された複数の孔に、多項質材料が埋め込まれて形成されたことを特徴とする請求項1ないし8のいずれか1項に記載の試料の滴下方法。
  10. 前記基板が、多孔質材料によって形成され、前記基板の少なくとも一方の面に、放射線および/または光を減衰させる材料によって形成され、複数の開口部を有する多孔板が設けられ、それによって、前記複数のドット状の多孔質領域が形成されたことを特徴とする請求項1ないし8のいずれか1項に記載の試料の滴下方法。
  11. 前記放射線および/または光を減衰させる材料が、透過した放射線および/または光のエネルギーを、1/5以下に減衰させる性質を有することを特徴とする請求項9または10に記載の試料の滴下方法。
  12. 前記放射線および/または光を減衰させる材料が、金属材料、セラミック材料およびプラスチック材料よりなる群から選ばれる材料によって形成されたことを特徴とする請求項11に記載の試料の滴下方法。
  13. 前記多孔質材料が、メンブレンを形成可能な材料よりなることを特徴とする請求項1ないし12のいずれか1項に記載のスポットの形成方法。
  14. 試料を滴下すべき担体が載置される基板と、前記担体の表面に、試料を噴射して、滴下可能なインクジェットインジェクタと、試料を滴下すべき前記担体の表面の基準位置を検出可能なセンサを備えたことを特徴とするスポッティング装置。
  15. 前記センサが、前記インクジェットインジェクタに設けられたことを特徴とする請求項14に記載のスポッティング装置。
  16. 前記センサが、二次元センサによって構成されたことを特徴とする請求項14または15に記載のスポッティング装置。
  17. 前記二次元センサが、CCDカメラによって構成されたことを特徴とする請求項16に記載のスポッティング装置。
  18. 前記インクジェットインジェクタと、前記基板とを、相対的に、少なくとも一次元方向に、間欠的に移動させる駆動機構を備えたことを特徴とする請求項14ないし17のいずれか1項に記載のスポッティング装置。
  19. 前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、少なくとも一次元方向に、一定のピッチで移動させるように構成されたことを特徴とする請求項19に記載のスポッティング装置。
  20. 前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、二次元方向に、間欠的に移動させるように構成されたことを特徴とする請求項18または19に記載のスポッティング装置。
  21. 前記駆動機構が、前記インクジェットインジェクタと、前記基板とを、相対的に、二次元方向に、それぞれ、一定のピッチで移動させるように構成されたことを特徴とする請求項20に記載のスポッティング装置。
  22. 前記基板に、前記担体を位置決めするための少なくとも2つの位置決め部材が形成されたことを特徴とする請求項14ないし21のいずれか1項に記載のスポッティング装置。
  23. 前記位置決め部材が、前記基板に立設されたピンによって構成されたことを特徴とする請求項22に記載のスポッティング装置。
  24. 前記センサによって検出された前記担体の少なくとも2つの基準位置に基づいて、試料を滴下すべき前記担体の表面の位置データを算出する位置データ算出手段と、前記位置データ算出手段によって算出された試料を滴下すべき前記担体の表面の位置データを記憶するメモリと、前記メモリに記憶された試料を滴下すべき前記担体の表面の位置データにしたがって、前記駆動手段を制御する位置制御手段を備えたことを特徴とする請求項19、21ないし23のいずれか1項に記載のスポッティング装置。
  25. 前記位置データ算出手段が、前記インクジェットインジェクタ基準位置に位置させて、前記インクジェットインジェクタから、前記担体の表面に試料を滴下し、試料が滴下され、前記センサによって検出された基準滴下位置と、前記基準位置との相対的位置データを算出し、前記メモリに記憶された試料を滴下すべき前記担体の表面の位置データを補正するように構成されたことを特徴とする請求項24に記載のスポッティング装置。
JP2001146513A 2000-08-02 2001-05-16 試料の滴下方法およびスポッティング装置 Expired - Fee Related JP3920592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146513A JP3920592B2 (ja) 2000-08-02 2001-05-16 試料の滴下方法およびスポッティング装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000234776 2000-08-02
JP2000-234776 2000-08-02
JP2001100942 2001-03-30
JP2001-100942 2001-03-30
JP2001146513A JP3920592B2 (ja) 2000-08-02 2001-05-16 試料の滴下方法およびスポッティング装置

Publications (2)

Publication Number Publication Date
JP2002357615A JP2002357615A (ja) 2002-12-13
JP3920592B2 true JP3920592B2 (ja) 2007-05-30

Family

ID=27344245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146513A Expired - Fee Related JP3920592B2 (ja) 2000-08-02 2001-05-16 試料の滴下方法およびスポッティング装置

Country Status (1)

Country Link
JP (1) JP3920592B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105453A1 (en) 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
WO2006036307A2 (en) * 2004-08-04 2006-04-06 Biotrove, Inc. Method and system for registering dispenser array location
KR100816816B1 (ko) * 2007-09-14 2008-03-26 유니트마 주식회사 자동 조직미세배열 장치 및 그에 따른 제조방법

Also Published As

Publication number Publication date
JP2002357615A (ja) 2002-12-13

Similar Documents

Publication Publication Date Title
JP4282251B2 (ja) 生化学解析用ユニットおよびそれを用いた生化学解析方法
EP1445613B1 (en) Biochemical analysis unit and method for its production
JP3712677B2 (ja) 生化学解析用ユニット
JP3920592B2 (ja) 試料の滴下方法およびスポッティング装置
EP1333283B1 (en) Method and reactor for conducting receptor-ligand association reactions
EP1333284B1 (en) Method for conducting receptor-ligand association reactions
US6822242B2 (en) Image data producing method and apparatus
US20030007895A1 (en) Biochemical analysis unit
JP4153229B2 (ja) 蓄積性蛍光体シートおよび蓄積性蛍光体シートに記録された生化学解析用データの読み取り方法
JP3954331B2 (ja) 生化学解析用ユニットおよびその製造方法
US20030148402A1 (en) Method for conducting receptor-ligand association reaction and reactor used therefor
JP4071944B2 (ja) 生化学解析用データの生成方法およびそれに用いるスキャナ
JP2003042956A (ja) データの読み取り方法およびそれに用いるスキャナ
JP3786881B2 (ja) リセプター・リガンド会合反応方法
US7279323B2 (en) Method for conducting receptor-ligand association reaction and reactor used therefor
JP3897284B2 (ja) リセプター・リガンド会合反応方法およびそれに用いるリアクタ
JP2003287831A (ja) 蓄積性蛍光体シートに記録された放射線データの読み取り方法および装置
JP2003295365A (ja) スキャナ
US20030045002A1 (en) Cartridge for biochemical analysis unit and method for recording biochemical analysis data in biochemical analysis unit
JP2003075440A (ja) 生化学解析用ユニット
JP2003222629A (ja) リセプター・リガンド会合反応方法およびそれに用いるリアクタ
JP2003227831A (ja) リセプター・リガンド会合反応方法およびそれに用いるリアクタ
JP2003004639A (ja) 蓄積性蛍光体シートおよびその露光方法
JP2004117272A (ja) 生化学解析用データ読み取り方法および装置
JP2002156381A (ja) サンプルキャリア

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees