JP3918074B2 - Method for synthesizing diamond-like carbon film - Google Patents

Method for synthesizing diamond-like carbon film Download PDF

Info

Publication number
JP3918074B2
JP3918074B2 JP2002163300A JP2002163300A JP3918074B2 JP 3918074 B2 JP3918074 B2 JP 3918074B2 JP 2002163300 A JP2002163300 A JP 2002163300A JP 2002163300 A JP2002163300 A JP 2002163300A JP 3918074 B2 JP3918074 B2 JP 3918074B2
Authority
JP
Japan
Prior art keywords
diamond
carbon film
organic liquid
synthesizing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163300A
Other languages
Japanese (ja)
Other versions
JP2004010383A (en
Inventor
寿浩 安藤
美香 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute for Materials Science, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002163300A priority Critical patent/JP3918074B2/en
Publication of JP2004010383A publication Critical patent/JP2004010383A/en
Application granted granted Critical
Publication of JP3918074B2 publication Critical patent/JP3918074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はダイヤモンド状炭素膜の合成方法に関し、さらに詳しくは、有機液体中でのダイヤモンド状炭素膜の合成方法に関する。
【0002】
【従来の技術】
従来、ダイヤモンド状炭素膜(DLC:Diamond Like Carbon)は、その非晶質構造による形状柔軟性、ダイヤモンドに近い硬度、優れた熱伝導率、高い絶縁性等を有することから、種々の部品の機械的保護膜としての使用が期待されている。
例えば、コンピュータなどの電子機器類において、ハードディスクの磁気記憶媒体円盤をダイヤモンド状炭素膜で覆い、磁気記憶ヘッドが万一接触した場合にも、機械的に磁気記憶媒体円盤を傷つけないための保護膜として、ダイヤモンド状炭素膜が使用されている。
また、ハードディスクのみならず、歯車、回転シャフト、軸受けといったあらゆる機械部品の機械的損傷、摩耗防止のための優れた保護膜としても用途が期待されている。
【0003】
しかしながら、従来のダイヤモンド状炭素膜の合成方法は、化学気相堆積法(Phys.Rev.B46,7169(1992)参照)によるものであり、化学気相堆積法は、高純度のガス、真空装置、排気装置及び高精度のガス流量・温度制御装置を必要とし、コストが高いという課題がある。
また、化学気相堆積法によるダイヤモンド状炭素膜の被覆は、被覆する部材の近傍で熱化学反応により生じた炭素を部品上に堆積して成長するものであるため、被覆される物体表面の凹凸によって成長速度が異なり、均一な厚さで被覆することが難しいという課題がある。
このため、従来は、ダイヤモンド状炭素膜の被覆は、ハードディスク等の平板状の部材に限られ、歯車、回転シャフト、軸受けといった任意形状の部材には使用することが難しかった。
【0004】
また、ダイヤモンド状炭素膜は、上記に述べたように、ダイヤモンドと同等の硬度、熱伝導度絶縁性を有しているが、さらにダイヤモンドと同様に半導体である。従って、低コストでp型及びn型のダイヤモンド状炭素膜を合成できれば、高耐圧、高耐温度、高耐放射線特性を有する電子デバイスを実用化できる。
しかしながら現状では、低コストでp型及びn型のダイヤモンド状炭素膜を合成する方法が知られていない。
【0005】
【発明が解決しようとする課題】
本発明は上記課題に鑑み、低コストで合成でき、任意形状の表面を有する部材にも均一な厚さで被覆することができるダイヤモンド状炭素膜の合成方法、並びにp型及びn型の導電性を有するダイヤモンド状炭素膜の合成方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明のダイヤモンド状炭素膜の合成方法は、部材を、沸点以下の温度に保った有機液体中で加熱して該部材の表面を600℃以上の高温にし、該部材の表面から上記有機液体に向かって急激な温度勾配を存在させることで、上記部材上にダイヤモンド状炭素膜を合成することを特徴とする。
前記構成において有機液体は、ベンゼン(C6 6 )、シクロヘキサン(C6 12)、nヘキサン(C6 14)、メタノール(CH3 OH)、エタノール(C2 5 OH)、又は、アセトン(CH3 COCH3 )の何れかであることが好ましい。
さらに、導電性を付与する元素を含む有機液体は、トリエチルボラン((C2 5 3 B)、n−ブチルアミン(C4 9 NH2 )、トリフェニルホスフィン((C6 5 3 P)、または、メタンチオール(CH3 SH)であることが好ましい。
【0007】
上記方法によれば、装置コストが極めて低い。また、合成メカニズムが、部材の表面と有機液体の温度勾配によるから、部材表面の凹凸によらずに均一な膜厚で合成されることができる。また、原料とする有機液体は、種々の有機液体が可能であり、原料コストが極めて低い。さらに、特定の元素を構成元素とする有機液体を添加することにより、p型及びn型のダイヤモンド状炭素膜を合成でき、導電性を付与したり、pn接合を形成したりできる。例えば、トリエチルボラン((C2 5 3 B)等のBを含む有機液体を添加すればp型となり、n−ブチルアミン(C4 9 NH2 )等のNを含む有機液体、トリフェニルホスフィン((C6 5 3 P)等のPを含む有機液体、あるいは、メタンチオール(CH3 SH)等のSを含む有機液体を添加すればn型となる。
【0008】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
図1は本発明の有機液体によるダイヤモンド状炭素膜を合成するための装置を示す図である。
図1を用いて本発明のダイヤモンド状炭素膜の合成方法を説明する。
この合成装置は、液体槽1の外側に液体槽1を冷却するための水冷手段2と、ダイヤモンド状炭素膜を付着させる部材3を保持し、かつ、部材3に電流を流すための電極4を有する部材ホルダー5と、液体槽1から蒸発する有機液体蒸気を冷却凝縮して液体槽1に戻す水冷パイプ6からなる凝縮手段7と、上記部材ホルダー5と凝縮手段7とN2 ガスを導入するバルブ8とを保持する蓋9を有し、液体槽1と蓋9で有機液体10を密閉して保持する構成である。
【0009】
この装置によれば、有機液体10の温度を沸点以下に保持することができると共に、部材3の温度を高温に保持でき、ダイヤモンド状炭素膜の合成が可能になる。また、有機液体10の気相が凝縮されてもどるため原料の有機液体10を無駄にすることがなく、さらに有機気相と空気との混合による爆発、炎上の危険がない。また、不活性ガス導入手段8を有するから、液体槽1中での有機気相と空気との混合による爆発、炎上の危険がない。
【0010】
次に、図1に示した合成装置を使用する場合の、本発明の有機液体によるダイヤモンド状炭素膜の合成方法を説明する。
最初に、導電性を有する部材3を洗浄し、図1で示した合成装置の部材ホルダー5に配置する。次いで有機液体10を満たし、N2 ガスをバルブ8を介して導入して合成装置内の残留空気をN2 ガスで置換する。そして、電極4を介して部材3に電流を流して加熱する。部材3の表面から有機液体10のガスからなる気泡が発生すると共に、部材3の表面がこの気泡によって覆われる。この際、有機液体10の温度を有機液体10の沸点以下に保つことが必要であり、水冷手段2を用いて冷却する。また気相の有機液体10を凝縮手段7により液体10に戻し、液体槽1に戻す。所望のダイヤモンド状炭素膜の厚さに応じた一定時間、合成装置を上記の状態に保つことにより、ダイヤモンド状炭素膜が部材3上に合成される。
【0011】
有機液体は、例えば、ベンゼン(C6 6 )、シクロヘキサン(C6 12)、nヘキサン(C6 14)等の液化炭化水素、メタノール(CH3 OH)、エタノール(C2 5 OH)等のアルコール類、又は、アセトン(CH3 COCH3 )等の液体含酸素有機化合物が好ましい。
p型あるいはn型のダイヤモンド状炭素膜を合成する場合は、ダイヤモンド結晶においてp型不純物あるいはn型不純物となる元素、例えば、硼素(B)、硫黄(S)、窒素(N)等の元素を構成元素とする有機液体を添加して合成する。部材の温度は600〜1300℃が好ましく、また高温に保つほどダイヤモンド状炭素膜の合成速度が速い。
【0012】
本発明のダイヤモンド状炭素膜の成長メカニズムは以下のように考えられる。部材3の表面は数百℃以上の高温であり、一方、部材3の表面に隣接する有機液体10の温度は沸点程度の低温である。また、部材3の表面は有機液体10のガスで覆われており、有機液体10のガスに部材3の表面から液体10に向かって急激な温度勾配が存在する。この急激な温度勾配により、有機液体10のガス中で特異な熱分解反応が生じ、部材3上に非晶質のダイヤモンド状炭素膜が合成されると考えられる。
【0013】
上記の方法によれば、図1に示したように装置コストが極めて低い。また、合成メカニズムが、部材の表面と有機液体の温度勾配によるから、部材表面の凹凸によらずに均一な膜厚で合成できる。原料とする有機液体は、種々の有機液体が可能であり、原料コストが極めて低い。また、特定の元素を構成元素とする有機液体を添加することにより、p型及びn型のダイヤモンド状炭素膜を合成でき、導電性を付したり、pn接合を形成したりできる。
【0014】
次に,本発明の実施例を説明する。
原料の有機液体として以下の4種類を用いた。
(a)メタノール(CH3 OH))、
(b)エタノール(C2 5 OH)、
(c)アセトン(CH3 COCH3 )、
(d)ベンゼン(C6 6 )。
ダイヤモンド状炭素膜を被覆する部材には、表面を鏡面研磨したSi基板を用いた。ダイヤモンド状炭素膜の合成装置は、図1と同等の装置を用いた。
【0015】
図2は、ダイヤモンド状炭素膜の成長速度と部材温度との関係を有機液体の種類毎に比較した図である。図において、横軸は電流加熱による部材温度を示し、縦軸はダイヤモンド状炭素膜の成長速度を示している。
図からわかるように、部材温度が高いほど、また、炭素数の多い有機液体ほど成長速度が大きいことがわかる。
【0016】
図3は、ベンゼン(C6 6 )を原料の有機液体として成長したダイヤモンド状炭素膜の形状を示すSEM写真であり、図3(a)は、ダイヤモンド状炭素膜の表面形状、図3(b)は断面形状を示す図であり、図3(c)は表面及び断面形状を示す。なお、図において31はダイヤモンド状炭素膜、32はSi部材を示す。部材温度は880〜900℃である。
図からわかるように、ダイヤモンド状炭素膜の表面全体が平滑であり、また、膜厚も均一であることがわかる。
【0017】
図4は、ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜のラマンスペクトルを示す図である。横軸はラマンシフト量を示し、縦軸はラマン強度を示す。励起光波長は514.47nmである。
図からわかるように、1340〜1360cm-1付近をピークとしたいわゆるDバンドと、1560〜1600cm-1付近を中心としたいわゆるGバンドが観測され、この薄膜がダイヤモンド状炭素膜であることを示している。
【0018】
図5は、ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜のX線光電子スペクトルを示す図である。横軸は光電子の結合エネルギーを示し、縦軸は光電子強度を示す。励起X線はAL−Kα線を用いた。
図からわかるように、275eV付近にピークが観測され、膜が炭素のみから構成されていることを示す。なお、534eV付近に酸素のピークが観測されているが、極めて強度が小さく、これは、膜表面がわずかに酸化されているか、酸素が表面に吸着しているためと考えられる。
【0019】
図6は、ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜の電子線エネルギー損失分光スペクトルを示す図である。図において、横軸は電子線の運動エネルギーを示し、縦軸は電子線強度を示す。励起電子線の運動エネルギーは495eVである。
図において、490eV(5eVの損失)の微小なピークは、炭素−炭素間のπ結合に基づくピークであり、グラファイト成分は極めて微小であることがわかる。480〜475eV(15〜20eVの損失)のピークはダイヤモンド状炭素膜に典型的なプラズモン損失である。このことからも、この膜は、ダイヤモンド状炭素膜であることが解る。
【0020】
図2〜6から明らかなように、本発明の方法によれば、非晶質のダイヤモンド膜、すなわち、ダイヤモンド状炭素膜(Diamond Like Carbon)が合成できることがわかる。
【0021】
上記実施例では、Si部材上にダイヤモンド状炭素膜を成長する例について説明したが、Siに限らず導電性を有する物質であれば成長することができ、例えば、タングステン(W)、モリブデン(Mo)等の高融点金属には最適である。また、原料の有機液体に窒素(N)、リン(P)、または、イオウ(S)を含む有機液体を添加することによってn型のダイヤモンド状炭素膜を成長することができる。例えば、n型ダイヤモンド状炭素膜を形成するには、n−ブチルアミン(C4 9 NH2 )、トリフェニルホスフィン((C6 5 3 P)あるいは、メタンチオール(CH3 SH)を用いることができる。
【0022】
図7は、本発明の方法で合成したダイヤモンド状炭素膜の物性値を示す図である。図から明らかなように、ダイヤモンドに近い密度、高度及び抵抗率を有していることがわかる。
【0023】
なお、上記説明では、電流加熱によって部材を加熱する例について説明したが、勿論、電流加熱に限らず、抵抗加熱、赤外線加熱、レーザー加熱等の加熱装置を用いて加熱しても良いことは明らかである。またこの場合には、導電性を有しない部材上に合成することが可能である。
【0024】
【発明の効果】
上記説明から理解されるように、本発明によれば、ダイヤモンド状炭素膜を低コストで合成することが可能で、任意形状の表面を有する部材にも均一な厚さで被覆することができる。また、p型及びn型のダイヤモンド状炭素膜を合成することができる。
したがって、本発明を機械的強度の高い保護膜として、あるいは、半導体材料として用いれば極めて有用である。
【図面の簡単な説明】
【図1】本発明の有機液体によるダイヤモンド状炭素膜を合成するための装置を示す概略構成図である。
【図2】ダイヤモンド状炭素膜の成長速度と部材温度との関係を有機液体の種類毎に比較した図である。
【図3】ベンゼン(C6 6 )を原料の有機液体として成長したダイヤモンド状炭素膜の形状を示すSEM写真であり、(a)はダイヤモンド状炭素膜の表面形状を、(b)は断面形状を示す図であり、(c)は表面及び断面形状を示す。
【図4】ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜のラマンスペクトルを示す図である。
【図5】ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜のX線光電子スペクトルを示す図である。
【図6】ベンゼン(C6 6 )を原料有機液体として成長したダイヤモンド状炭素膜の電子線エネルギー損失分光スペクトルを示す図である。
【図7】本発明の方法で合成したダイヤモンド状炭素膜の物性値を示す図である。
【符号の説明】
1 液体槽
2 水冷手段
3 部材
4 電極
5 部材ホルダー
6 水冷管
7 凝縮手段
8 バルブ
9 蓋
10 有機液体
31 ダイヤモンド状炭素膜
32 Si基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing a diamond-like carbon film, and more particularly to a method for synthesizing a diamond-like carbon film in an organic liquid.
[0002]
[Prior art]
Conventionally, diamond-like carbon films (DLC: Diamond Like Carbon) have shape flexibility due to their amorphous structure, hardness close to diamond, excellent thermal conductivity, high insulation, etc. Use as a protective film is expected.
For example, in electronic devices such as computers, the magnetic storage medium disk of the hard disk is covered with a diamond-like carbon film, and even if the magnetic storage head should come into contact, the protective film is to prevent mechanical damage to the magnetic storage medium disk As a diamond-like carbon film is used.
Further, it is expected to be used not only as a hard disk but also as an excellent protective film for preventing mechanical damage and wear of all mechanical parts such as gears, rotating shafts and bearings.
[0003]
However, a conventional method for synthesizing a diamond-like carbon film is based on a chemical vapor deposition method (see Phys. Rev. B46, 7169 (1992)). Further, there is a problem that an exhaust device and a highly accurate gas flow rate / temperature control device are required and the cost is high.
In addition, the coating of diamond-like carbon film by chemical vapor deposition grows by depositing and growing carbon produced by thermochemical reaction in the vicinity of the member to be coated. There is a problem that the growth rate differs depending on the material, and it is difficult to coat with a uniform thickness.
For this reason, conventionally, the coating of the diamond-like carbon film is limited to a flat plate-like member such as a hard disk, and it has been difficult to use it for a member having an arbitrary shape such as a gear, a rotating shaft, or a bearing.
[0004]
Further, as described above, the diamond-like carbon film has the same hardness and thermal conductivity insulating property as diamond, but is also a semiconductor like diamond. Therefore, if p-type and n-type diamond-like carbon films can be synthesized at low cost, an electronic device having high breakdown voltage, high temperature resistance, and high radiation resistance can be put into practical use.
However, at present, there is no known method for synthesizing p-type and n-type diamond-like carbon films at low cost.
[0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a method for synthesizing a diamond-like carbon film that can be synthesized at a low cost and can be applied to a member having a surface of an arbitrary shape with a uniform thickness, and p-type and n-type conductivity. An object of the present invention is to provide a method for synthesizing a diamond-like carbon film having:
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the method for synthesizing a diamond-like carbon film of the present invention is to heat a member in an organic liquid maintained at a temperature equal to or lower than the boiling point to bring the surface of the member to a high temperature of 600 ° C. or higher. A diamond-like carbon film is synthesized on the member by causing a rapid temperature gradient from the surface of the member toward the organic liquid.
In the above structure, the organic liquid is benzene (C 6 H 6 ), cyclohexane (C 6 H 12 ), n-hexane (C 6 H 14 ), methanol (CH 3 OH), ethanol (C 2 H 5 OH), or Any one of acetone (CH 3 COCH 3 ) is preferable.
Further, organic liquids containing an element imparting conductivity include triethylborane ((C 2 H 5 ) 3 B), n-butylamine (C 4 H 9 NH 2 ), triphenylphosphine ((C 6 H 5 ) 3 P) or methanethiol (CH 3 SH) is preferable.
[0007]
According to the above method, the apparatus cost is extremely low. In addition, since the synthesis mechanism depends on the temperature gradient of the surface of the member and the organic liquid, it can be synthesized with a uniform film thickness regardless of the unevenness of the surface of the member. The organic liquid used as the raw material can be various organic liquids, and the raw material cost is extremely low. Furthermore, by adding an organic liquid containing a specific element as a constituent element, p-type and n-type diamond-like carbon films can be synthesized, and conductivity can be imparted or a pn junction can be formed. For example, when an organic liquid containing B such as triethylborane ((C 2 H 5 ) 3 B) is added, it becomes p-type, and an organic liquid containing N such as n-butylamine (C 4 H 9 NH 2 ), triphenyl, When an organic liquid containing P such as phosphine ((C 6 H 5 ) 3 P) or an organic liquid containing S such as methanethiol (CH 3 SH) is added, an n-type is obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing an apparatus for synthesizing a diamond-like carbon film using an organic liquid according to the present invention.
The method for synthesizing the diamond-like carbon film of the present invention will be described with reference to FIG.
This synthesizer holds a water cooling means 2 for cooling the liquid tank 1 outside the liquid tank 1 and a member 3 for adhering the diamond-like carbon film, and an electrode 4 for passing a current through the member 3. A member holder 5 having a condenser, a condensing means 7 comprising a water-cooled pipe 6 that cools and condenses the organic liquid vapor evaporated from the liquid tank 1 and returns it to the liquid tank 1, and introduces the member holder 5, the condensing means 7 and N 2 gas. It has a lid 9 for holding the valve 8, and the organic liquid 10 is hermetically held by the liquid tank 1 and the lid 9.
[0009]
According to this apparatus, the temperature of the organic liquid 10 can be kept below the boiling point, the temperature of the member 3 can be kept high, and the diamond-like carbon film can be synthesized. Moreover, since the vapor phase of the organic liquid 10 is condensed, the raw organic liquid 10 is not wasted, and there is no danger of explosion and flame due to mixing of the organic vapor phase and air. Further, since the inert gas introduction means 8 is provided, there is no danger of explosion and flame due to mixing of the organic gas phase and air in the liquid tank 1.
[0010]
Next, a method for synthesizing a diamond-like carbon film using the organic liquid of the present invention when using the synthesis apparatus shown in FIG. 1 will be described.
First, the conductive member 3 is cleaned and placed in the member holder 5 of the synthesis apparatus shown in FIG. Next, the organic liquid 10 is filled and N 2 gas is introduced through the valve 8 to replace the remaining air in the synthesizer with N 2 gas. Then, the member 3 is heated by passing an electric current through the electrode 4. Bubbles made of the gas of the organic liquid 10 are generated from the surface of the member 3, and the surface of the member 3 is covered with the bubbles. At this time, it is necessary to keep the temperature of the organic liquid 10 below the boiling point of the organic liquid 10, and the water cooling means 2 is used for cooling. The vapor-phase organic liquid 10 is returned to the liquid 10 by the condensing means 7 and returned to the liquid tank 1. The diamond-like carbon film is synthesized on the member 3 by maintaining the synthesis apparatus in the above state for a certain period of time according to the desired thickness of the diamond-like carbon film.
[0011]
Examples of the organic liquid include liquefied hydrocarbons such as benzene (C 6 H 6 ), cyclohexane (C 6 H 12 ), n-hexane (C 6 H 14 ), methanol (CH 3 OH), and ethanol (C 2 H 5 OH). ) Or liquid oxygen-containing organic compounds such as acetone (CH 3 COCH 3 ) are preferable.
When synthesizing a p-type or n-type diamond-like carbon film, an element that becomes a p-type impurity or an n-type impurity in the diamond crystal, for example, an element such as boron (B), sulfur (S), or nitrogen (N) is used. It is synthesized by adding an organic liquid as a constituent element. The temperature of the member is preferably 600 to 1300 ° C., and the higher the temperature, the faster the synthesis rate of the diamond-like carbon film.
[0012]
The growth mechanism of the diamond-like carbon film of the present invention is considered as follows. The surface of the member 3 is a high temperature of several hundred degrees Celsius or higher, while the temperature of the organic liquid 10 adjacent to the surface of the member 3 is as low as the boiling point. Further, the surface of the member 3 is covered with the gas of the organic liquid 10, and a steep temperature gradient exists in the gas of the organic liquid 10 from the surface of the member 3 toward the liquid 10. This rapid temperature gradient is considered to cause a unique thermal decomposition reaction in the gas of the organic liquid 10 and synthesize an amorphous diamond-like carbon film on the member 3.
[0013]
According to the above method, the apparatus cost is extremely low as shown in FIG. In addition, since the synthesis mechanism depends on the temperature gradient of the surface of the member and the organic liquid, it can be synthesized with a uniform film thickness regardless of the unevenness of the surface of the member. The organic liquid used as the raw material can be various organic liquids, and the raw material cost is extremely low. Further, by adding an organic liquid having a specific element as a constituent element, p-type and n-type diamond-like carbon films can be synthesized, and can be provided with conductivity or a pn junction.
[0014]
Next, examples of the present invention will be described.
The following four types of organic liquids were used.
(A) methanol (CH 3 OH)),
(B) ethanol (C 2 H 5 OH),
(C) acetone (CH 3 COCH 3 ),
(D) Benzene (C 6 H 6 ).
As a member for covering the diamond-like carbon film, a Si substrate having a mirror-polished surface was used. The diamond-like carbon film synthesizing apparatus was the same as that shown in FIG.
[0015]
FIG. 2 is a diagram comparing the relationship between the growth rate of the diamond-like carbon film and the member temperature for each type of organic liquid. In the figure, the horizontal axis shows the member temperature by current heating, and the vertical axis shows the growth rate of the diamond-like carbon film.
As can be seen from the figure, the higher the member temperature and the higher the growth rate of the organic liquid having a larger number of carbon atoms.
[0016]
FIG. 3 is an SEM photograph showing the shape of a diamond-like carbon film grown using benzene (C 6 H 6 ) as an organic liquid as a raw material, and FIG. 3 (a) shows the surface shape of the diamond-like carbon film, FIG. FIG. 3B is a diagram showing a cross-sectional shape, and FIG. 3C shows the surface and the cross-sectional shape. In the figure, 31 indicates a diamond-like carbon film, and 32 indicates a Si member. Member temperature is 880-900 degreeC.
As can be seen, the entire surface of the diamond-like carbon film is smooth and the film thickness is uniform.
[0017]
FIG. 4 is a diagram showing a Raman spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a raw material organic liquid. The horizontal axis indicates the Raman shift amount, and the vertical axis indicates the Raman intensity. The excitation light wavelength is 514.47 nm.
As can be seen from the figure, a so-called D band having a peak near 1340 to 1360 cm -1 and a so-called G band centering around 1560 to 1600 cm -1 are observed, indicating that this thin film is a diamond-like carbon film. ing.
[0018]
FIG. 5 is a diagram showing an X-ray photoelectron spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a raw material organic liquid. The horizontal axis indicates the photoelectron binding energy, and the vertical axis indicates the photoelectron intensity. AL-Kα ray was used as the excitation X-ray.
As can be seen from the figure, a peak is observed around 275 eV, indicating that the film is composed of only carbon. Note that an oxygen peak is observed in the vicinity of 534 eV, but the intensity is extremely small. This is probably because the film surface is slightly oxidized or oxygen is adsorbed on the surface.
[0019]
FIG. 6 is a diagram showing an electron beam energy loss spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a raw material organic liquid. In the figure, the horizontal axis represents the kinetic energy of the electron beam, and the vertical axis represents the electron beam intensity. The kinetic energy of the excitation electron beam is 495 eV.
In the figure, a minute peak of 490 eV (loss of 5 eV) is a peak based on a carbon-carbon π bond, and it can be seen that the graphite component is extremely minute. The peak of 480 to 475 eV (loss of 15 to 20 eV) is a plasmon loss typical of a diamond-like carbon film. This also shows that this film is a diamond-like carbon film.
[0020]
As is apparent from FIGS. 2 to 6, according to the method of the present invention, it is understood that an amorphous diamond film, that is, a diamond-like carbon film (Diamond Like Carbon) can be synthesized.
[0021]
In the above embodiment, an example in which a diamond-like carbon film is grown on a Si member has been described. However, it is possible to grow not only Si but also a conductive material, for example, tungsten (W), molybdenum (Mo ) And other high melting point metals. Further, an n-type diamond-like carbon film can be grown by adding an organic liquid containing nitrogen (N), phosphorus (P), or sulfur (S) to the raw organic liquid. For example, n-butylamine (C 4 H 9 NH 2 ), triphenylphosphine ((C 6 H 5 ) 3 P), or methanethiol (CH 3 SH) is used to form an n-type diamond-like carbon film. be able to.
[0022]
FIG. 7 is a diagram showing physical property values of the diamond-like carbon film synthesized by the method of the present invention. As is apparent from the figure, it has a density, altitude and resistivity close to those of diamond.
[0023]
In the above description, an example in which a member is heated by current heating has been described, but it is obvious that the member may be heated not only by current heating but also by using a heating device such as resistance heating, infrared heating, or laser heating. It is. In this case, it is possible to synthesize on a member having no conductivity.
[0024]
【The invention's effect】
As understood from the above description, according to the present invention, a diamond-like carbon film can be synthesized at a low cost, and a member having a surface of an arbitrary shape can be coated with a uniform thickness. In addition, p-type and n-type diamond-like carbon films can be synthesized.
Therefore, it is extremely useful if the present invention is used as a protective film having high mechanical strength or as a semiconductor material.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an apparatus for synthesizing a diamond-like carbon film with an organic liquid of the present invention.
FIG. 2 is a diagram comparing the relationship between the growth rate of a diamond-like carbon film and the member temperature for each type of organic liquid.
FIG. 3 is an SEM photograph showing the shape of a diamond-like carbon film grown using benzene (C 6 H 6 ) as an organic liquid, and (a) shows the surface shape of the diamond-like carbon film, and (b) shows a cross section. It is a figure which shows a shape, (c) shows the surface and a cross-sectional shape.
FIG. 4 is a diagram showing a Raman spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a starting organic liquid.
FIG. 5 is a view showing an X-ray photoelectron spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a raw organic liquid.
FIG. 6 is a diagram showing an electron energy loss spectrum of a diamond-like carbon film grown using benzene (C 6 H 6 ) as a raw organic liquid.
FIG. 7 is a diagram showing physical property values of a diamond-like carbon film synthesized by the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid tank 2 Water cooling means 3 Member 4 Electrode 5 Member holder 6 Water cooling pipe 7 Condensing means 8 Valve 9 Lid 10 Organic liquid 31 Diamond-like carbon film 32 Si substrate

Claims (4)

部材を、沸点以下の温度に保った有機液体中で加熱して該部材の表面を600℃以上の高温にし、該部材の表面から上記有機液体に向かって急激な温度勾配を存在させることで、上記部材上にダイヤモンド状炭素膜を合成することを特徴とする、ダイヤモンド状炭素膜の合成方法。By heating the member in an organic liquid maintained at a temperature equal to or lower than the boiling point, the surface of the member is heated to a high temperature of 600 ° C. or higher, and a rapid temperature gradient exists from the surface of the member toward the organic liquid. A method for synthesizing a diamond-like carbon film, comprising synthesizing a diamond-like carbon film on the member. 前記有機液体は、ベンゼン(C6 6 )、シクロヘキサン(C6 12)、nヘキサン(C6 14)、メタノール(CH3 OH)、エタノール(C2 5 OH)、又は、アセトン(CH3 COCH3 )の何れかであることを特徴とする、請求項に記載のダイヤモンド状炭素膜の合成方法。The organic liquid is benzene (C 6 H 6 ), cyclohexane (C 6 H 12 ), n-hexane (C 6 H 14 ), methanol (CH 3 OH), ethanol (C 2 H 5 OH), or acetone ( The method for synthesizing a diamond-like carbon film according to claim 1 , wherein the method is any one of CH 3 COCH 3 ). 前記有機液体に、導電性を付与する元素を含む有機液体を添加することを特徴とする、請求項1又は2に記載のダイヤモンド状炭素膜の合成方法。The method for synthesizing a diamond-like carbon film according to claim 1 or 2 , wherein an organic liquid containing an element imparting conductivity is added to the organic liquid. 前記導電性を付与する元素を含む有機液体は、トリエチルボラン((C2 5 3 B)、n−ブチルアミン(C4 9 NH2 )、トリフェニルホスフィン((C6 5 3 P)、又は、メタンチオール(CH3 SH)であることを特徴とする、請求項に記載のダイヤモンド状炭素膜の合成方法。The organic liquid containing the element imparting conductivity is triethylborane ((C 2 H 5 ) 3 B), n-butylamine (C 4 H 9 NH 2 ), triphenylphosphine ((C 6 H 5 ) 3 P 4) The method for synthesizing a diamond-like carbon film according to claim 3 , wherein the method is methanethiol (CH 3 SH).
JP2002163300A 2002-06-04 2002-06-04 Method for synthesizing diamond-like carbon film Expired - Fee Related JP3918074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163300A JP3918074B2 (en) 2002-06-04 2002-06-04 Method for synthesizing diamond-like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163300A JP3918074B2 (en) 2002-06-04 2002-06-04 Method for synthesizing diamond-like carbon film

Publications (2)

Publication Number Publication Date
JP2004010383A JP2004010383A (en) 2004-01-15
JP3918074B2 true JP3918074B2 (en) 2007-05-23

Family

ID=30431821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163300A Expired - Fee Related JP3918074B2 (en) 2002-06-04 2002-06-04 Method for synthesizing diamond-like carbon film

Country Status (1)

Country Link
JP (1) JP3918074B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103996A (en) * 2004-10-01 2006-04-20 National Institute For Materials Science Nitrogen atom-containing carbon nanotube and method for manufacturing the same
KR100657913B1 (en) * 2004-11-20 2006-12-14 삼성전자주식회사 method of synthesizing single-wall carbon nanotube at room temperature and atmosphere pressure
JP2007048907A (en) * 2005-08-09 2007-02-22 National Institute For Materials Science Electric double layer capacitor electrode and capacitor using same

Also Published As

Publication number Publication date
JP2004010383A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP5650421B2 (en) Graphene production method
US4740263A (en) Process for preparing thin film and p-type diamond semiconductor
KR100287489B1 (en) How to form crystalline silicon carbide film at low temperature
Zhang et al. High‐speed preparation of< 111>‐and< 110>‐oriented β‐SiC films by laser chemical vapor deposition
KR101886659B1 (en) Preparation Method of Graphene Thin Film Layer without Transferring
Liu et al. Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: Formation of surface nanostructures
CN109437124B (en) Method for synthesizing single-layer transition metal chalcogenide
US10246795B2 (en) Transfer-free method for forming graphene layer
Yang et al. Growth of monolayer MoS2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition
JP3918074B2 (en) Method for synthesizing diamond-like carbon film
JP4751373B2 (en) Synthesis method of GaN single crystal
JPS62202897A (en) Production of diamond
Aversa et al. Synthesis of SiC on Si (1 1 1) at moderate temperatures by supersonic C60 beams
Xu et al. On the structure and composition of polycrystalline carbon nitride films synthesized by reactive rf magnetron sputtering
US20210327707A1 (en) Method of making graphene and graphene devices
JPS62171993A (en) Production of diamond semiconductor
Muhsin Chemical vapor deposition of aluminum oxide (Al2O3) and beta iron disilicide (β-FeSi2) thin films
US10337102B2 (en) Process for producing a graphene film
JP4907017B2 (en) Method for producing carbon nanotube film body
JP2019131440A (en) SiC SINGLE CRYSTAL MANUFACTURING APPARATUS, AND SiC SINGLE CRYSTAL MANUFACTURING METHOD
KR102576569B1 (en) Preparing method of transition metal dichalcogenide
JP3260212B2 (en) Manufacturing method of diamond single crystal
JP2636856B2 (en) Method for producing diamond thin film
JP5724121B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5707613B2 (en) Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350