JP3917453B2 - Concrete dam leakage inspection method and leakage treatment method - Google Patents

Concrete dam leakage inspection method and leakage treatment method Download PDF

Info

Publication number
JP3917453B2
JP3917453B2 JP2002113699A JP2002113699A JP3917453B2 JP 3917453 B2 JP3917453 B2 JP 3917453B2 JP 2002113699 A JP2002113699 A JP 2002113699A JP 2002113699 A JP2002113699 A JP 2002113699A JP 3917453 B2 JP3917453 B2 JP 3917453B2
Authority
JP
Japan
Prior art keywords
water
leakage
water stop
dam
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002113699A
Other languages
Japanese (ja)
Other versions
JP2003307464A (en
Inventor
徹 役田
秀雄 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Maeda Corp
Original Assignee
Obayashi Corp
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Maeda Corp filed Critical Obayashi Corp
Priority to JP2002113699A priority Critical patent/JP3917453B2/en
Publication of JP2003307464A publication Critical patent/JP2003307464A/en
Application granted granted Critical
Publication of JP3917453B2 publication Critical patent/JP3917453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コンクリートダムの漏水検査方法および漏水処理方法に関し、特に、ダムの構築後の湛水前に行う漏水検査方法および漏水処理方法に関するものである。
【0002】
【従来の技術】
重力式のコンクリートダムは、横継ぎ目があることから、多少なりともこの部分で漏水が発生し、湛水後に、その個所の特定および処理に苦慮することがある。そこで、従来は、ダムを構築した後に、湛水を行い、ダムの上流の貯水池側から色粉を流し、色粉がダムの監視廊内の継ぎ目排水管に排出されるか否かで、漏水を検査していた。
【0003】
そして、色粉の排出により、漏水箇所が特定されると、ダムの貯水池側から、横継ぎ目沿いに間詰め材を投入して、漏水箇所にこれを吸い込ませることで、漏水処理を行っていた。
【0004】
また、これとは別の方法として、ダムの湛水前に、ダムの上流側で、すべての横継ぎ目に色粉の注入装置を取り付け、湛水後に、色粉を注入装置を介して、注入して漏水検査を行い、漏水箇所が特定されたら、そこに間詰め材を注入して、漏水を止める方法も採用されている。
【0005】
しかしながら、このような従来のコンクリートダムの横継ぎ目の漏水検査方法および漏水処理方法には、以下に説明する技術的な課題があった。
【0006】
【発明が解決しようとする課題】
すなわち、上述した従来のコンクリートダムの横継ぎ目の漏水調査方法および漏水処理方法は、いずれもダムに湛水した状態で行うものであり、ダムに所定量の水を湛水するまでに時間がかかるとともに、漏水箇所が特定されたとしても、漏水処理を湛水状態で行うには、困難性があり、ダムの湛水前に漏水検査ができ、かつ、湛水前に漏水処理が可能な方法が要請されていた。
【0007】
本発明は、このような問題点に鑑みてなされたものであって、その目的とするところは、比較的簡単な方法により、湛水前に検査が可能で、かつ、漏水箇所が特定された際に容易に処理ができるコンクリートダムの漏水検査方法および漏水処理方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、横継ぎ目に止水材を介在させて連結構築されたコンクリートダムの漏水検査方法において、前記ダムの湛水前に、前記止水材の下流側から前記横継ぎ目に窒素ガスなどの気体を注入し、前記止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、前記横継ぎ目から吐出する前記気体による前記石鹸水の膨らみから、前記横継ぎ目の漏水箇所を特定する漏水検査方法であって、前記止水材は、相互に平行に配置される主および副止水板を備え、前記気体は、前記主,副止水板間に圧力状態を検知しながら注入され、検知された圧力値の変化と、前記横継ぎ目の推定幅とに基づいて、前記主,副止水板間に形成される間隙容量を算定するようにした。
【0009】
このように構成したコンクリートダムの漏水検査方法によれば、ダムの湛水前に、止水材の下流側から横継ぎ目に窒素ガスなどの気体を注入し、止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、横継ぎ目から吐出する気体による石鹸水の膨らみから、横継ぎ目の漏水箇所を特定するので、目視確認という比較的簡単な方法により、湛水前に漏水の検査が可能になる。
【0011】
前記横継ぎ目の漏水箇所を特定する際には、前記石鹸水の膨らみの大きさから前記横継ぎ目の漏出個所の大きさ(漏水量)を推定することができる。
【0012】
また、本発明は、横継ぎ目に止水材を介在させて連結構築されたコンクリートダムの漏水処理方法において、前記ダムの湛水前に、前記止水材の下流側から前記横継ぎ目に窒素ガスなどの気体を注入し、前記止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、前記横継ぎ目から吐出する前記気体による前記石鹸水の膨らみから、前記横継ぎ目の漏水箇所を特定し、漏水処理の必要性があると判断したときに、前記横継ぎ目にセメントミルクなどの充填材を無圧注入するとともに、特定された前記漏水箇所にシリコーン樹脂を塗布する漏水処理方法であって、前記止水材は、相互に平行に配置される主および副止水板を備え、前記気体は、前記主,副止水板間に圧力状態を検知しながら注入され、検知された圧力値の変化と、前記横継ぎ目の推定幅とに基づいて、前記主,副止水板間に形成される間隙容量を算定し、前記充填材を無圧注入する際に、前記間隙容量との関係に基づいて、前記充填材の充填状態を判断するようにした。
【0013】
このように構成したコンクリートダムの漏水処理方法によれば、ダムの湛水前に、止水材の下流側から前記横継ぎ目に窒素ガスなどの気体を注入し、止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、横継ぎ目から吐出する気体による石鹸水の膨らみから、横継ぎ目の漏水箇所を特定し、漏水処理の必要性があると判断したときに、横継ぎ目にセメントミルクなどの充填材を無圧注入するとともに、特定された漏水箇所にシリコーン樹脂を塗布するので、漏水箇所の特定が容易に行え、漏水箇所が特定された際に、湛水していないので、容易に漏水処理をすることができる。
【0015】
この構成よれば、主,副止水板間に形成される間隙容量を算定して、充填材を無圧注入するので、無圧注入された充填材の量と、間隙容量とを勘案すると、漏水処理の良否を簡単かつ確実に判断することができる。
【0016】
前記漏水処理の要否判断は、前記石鹸水の膨らみから測定される漏気量を漏水量に換算し、換算された漏水量に基づいて行われ、各横継ぎ目の前記漏水量が所定値以上の場合に実行することができる。
【0017】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図4は、本発明にかかるコンクリートダムの漏水検査方法および漏水処理方法の一実施例を示している。
【0018】
図1および図2は、本発明の漏水検査方法および漏水処理方法が適用される重力式コンクリートダムの一例を示している。これらの図に示したコンクリートダムは、ダム堤体10が山間の谷部に設けられ、ダム堤体10の上流側に貯水池が形成されるようになっている。
【0019】
ダム堤体10は、鉛直方向に伸びる複数の横継ぎ目12を介して、コンクリートの打設により連結形成されている。各横継ぎ目12は、ほぼ等間隔で、相互に平行に配置されている。
【0020】
横継ぎ目12は、図2に示すように、ダム堤体10の横断方向で、ほぼ同じ大きさの幅dを有するものであって、この幅dよりも幅広の止水材14が、横継ぎ目12と直交するように介在させられている。
【0021】
本実施例の場合、止水材14は、ダム堤体10の上流側近傍に配置され、ほぼ同じ幅の平板状のゴム板からなる主止水板14aと、副止水板14bとから構成され、主および副止水板14a,14bは、相互に平行になるように配置されている。
【0022】
また、主および副止水板14a,14bは、その下端が、ダム堤体10の下方の岩盤内に着岩処理されており、上端側は、ダム堤体10の天端近傍まで延設されている。
【0023】
このような構成のダム堤体10が構築されると、本実施例の場合に、ダムの湛水前に漏水検査が行われ、この検査により漏水が発見され、その処理が必要であると判断された場合には、漏水処理が行われ、この際に行われる手順の一例を図3に示している。
【0024】
手順がスタートすると、まず、ステップ1で、横継ぎ目12の幅dの測定が行われる。この測定は、ダム堤体10に沿って上下移動するゴンドラを吊り下げて、各横継ぎ目12の幅dを、例えば、鉛直方向に沿って、2.5m間隔毎に、スケールにより実測する。そして、実測された幅dの平均値が、横継ぎ目12の内部(図2に符号Sで示した部分)の幅と推定される。
【0025】
次のステップ2では、主および副止水板14a,14b間の間隙容量Vxの算定が行われる。
【0026】
この間隙容量Vxの算定に際しては、図4に示す注入装置16が用いられる。同図に示した注入装置16は、ボンベ16aと、レシーバタンク16bと、注入管16cとを備えている。
【0027】
ボンベ16aには、所定圧力に加圧された窒素ガスNが封入充填されており、第1バルブ16dとホース16eとを介して、レシーバタンク16bと連通接続されている。
【0028】
レシーバタンク16bは、内容積V0が既知の圧力タンクであって、両端に第1および第2開閉バルブ16f,16gが設けられたホース16hを介して、注入管16cに連通接続されている。ホース16hには、第2開閉バルブ16gの近傍に圧力計16iが設けられている。
【0029】
注入管16cは、両端が開口した中空管であって、ダム堤体10の天端から斜め45°下方に向けて貫入されており、その先端は、横継ぎ目12内に位置しており、主および副止水板14a,14b間の概略中心に位置している。
【0030】
つまり、本実施例の場合、注入管16cは、図2のA方向(これと対向する方向でもよい)から主および副止水板14a,14b間の概略中心上を、ダム堤体10の天端から斜め45°下方に向けて貫入させている。
【0031】
また、この注入管16cは、ダム堤体10の横継ぎ目12の幅方向の概略中央部分に配置されている。間隙容量Vxの算定する際には、まず、ボンベ16a内の窒素ガスNをレシーバタンク16b内に所定量貯めた状態で、定量定圧の窒素ガスNを瞬時に、注入管16cを介して、主および副止水板14a,14b間に注入する。
【0032】
そして、この直後の窒素ガスNの圧力状態の変化を圧力計16iで読む。この場合、窒素ガスNを注入する前の圧力値がP0であった場合に、この値は、注入とともに低下するが、その途中で圧力値が上昇する変化点が現われる。
【0033】
これは、主および副止水板14a,14b間に形成されている間隙と、注入管16cを介して連通されているレシーバタンク16bに窒素ガスNが充満した際に、若干の漏出があったとしても、瞬間的に圧力が均衡する状態があって、これの変化点を読取ることができる。
【0034】
いまここで、この変化点の圧力値をPaとすると、ボイルの法則により、P0×V0(レシーバタンク16bの初期状態)≒Pa×(V0+Vx)の関係が成立する。
【0035】
この関係で、P0,V0,Paが既知なので、上記式から間隙容量Vxを算定することができる。算定された間隙容量Vxからは、隙間の形成状態がわかる。すなわち、いま、ここで主および副止水板14a,14bに挟まれた横継ぎ目12の部分の面積Sに、横継ぎ目12の鉛直方向の全長Lを乗算して、その容積がVであるとすると、間隙容量Vxが容積Vよりも小さい場合には、隙間は、途中で目詰まりしていることになり、隙間がダム堤体10の下端まで到達していないと判断することができる。また、両者の比較から、隙間の鉛直方向の長さを推定することもできる。
【0036】
間隙容量Vxの算定が終了すると、次のステップ3で、全体漏気量Aの測定が行われる。この全体漏気量Aは、後述するステップ5で、漏水処理の必要性の有無を判断するために測定するものであって、図4に示した注入装置16において、一定圧力の窒素ガスNを、注入管16cを介して主および副止水板14a,14b間に注入し続けて、単位時間における窒素ガスNの消費量で求められる。
【0037】
全体漏気量Aの測定が終了すると、次に、ステップ4で漏気位置の特定が行われる。なお、このステップが実行されるのは、単位時間当たりの漏気量、すなわち、全体漏気量Aが所定値以上の場合にのみ実行される。
【0038】
漏気位置の特定作業では、まず、図4に示した注入装置16において、一定圧力の窒素ガスNを、注入管16cを介して主および副止水板14a,14b間に注入しながら、横継ぎ目12の上流側に沿って、石鹸水を塗布する。
【0039】
横継ぎ目12に漏気があれば、その部分から窒素ガスNが吐出して、石鹸水を膨らませて、半円球状のシャボン玉が形成されるので、石鹸水を塗布した面を目視観察していれば、漏気発生個所が判り、簡単に特定することができる。
【0040】
この場合に、石鹸水が膨らむことで形成されたシャボン玉の径を測ると、漏気量および漏気個所の大きさが推定することができる。なお、本実施例で示し漏気発生個所は、漏水の量的な問題を考慮しなければ、漏水発生個所と実質的に同じ個所となる。
【0041】
続くステップ5では、漏水処理の必要性があるか否かが判断される。これは、以下の知見に基づいている。すなわち、コンクリート構造物の止水に関して、漏気量と漏水量とを比較すると、気体と水とでは、100倍の違いあるといわれており、所定量の漏気があったとしても、必ずしも漏水処理が必要とはいえない。
【0042】
そこで、本発明者らは、漏気量を漏水量に換算するために、比較実験を行い、これに基づいて換算することにした。比較実験は、止水板の材質を考慮してゴムホースを使用し、ゴムホースに長さ20mmのスリットをナイフでつけたものと、針孔を2個あけたものとで、水あるいは窒素ガスNの圧力を種々に替えて、ゴムホースに注入し、漏気量と漏水量とを比較した。
【0043】
その結果、スリットでは、59倍、針孔では、70倍漏気量の方が多かった。そこで、本実施例では、これらの平均の65倍を変換係数として採用した(漏気量/65=漏水量)。
【0044】
また、窒素ガスNの注入圧力を実際の湛水時の水圧に比較するには、漏気量は、注入圧力に正比例して増加するとして換算した。ステップ5では、全体漏気量Aから、換算した漏水量が、横継ぎ目12の1個所あたり、10L/min以上見込まれるときには、漏水処理が必要であるとの判断基準とした。
【0045】
ステップ5で、判断基準を満たしておらず、漏水処理が必要でないと判断された場合には、手順が終了する。一方、ステップ5で漏水処理が必要であると判断された場合には、ステップ6が実行される。
【0046】
漏水処理を行う場合には、横継ぎ目12にセメントミルクなどの充填材を無圧注入するとともに、石鹸水の膨らみにより特定された漏水箇所にシリコーン樹脂を塗布する。
【0047】
この場合、充填材は、図4に示した注入管16cを利用して、主および副止水板14a,14b間に注入することができるし、別の注入管を設けてもよい。充填材の注入充填量は、ステップ2で算定した間隙容量Vxに基づいで設定することができる。
【0048】
すなわち、算定された間隙容量Vxに対応した量の充填材を完全に無圧注入すると、漏水が発生する可能性がある個所の漏水処理が完全に行える。また、充填材を無圧注入する際の注入量を測定しておき、これを間隙容量Vxと比較することにより、充填状態を確認することができる。
【0049】
すなわち、注入量が間隙容量Vxよりも小さければ、充填が不足していて、漏水処理が不十分であると判断することができる。
【0050】
さて、以上のように構成されたコンクリートダムの漏水検査方法によれば、ダムの湛水前に、止水材14(主止水板14a)の下流側から横継ぎ目12に気体(窒素ガスN)を注入し、止水材14(主止水板14a)の上流側の横継ぎ目12に沿って石鹸水を塗布して、横継ぎ目12から吐出する気体による石鹸水の膨らみから、横継ぎ目12の漏水箇所を特定するので、目視確認という比較的簡単な方法により、湛水前に漏水の検査が可能になる。
【0051】
また、上記構成の漏水処理方法によれば、ダムの湛水前に、止水材14(主止水板14a)の下流側から横継ぎ目12に気体(窒素ガスN)を注入し、止水材14(主止水板14a)の上流側の横継ぎ目12に沿って石鹸水を塗布して、横継ぎ目12から吐出する気体による石鹸水の膨らみから、横継ぎ目12の漏水箇所を特定し、漏水処理が必要であると判断したときに、横継ぎ目12にセメントミルクなどの充填材を無圧注入するとともに、特定された漏水箇所にシリコーン樹脂を塗布するので、漏水箇所の特定が容易に行え、漏水箇所が特定された際に、湛水していないので、容易に漏水処理をすることができる。
【0052】
以上のようにして、ダムの湛水前に漏水箇所の調査および漏水処理を行うと、ダムの湛水試験などをスムーズに行うことができる。
【0053】
なお、上記実施例では、漏水試験に引き続いて漏水処理を行う場合を例示したが、本発明の実施は、これに限られることはなく、漏水試験だけを行ってもよい。また、上記実施例では、気体として、窒素ガスNを例示したが、本発明の実施では、圧縮空気や酸素などの他の気体を用いることもできる。
【0054】
【発明の効果】
以上、詳細に説明したように、本発明にかかるコンクリートダムの漏水検査方法および漏水処理方法によれば、比較的簡単な方法により、湛水前に検査が可能で、かつ、漏水箇所が特定された際に容易に処理ができる。
【図面の簡単な説明】
【図1】本発明にかかる漏水検査方法および漏水処理方法が適用されるコンクリートダムの一例を示す正面図である。
【図2】図1の要部上面図である。
【図3】本発明のかかる漏水検査方法および漏水処理方法の一実施例を示す処理手順のフローチャート図である。
【図4】本発明のかかる漏水検査方法および漏水処理方法で使用する注入装置の設置状態の側面図である。
【符号の説明】
10 ダム堤体
12 横継ぎ目
14 止水材
14a 主止水板
14b 副止水板
16 注入装置
16a ボンベ
16b レシーバタンク
16c 注入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water leak inspection method and a water leak treatment method for a concrete dam, and more particularly, to a water leak inspection method and a water leak treatment method performed before dredging after construction of a dam.
[0002]
[Prior art]
Gravity-type concrete dams have a transverse seam, so water leaks in this area to some extent, and it may be difficult to identify and treat the area after flooding. Therefore, conventionally, after constructing the dam, water is flooded, colored powder flows from the reservoir side upstream of the dam, and whether the colored powder is discharged to the joint drainage pipe in the dam monitoring corridor Was inspecting.
[0003]
And when the water leak location was identified by the discharge of colored powder, from the reservoir side of the dam, a filling material was introduced along the transverse seam, and the water leak treatment was performed by sucking this into the water leak location. .
[0004]
Alternatively, before the dam is flooded, a colored powder injection device is attached to all the transverse joints upstream of the dam, and after the flooding, the colored powder is injected via the injection device. A method is also adopted in which a water leak inspection is performed, and when a water leak location is identified, a filling material is injected therein to stop the water leak.
[0005]
However, there are technical problems to be described below in the conventional water leakage inspection method and water leakage treatment method of a concrete dam transverse joint.
[0006]
[Problems to be solved by the invention]
In other words, both of the above-described conventional water leakage inspection method and water leakage treatment method for a concrete dam are performed in a state where the dam is flooded, and it takes time to flood the dam with a predetermined amount of water. In addition, even if the location of the water leakage is identified, there is a difficulty in performing the water leakage treatment in a flooded state, and it is possible to perform a water leakage inspection before the flooding of the dam, and to allow the water leakage treatment before the flooding Was requested.
[0007]
The present invention has been made in view of such problems, and the object of the present invention is to be able to inspect before drowning by a relatively simple method and to identify the location of water leakage. An object of the present invention is to provide a leakage inspection method and a leakage treatment method for a concrete dam that can be easily treated.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided a leak test method for a concrete dam constructed by connecting a water-stopping material to a transverse joint, before the dam is flooded, from the downstream side of the water-stopping material. Injecting a gas such as nitrogen gas into the transverse joint, applying soapy water along the transverse joint upstream of the water stop material, and from the swelling of the soapy water by the gas discharged from the transverse joint, A water leakage inspection method for identifying a water leakage location of a transverse joint , wherein the water stop material includes a main water stop plate and a sub water stop plate arranged in parallel to each other, and the gas is interposed between the main and sub water stop plates. It injected while detecting the pressure state, and the gap capacity formed between the main and sub waterstops was calculated based on the detected change in pressure value and the estimated width of the transverse joint .
[0009]
According to the leak test method for a concrete dam constructed in this way, before the dam is flooded, a gas such as nitrogen gas is injected into the transverse joint from the downstream side of the water-stopping material, and the horizontal joint on the upstream side of the water-stopping material is injected. Soap water is applied along the line and the location of the water leakage at the seam is identified from the swelling of the soap water due to the gas discharged from the seam. Is possible.
[0011]
When specifying the water leakage location of the horizontal joint, the size of the leakage location (water leakage) of the horizontal joint can be estimated from the size of the swelling of the soapy water.
[0012]
The present invention is also directed to a method for leaking water from a concrete dam constructed by connecting a water stop material to a transverse joint, and before the dam is flooded, nitrogen gas is introduced into the transverse joint from the downstream side of the water stop material. Injecting a gas such as the above, applying soapy water along the horizontal joint on the upstream side of the water-stopping material, and from the swelling of the soapy water by the gas discharged from the horizontal joint, the leakage point of the horizontal joint identified, when it is determined that there is a need for water leakage process, as well as non-pressure injecting a filler such as cement milk to the transverse seam, there in leakage processing method of applying a silicone resin to the leakage location identified The water stop material includes a main water stop plate and a sub water stop plate arranged in parallel to each other, and the gas is injected between the main and sub water stop plates while detecting a pressure state, and the detected pressure is detected. Change in value and the horizontal joint Based on the estimated width, the gap capacity formed between the main and sub waterstop plates is calculated, and when the filler is injected without pressure, the filler capacity is determined based on the relationship with the gap capacity. The filling state was judged .
[0013]
According to the water leakage treatment method for a concrete dam configured as described above, before the dam is flooded, a gas such as nitrogen gas is injected into the transverse joint from the downstream side of the water-stopping material, and the upstream side of the water-stopping material is When soap water is applied along the seam, the location of the water leakage at the seam is determined from the swelling of the soap water by the gas discharged from the seam, and it is determined that there is a need for water leakage treatment. Injecting fillers such as milk without pressure, and applying silicone resin to the specified water leak location, it is easy to identify the water leak location, and when the water leak location is specified, it is not flooded. Water leakage treatment can be easily performed.
[0015]
According to this configuration, the gap capacity formed between the main and sub waterstop plates is calculated and the filler is injected without pressure. Therefore, considering the amount of filler injected without pressure and the gap capacity, The quality of the water leakage treatment can be easily and reliably determined.
[0016]
The necessity determination of the water leakage treatment is performed by converting the amount of air leakage measured from the swelling of the soap water into the amount of water leakage, and is performed based on the converted amount of water leakage. Can be executed in the case of.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. 1 to 4 show an embodiment of a water leak inspection method and a water leak treatment method for a concrete dam according to the present invention.
[0018]
1 and 2 show an example of a gravity concrete dam to which the water leakage inspection method and the water leakage treatment method of the present invention are applied. In the concrete dams shown in these drawings, the dam dam body 10 is provided in a valley between mountains, and a reservoir is formed on the upstream side of the dam dam body 10.
[0019]
The dam dam body 10 is connected and formed by placing concrete through a plurality of transverse seams 12 extending in the vertical direction. The transverse seams 12 are arranged in parallel to each other at substantially equal intervals.
[0020]
As shown in FIG. 2, the transverse seam 12 has a width d having substantially the same size in the transverse direction of the dam dam body 10, and the water stop material 14 wider than the width d is a transverse seam. 12 so as to be orthogonal to 12.
[0021]
In the case of the present embodiment, the water blocking material 14 is arranged in the vicinity of the upstream side of the dam dam body 10 and includes a main water blocking plate 14a made of a flat rubber plate having substantially the same width and a sub water blocking plate 14b. The main and sub water blocking plates 14a and 14b are arranged so as to be parallel to each other.
[0022]
Further, the lower ends of the main and auxiliary water blocking plates 14 a and 14 b are set in the bedrock below the dam dam body 10, and the upper end side is extended to the vicinity of the top end of the dam dam body 10. ing.
[0023]
When the dam dam body 10 having such a configuration is constructed, in the case of the present embodiment, a water leakage inspection is performed before the dam is flooded, and it is determined that the water leakage is found by this inspection and the treatment is necessary. In such a case, water leakage treatment is performed, and an example of the procedure performed at this time is shown in FIG.
[0024]
When the procedure starts, first, in step 1, the width d of the transverse seam 12 is measured. In this measurement, a gondola that moves up and down along the dam dam body 10 is suspended, and the width d of each horizontal joint 12 is measured with a scale, for example, every 2.5 m along the vertical direction. Then, the average value of the actually measured width d is estimated as the width of the inside of the horizontal joint 12 (the portion indicated by the symbol S in FIG. 2).
[0025]
In the next step 2, the gap capacity Vx between the main and auxiliary water stop plates 14a and 14b is calculated .
[0026]
In calculating the gap capacity Vx, an injection device 16 shown in FIG. 4 is used. The injection device 16 shown in the figure includes a cylinder 16a, a receiver tank 16b, and an injection tube 16c.
[0027]
The cylinder 16a, the nitrogen gas N 2 pressurized to a predetermined pressure is sealed filling, first through a valve 16d and the hose 16e, are connected in communication with the receiver tank 16b.
[0028]
The receiver tank 16b is a pressure tank having a known internal volume V0, and is connected to the injection pipe 16c through a hose 16h provided with first and second opening / closing valves 16f and 16g at both ends. The hose 16h is provided with a pressure gauge 16i in the vicinity of the second opening / closing valve 16g.
[0029]
The injection pipe 16c is a hollow pipe that is open at both ends, and penetrates obliquely downward by 45 ° from the top end of the dam dam body 10, and its tip is located in the transverse seam 12, It is located at the approximate center between the main and sub waterstop plates 14a, 14b.
[0030]
In other words, in the case of the present embodiment, the injection pipe 16c extends from the direction A in FIG. It penetrates from the end diagonally downward by 45 °.
[0031]
In addition, the injection pipe 16 c is disposed at a substantially central portion in the width direction of the transverse seam 12 of the dam dam body 10. When calculating the gap capacity Vx, first, a predetermined amount of nitrogen gas N 2 in the cylinder 16a is stored in the receiver tank 16b, and a constant amount of nitrogen gas N 2 is instantaneously passed through the injection pipe 16c. Inject between the main and sub waterstop plates 14a, 14b.
[0032]
Then, read the change in pressure state of the nitrogen gas N 2 in the immediately pressure gauge 16i. In this case, when the pressure value before injecting the nitrogen gas N 2 was P0, this value is reduced with the injection, the change point appears that the pressure value increases along the way.
[0033]
This is because there is a slight leakage when nitrogen gas N 2 is filled in the gap formed between the main and auxiliary water stop plates 14a and 14b and the receiver tank 16b communicated via the injection pipe 16c. Even if there is a state where the pressure is instantaneously balanced, the change point can be read.
[0034]
Now, assuming that the pressure value at this changing point is Pa, a relationship of P0 × V0 (initial state of the receiver tank 16b) ≈Pa × (V0 + Vx) is established according to Boyle's law.
[0035]
Since P0, V0, and Pa are known in this relationship, the gap capacity Vx can be calculated from the above formula. From the calculated gap capacity Vx, the formation state of the gap is known. That is, now, when the area S of the portion of the transverse seam 12 sandwiched between the main and auxiliary waterstop plates 14a and 14b is multiplied by the total length L in the vertical direction of the transverse seam 12, the volume is V. Then, when the gap capacity Vx is smaller than the volume V, the gap is clogged in the middle, and it can be determined that the gap has not reached the lower end of the dam dam body 10. Moreover, the length of the gap in the vertical direction can also be estimated from a comparison between the two.
[0036]
When the calculation of the gap capacity Vx is completed, the total air leakage amount A is measured in the next step 3. This total air leakage amount A is measured in Step 5 to be described later in order to determine whether or not a water leakage treatment is necessary. In the injection device 16 shown in FIG. 4, the nitrogen gas N 2 having a constant pressure is measured. Is continuously injected between the main and auxiliary water stop plates 14a and 14b via the injection pipe 16c, and is obtained from the consumption of nitrogen gas N 2 per unit time.
[0037]
When the measurement of the total air leakage amount A is completed, the air leakage position is specified in step 4 next. Note that this step is executed only when the amount of air leakage per unit time, that is, the total air leakage amount A is equal to or greater than a predetermined value.
[0038]
In the work for identifying the air leakage position, first, in the injection device 16 shown in FIG. 4, while injecting nitrogen gas N 2 having a constant pressure between the main and auxiliary water stop plates 14 a and 14 b through the injection pipe 16 c, A soap solution is applied along the upstream side of the transverse seam 12.
[0039]
If there is air leakage at the transverse seam 12, nitrogen gas N 2 is discharged from that portion, and soap water is expanded to form a hemispherical soap bubble, so the surface to which soap water is applied is visually observed. If this is the case, the location of the leak can be identified and easily identified.
[0040]
In this case, the amount of air leakage and the size of the air leakage location can be estimated by measuring the diameter of the soap bubbles formed by the soap water expanding. It should be noted that the leak occurrence location shown in the present embodiment is substantially the same location as the leak occurrence location unless the amount of water leak is considered.
[0041]
In the subsequent step 5, it is determined whether or not there is a need for water leakage treatment. This is based on the following findings. That is, regarding the water stoppage of a concrete structure, it is said that there is a 100-fold difference between gas and water when comparing the amount of air leakage and the amount of water leakage. Processing is not necessary.
[0042]
Therefore, the present inventors have performed a comparative experiment to convert the amount of air leakage into the amount of water leakage, and decided to convert based on this. In the comparative experiment, a rubber hose was used in consideration of the material of the water stop plate, a rubber hose with a 20 mm long slit provided with a knife, and two needle holes opened with water or nitrogen gas N 2 The pressure of was varied and injected into a rubber hose, and the amount of air leakage was compared with the amount of water leakage.
[0043]
As a result, the amount of air leakage was 59 times larger at the slit and 70 times larger at the needle hole. Therefore, in this example, 65 times the average of these was adopted as the conversion coefficient (air leakage amount / 65 = water leakage amount).
[0044]
Further, in order to compare the injection pressure of the nitrogen gas N 2 with the water pressure during actual flooding, the amount of air leakage was converted assuming that it increased in direct proportion to the injection pressure. In step 5, when the converted water leak amount is expected to be 10 L / min or more per one location of the transverse joint 12 from the total air leak amount A, it was set as a judgment criterion that the water leak treatment is necessary.
[0045]
If it is determined in step 5 that the determination criteria are not satisfied and the water leakage treatment is not necessary, the procedure ends. On the other hand, if it is determined in step 5 that water leakage treatment is necessary, step 6 is executed.
[0046]
When water leakage treatment is performed, a filler such as cement milk is injected into the horizontal joint 12 without pressure, and a silicone resin is applied to the water leakage location specified by the swelling of the soap water.
[0047]
In this case, the filler can be injected between the main and sub waterstop plates 14a and 14b using the injection pipe 16c shown in FIG. 4, or another injection pipe may be provided. The injection filling amount of the filler can be set based on the gap volume Vx calculated in step 2.
[0048]
That is, when the filler of the amount corresponding to the calculated gap capacity Vx is completely injected without pressure, the water leakage treatment at a place where water leakage may occur can be performed completely. Moreover, the filling state can be confirmed by measuring the amount of filling when filling the filler without pressure and comparing it with the gap volume Vx.
[0049]
That is, if the injection amount is smaller than the gap volume Vx, it can be determined that the filling is insufficient and the water leakage treatment is insufficient .
[0050]
Now, according to the water leak inspection method for a concrete dam configured as described above, before the dam is flooded, gas (nitrogen gas N) flows from the downstream side of the water stop material 14 (main water stop plate 14a) to the transverse seam 12. 2 ) is injected, soap water is applied along the horizontal joint 12 on the upstream side of the water stop material 14 (main water stop plate 14a), and from the swelling of the soap water by the gas discharged from the horizontal joint 12, Since 12 water leak locations are specified, the water leak can be inspected before drowning by a relatively simple method of visual confirmation.
[0051]
Further, according to the water leakage processing method having the aforementioned configuration, injected before flooding the dam, a gas (nitrogen gas N 2) in the transverse seam 12 from the downstream side of the water stopping member 14 (main waterstop 14a), stop Apply soapy water along the horizontal seam 12 upstream of the water material 14 (main water stop plate 14a), and identify the location of the water leakage of the horizontal seam 12 from the swelling of the soap water by the gas discharged from the horizontal seam 12. When it is determined that a water leakage treatment is necessary, a filler such as cement milk is injected into the transverse joint 12 without pressure, and a silicone resin is applied to the specified water leakage portion, so that the water leakage portion can be easily identified. It is possible to perform the water leakage treatment easily because the water is not flooded when the water leakage location is specified.
[0052]
As described above, when the water leakage location is investigated and the water leakage treatment is performed before the dam is flooded, the dam flood test and the like can be performed smoothly.
[0053]
In addition, in the said Example, although the case where a water leak process was performed following a water leak test was illustrated, implementation of this invention is not restricted to this, You may perform only a water leak test. In the above embodiment, as a gas, it is exemplified nitrogen gas N 2, in the embodiment of the present invention, it is also possible to use other gases such as compressed air or oxygen.
[0054]
【The invention's effect】
As described above in detail, according to the leakage inspection method and the leakage treatment method for a concrete dam according to the present invention, it is possible to inspect before flooding by a relatively simple method, and a leakage point is specified. Can be processed easily.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a concrete dam to which a water leakage inspection method and a water leakage treatment method according to the present invention are applied.
FIG. 2 is a top view of a main part of FIG.
FIG. 3 is a flowchart of a processing procedure showing an embodiment of the water leakage inspection method and the water leakage processing method according to the present invention.
FIG. 4 is a side view of an installation state of an injection device used in the water leakage inspection method and the water leakage treatment method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Dam dam body 12 Horizontal joint 14 Water stop material 14a Main water stop plate 14b Sub water stop plate 16 Injection apparatus 16a Cylinder 16b Receiver tank 16c Injection pipe

Claims (4)

横継ぎ目に止水材を介在させて連結構築されたコンクリートダムの漏水検査方法において、前記ダムの湛水前に、前記止水材の下流側から前記横継ぎ目に窒素ガスなどの気体を注入し、前記止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、前記横継ぎ目から吐出する前記気体による前記石鹸水の膨らみから、前記横継ぎ目の漏水箇所を特定する漏水検査方法であって、
前記止水材は、相互に平行に配置される主および副止水板を備え、前記気体は、前記主,副止水板間に圧力状態を検知しながら注入され、検知された圧力値の変化と、前記横継ぎ目の推定幅とに基づいて、前記主,副止水板間に形成される間隙容量を算定することを特徴とするコンクリートダムの漏水検査方法。
In a leakage inspection method for a concrete dam constructed by connecting a water stop material to a transverse joint, a gas such as nitrogen gas is injected into the transverse joint from the downstream side of the water stop material before the dam is flooded. In the water leakage inspection method, the soap water is applied along the horizontal joint on the upstream side of the water stop material, and the leakage location of the horizontal joint is specified from the swelling of the soap water due to the gas discharged from the horizontal joint. There,
The water stop material includes a main water stop plate and a sub water stop plate arranged in parallel to each other, and the gas is injected between the main and sub water stop plates while detecting a pressure state, and a detected pressure value is detected. A leak check method for a concrete dam , wherein a gap capacity formed between the main and sub waterstops is calculated based on the change and the estimated width of the transverse seam .
前記横継ぎ目の漏水箇所を特定する際に、前記石鹸水の膨らみの大きさから前記横継ぎ目の漏出個所の大きさを推定することを特徴とする請求項1記載のコンクリートダムの漏水検査方法。2. The method for inspecting a leak of a concrete dam according to claim 1, wherein when the leak location of the horizontal joint is specified, the size of the leak location of the horizontal joint is estimated from the size of the swelling of the soap water. 横継ぎ目に止水材を介在させて連結構築されたコンクリートダムの漏水処理方法において、前記ダムの湛水前に、前記止水材の下流側から前記横継ぎ目に窒素ガスなどの気体を注入し、前記止水材の上流側の横継ぎ目に沿って石鹸水を塗布して、前記横継ぎ目から吐出する前記気体による前記石鹸水の膨らみから、前記横継ぎ目の漏水箇所を特定し、漏水処理の必要性があると判断したときに、前記横継ぎ目にセメントミルクなどの充填材を無圧注入するとともに、特定された前記漏水箇所にシリコーン樹脂を塗布する漏水処理方法であって、 In a water leak treatment method for a concrete dam constructed by connecting a water stop material to a horizontal joint, a gas such as nitrogen gas is injected into the horizontal joint from the downstream side of the water stop material before the dam is flooded. Applying soapy water along the upstream side seam of the water-stopping material, identifying the water leakage location of the side seam from the swelling of the soapy water due to the gas discharged from the side seam, When it is determined that there is a need, a water leakage treatment method in which a filler such as cement milk is injected without pressure into the transverse joint, and a silicone resin is applied to the specified water leakage location,
前記止水材は、相互に平行に配置される主および副止水板を備え、前記気体は、前記主,副止水板間に圧力状態を検知しながら注入され、検知された圧力値の変化と、前記横継ぎ目の推定幅とに基づいて、前記主,副止水板間に形成される間隙容量を算定し、前記充填材を無圧注入する際に、前記間隙容量との関係に基づいて、前記充填材の充填状態を判断することを特徴とするコンクリートダムの漏水処理方法。  The water stop material includes a main water stop plate and a sub water stop plate arranged in parallel to each other, and the gas is injected between the main and sub water stop plates while detecting a pressure state, and a detected pressure value is detected. Based on the change and the estimated width of the transverse seam, the gap capacity formed between the main and secondary waterstops is calculated, and when the filler is injected without pressure, the relationship with the gap capacity is calculated. A concrete dam leakage treatment method, wherein the filling state of the filler is determined based on the determination.
前記漏水処理の要否判断は、前記石鹸水の膨らみから測定される漏気量を漏水量に換算し、換算された漏水量に基づいて行われ、各横継ぎ目の前記漏水量が所定値以上の場合に実行されることを特徴とする請求項3記載のコンクリートダムの漏水処理方法。The necessity determination of the water leakage treatment is performed by converting the amount of air leakage measured from the swelling of the soap water into the amount of water leakage, and is performed based on the converted amount of water leakage. 4. The method for leaking water from a concrete dam according to claim 3, wherein the water leakage treatment method is performed in the case of.
JP2002113699A 2002-04-16 2002-04-16 Concrete dam leakage inspection method and leakage treatment method Expired - Fee Related JP3917453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113699A JP3917453B2 (en) 2002-04-16 2002-04-16 Concrete dam leakage inspection method and leakage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113699A JP3917453B2 (en) 2002-04-16 2002-04-16 Concrete dam leakage inspection method and leakage treatment method

Publications (2)

Publication Number Publication Date
JP2003307464A JP2003307464A (en) 2003-10-31
JP3917453B2 true JP3917453B2 (en) 2007-05-23

Family

ID=29395807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113699A Expired - Fee Related JP3917453B2 (en) 2002-04-16 2002-04-16 Concrete dam leakage inspection method and leakage treatment method

Country Status (1)

Country Link
JP (1) JP3917453B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288307B2 (en) * 2008-05-23 2013-09-11 株式会社西技計測コンサルタント Concrete dam leakage inspection method
KR101594576B1 (en) * 2015-04-28 2016-03-09 (주)월드이앤씨 Method for preventing leakage of Concrete Dam Structure
CN104931252A (en) * 2015-07-09 2015-09-23 水利部交通运输部国家能源局南京水利科学研究院 Gate structure water sealing characteristic test apparatus and method
KR101920120B1 (en) * 2016-04-18 2018-11-19 한양대학교 산학협력단 Polymer waterproof material and method for preventing leakage of concrete dam structure using polymer waterproof material
JP7110524B2 (en) * 2018-05-11 2022-08-02 株式会社大林組 Test equipment and test method
CN109883626A (en) * 2019-01-28 2019-06-14 北京铂阳顶荣光伏科技有限公司 A kind of water route detection device, device and method
CN116070546B (en) * 2023-02-13 2023-08-18 水利部交通运输部国家能源局南京水利科学研究院 Method for estimating dam gallery leakage critical water level by utilizing oxyhydrogen isotope

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102406A (en) * 1983-11-09 1985-06-06 Osaka Bosui Kensetsushiya:Kk Cut-off work for concrete structure
JPS60252233A (en) * 1984-05-29 1985-12-12 Shimizu Constr Co Ltd Method for testing watertightness of water stop plate in underground tank made of concrete
JPS6135327A (en) * 1984-07-28 1986-02-19 Mitsubishi Heavy Ind Ltd Leakage detection of denitration reactor
JP2799117B2 (en) * 1993-01-13 1998-09-17 株式会社熊谷組 Detecting method of filling property of seam filling in concrete structure
JPH07280689A (en) * 1994-04-06 1995-10-27 Taisei Corp Method and equipment for inspecting seal breaking of joint
JP3973774B2 (en) * 1998-09-01 2007-09-12 清水建設株式会社 Method for confirming water stoppage performance of joint water stop member and joint water stop member
JP2000178944A (en) * 1998-12-14 2000-06-27 Sanei Engineering Kk Impervious structure for dam
JP2001049872A (en) * 1999-08-12 2001-02-20 Kankyo Biken:Kk Water leaking part search method in crack of concrete structure and repair method
JP2002047630A (en) * 2000-08-02 2002-02-15 Eikou Sangyo Kk Water leakage preventive construction method of dam

Also Published As

Publication number Publication date
JP2003307464A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
CN206627405U (en) The double embolism original position injection pressure water penetration detectors of expansion type
CN103410119B (en) A kind of seepage inside concrete waterproof of man grouting method
KR101740514B1 (en) Defect section detection apparatus for plastic corrugated pipe and defect section detection method using the same
JP3917453B2 (en) Concrete dam leakage inspection method and leakage treatment method
CN211423695U (en) Non-excavation drainage pipe slip casting prosthetic devices
CN104458532B (en) Device and method for testing water permeability resistance of concrete joint under action of controllable lateral restriction
JP5288307B2 (en) Concrete dam leakage inspection method
JP3215482U (en) Air pressure supply device for full air test
KR100568608B1 (en) Leakage test apparatus for sewage pipe using air pressure and methods using the same
KR20190008600A (en) Diagnosis of the depression amount of the back of the pipeline and filler injection device and diagnosis of the backside depression of the pipeline using the same and filling method
CN110274158A (en) A kind of device and method for pipeline water filling test
CN107816041B (en) Non-dumping hole-forming prestressed anchor rod, anchor hole leakage-proof structure and construction method thereof
CN213420302U (en) Condensate pump sealed pipeline overhauls device
CN210315410U (en) Flood prevention emergency device for hydraulic engineering
CN211262632U (en) Packer packing element sealing performance testing arrangement
CN206132571U (en) Test tunnel row leads large scale test device of system's osmotic coefficient
CN211013498U (en) Fire-fighting equipment regular detection equipment
KR100618665B1 (en) Leakage test methods for sewage pipe using air pressure and recording medium for computer program used in the same
CN210834056U (en) Water closing test device for drainage pipeline
CN110243691A (en) A kind of test macro and method of antiseepage composite geo-membrane
CN209878241U (en) Tightness test device for drain pipe
CN209878492U (en) Volume expansion testing device for water-absorbing expansion material under water pressure
CN208688955U (en) The waterproof device for detecting performance of building surface
KR100838759B1 (en) Apparatus to find out the leakage point of concrete tunnel lining by preparing the precise leakage test and ground water pressure control arrangement for the pressure water tunnel with concrete lining
JP7462183B2 (en) How to check for leaks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Ref document number: 3917453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees