JP3915967B2 - Antifouling processing method for polyester fabric. - Google Patents

Antifouling processing method for polyester fabric. Download PDF

Info

Publication number
JP3915967B2
JP3915967B2 JP2001362921A JP2001362921A JP3915967B2 JP 3915967 B2 JP3915967 B2 JP 3915967B2 JP 2001362921 A JP2001362921 A JP 2001362921A JP 2001362921 A JP2001362921 A JP 2001362921A JP 3915967 B2 JP3915967 B2 JP 3915967B2
Authority
JP
Japan
Prior art keywords
processing
antifouling
polyester
value
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001362921A
Other languages
Japanese (ja)
Other versions
JP2003166177A (en
Inventor
保 榎原
清一 越智
浩之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001362921A priority Critical patent/JP3915967B2/en
Publication of JP2003166177A publication Critical patent/JP2003166177A/en
Application granted granted Critical
Publication of JP3915967B2 publication Critical patent/JP3915967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、白度に優れ、更に防汚性、特にSR性に優れた高白度ポリエステル系繊維に関する。更に詳しくは、スポーツ用衣料に好適なポリエステル系繊維であり、特にスライディングなどで付着した泥汚れが、洗濯で簡単に落とせる高白度ポリエステル系繊維に関するものである。
【0002】
【従来の技術】
ポリエステル繊維は、一般に強度が高く、寸法安定性に優れている事、染色堅牢度に優れている事、仮撚加工糸によりフィラメントに捲縮がつけやすいこと、編地のストレッチ性、弾撥性に優れている等の色々な特徴を有している。そのため、スポーツニット用途の主力素材として多用されている。
しかしながら、スポーツ用途の場合、屋外のグラウンド等、泥汚れがつきやすい環境であり、スポーツ種目によってはグラウンドにスライディングするため、泥がつきやすく、編地の中に泥汚れが入り込んで洗濯してもなかなか取れないという問題があり、特に、泥汚れで目立ちやすいホワイト、パステルカラー系の色では、その汚れが目立ちやすく、防汚性能の向上が切望されていた。
【0003】
従来、白度の向上を目的として、蛍光増白剤をポリエステル系繊維に繊維製造時添加する方法は既に公知であり、ポリエステル系繊維の製造時にベンゾオキサゾール系蛍光増白剤を含有せしめた繊維よりなる織編物等が提案されている。
【0004】
また、防汚性を向上させる方法としては、染色仕上げの後加工での技術提案が中心であり、編地を構成している繊維表面の防汚加工を如何に工夫するかが課題であった。後加工法では、洗濯の際、汚れを落ちやすくする親水加工による吸水SR加工や、汚れが付きにくく、洗濯で落ちやすい撥水SG性と親水SR性を兼備したSGR(Soil Guard & Release)加工が実用化されている。又、予め繊維を親水性のある化合物や樹脂をグラフト重合などにより固着させて親水化しておく方法など、多くの方法が提案されている。これらの方法では、通常の水性もしくは油性液体状の汚れに対して、SR防汚効果が見られる。
【0005】
しかしながら、上記防汚加工品は、繊維表面に一定量以上即ち、繊維表面全体に付着されていないと、十分な効果を得ることが出来ない。更に、上記防汚加工剤が、充分繊維表面に付着しているか否かの検証は不可能であり、該加工が終了した時点で、実用防汚性を測定するより他に方法が無いのが実状である。
【0006】
【発明が解決しようとする課題】
本発明は上記のような現状に鑑みてなされたものであり、高度の白度を有し、更にグラウンドなどで生地の内部まで入り込んで付着した粒子のある泥のような汚れに対しても、洗濯する事により簡単に落とすことができ、更に、防汚加工剤の付着状況が判断できるポリエステル系布帛の防汚加工方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
即ち、本発明は、以下の構成を採用するものである。
1.ベンゾオキサゾール系の蛍光顔料を含有する白色系ポリエステル系繊維を少なくとも一部に含有する布帛を親水系SR加工剤で後SR加工する高白度ポリエステル系布帛の防汚加工方法であって、加工布帛のフェロシアン化カリウム−塩化第二鉄呈色による、CIE-LAB表色系におけるL*値(JIS Z 8729)が、下記(1)の範囲にあることを確認して付着量及び付着状態を管理することを特徴とする高白度ポリエステル系布帛の防汚加工方法。
70≧L*値≧50・・・(1)
2.前記SR加工が、親水性ポリエステル樹脂系加工剤を染色同時吸尽法および/またはパッド法で繊維表面に被覆固着させることを特徴とする請求項1記載の高白度ポリエステル系布帛の防汚加工方法。
【0008】
【発明の実施の形態】
以下、本発明に付いて詳細に説明する。
本発明でいうポリエステルとは、エチレンテレフタレートを主たる繰り返し単位とするポリエステルであるが、少量の第3成分を共重合したポリエステルでもよく、5−スルホイソフタル酸共重合型ポリエステル、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどがある。また、これらのポリエステルには酸化チタンを代表とする艶消し剤、安定剤、難燃剤、静電防止剤、着色剤などの改質剤などが含んでいても差し支えない。
【0009】
本発明においてポリエステル系繊維に練込み添加するベンザオキサゾール系の蛍光増白剤はスチルベンゾビスベンゾオキサゾール誘導体であるクラリアント社製ホスタルックスKSやイーストマンコダック社製のOB−1であるが、その中でも250℃以上で溶融が開始され、約300℃で溶融が完了するクラリアント社製ホスタルックスKSシリーズのものが特に好ましい。ポリエステル自体の融点が250〜270℃であり、本発明で使用する蛍光増白剤との溶融状態での混合均一性が優れ、得られた繊維の白度均一性と紡糸操業性が良好となる。
【0010】
原糸製造時に蛍光増白剤を含有させる方法としては、蛍光増白剤を重合時に添加する方法、一旦高濃度のマスターチップを作り、紡糸時にブレンドするマスターバッチ方法などがあるが、結果として200〜500ppm含有させ、所定の白度になっていれば差し支えない。
【0011】
また、本発明のポリエステル系防汚布帛は、本発明のポリエステル繊維を織編物又は不織布等の布帛の状態で、その効果を発揮するものである。
【0012】
本発明のポリエステル系布帛に防汚性を持たせる為には、後加工でSR加工などの防汚加工をする事が必要である。SR(ソイルリリース)加工をしないと、ポリエステル系編地そのものが疎水性であり、泥に対する除去性が良くないからである。SR加工をする事により、泥が見かけ上付着していても、洗濯により脱落しやすくなるのである。
【0013】
SR加工は、公知の方法を採用することができ、吸水タイプでも、撥水撥油タイプのどちらでも良く、撥水撥油タイプは、いわゆる汚れがつきにくく、ついても落ちやすいSGR加工と言われるものである。
【0014】
吸水タイプのSR加工として、ポリエステルの表面部分の改質、繊維自身を改質する方法がある。表面部分を親水化して改質する方法として吸水加工剤、具体的には、例えばポリエチレングリコールとポリエチレンテレフタレートのブロック共重合物である親水性ポリエステル樹脂の表面処理が望ましい。吸水SR加工剤として一般的なものは、ICI社のPermalose TM、高松油脂社のSR剤シリーズなどである。かかる吸水SR加工法としては、染色同時吸尽法や染色後、仕上げ加工の際のパディング法があげられるが、吸水SR性の耐久性の点から、特に、染色同時吸尽法SR加工とパディング法SR加工のダブルSR加工が好ましい。
【0015】
前記の様なSR加工を実施した場合、フェロシアン化カリウム−塩化第二鉄呈色が付着量及び付着状態の管理が可能となる為、非常に好ましい。具体的には、SR加工剤中のPEG基がフェロシアン化カリウムと反応し、その後塩化第二鉄と反応することにより、青色に呈色する。尚、SR加工剤付与量が増加する(即ちPEG基が多くなる)と、PEG基が多くなるに従い、青みの濃度が増し、CIE-LAB表色系におけるL*値が小さくなる為、付着量及び付着状態の管理が可能となる。
【0016】
実際のフェロシアン化カリウム−塩化第二鉄呈色により呈色された布帛のCIE-LAB表色系におけるL*値の範囲は、70≧L*値≧50である。これは、L*値が70レベルを超えると繊維表面全体をSR加工剤が覆い尽くすことが出来なくなる為に必然的に付与斑が生じ易くなり、防汚性能が不安定又は低下傾向を示すようになる。また、逆にL*値が50レベル未満になっても繊維表面にSR加工剤が既に充分に覆い尽くされている為、これ以上の防汚性の向上は、望めずコスト上昇等の要因となってしまう。
【0017】
高白度ポリエステル系防汚布帛のL*値については、概ね80以上であれば問題はない。しかしながら、80未満になるとフェロシアン化カリウム−塩化第二鉄呈色後のL*値が50〜60レベル以下であれば問題はないが、70レベルに近くなるに従い、付着量及び付着状況が正確に判断できなくなる恐れがある為、好ましくない。
【0018】
本発明のポリエステル系繊維に、SR加工などの防汚加工のほかに、各種機能加工が施されていても良く、消臭加工、抗菌、制菌加工、UVカット加工、摩擦溶融加工、静電加工、スキンケア加工など、防汚性を著しく損なわず、また、L*値に大きな影響を与えない限り、あらゆる加工を施していても良い。
【0019】
本加工により、防汚性、特に泥汚れに対する防汚性が向上し、 (株)日本粉体工業技術協会製ダスト(8種)を用いた、モデル防汚試験においてΔE*値が概ね3以上7以下となり、更に安定化する。ちなみに本加工がなされていない場合は、ΔE*値が10以上になるだけでなく、不安定となる傾向が見られる。
【0020】
【実施例】
以下、本発明を実施例にて説明するが、本発明は何らこれらに限定されるものではない。実施例における各性能の評価法は以下の通りである。
【0021】
(1)フェロシアン化カリウム:K4Fe(CN)6−塩化第二鉄:FeCl3呈色方法

Figure 0003915967
▲3▼CIE-LAB表色系におけるL*値測定;
JIS Z 8729 に準じて、ミノルタ分光測色計CM3700Dを用いて測定した。
【0022】
(2)モデル防汚性
ステンレスバット(厚み1.5mm、深さ50mm、縦500mm、横200mm)の中に下記に示す泥を入れ、上から強く荷重をかけて固めて約24時間放置した。
泥:ダスト8種((株)日本粉体工業技術協会製)
SIO2(34.40%)、 MgO(3.7%)、 Fe23(17.23%)、
TiO2(0.4%)、 Al23(26.32%)、 CaO(0.3%)
この泥に加水し、練り上げた。
【0023】
(3)洗濯除去性(ΔE*値);ミノルタ分光測色計CM−3700Dを用い、CIE-LAB表色系におけるL*値、a*値、b*値を測定し、下式により求めた。
ΔE*=E*1−E*2
E*1:√L*12+a*12+b*12
E*2:√L*22+a*22+b*22
E*1:防汚前の布帛、E*2:防汚・洗濯後の布帛
尚、洗濯はJIS L 0217の103法(家庭洗濯)に準じて実施した。洗剤は、ライオン油脂社製トップを30リットルにつき40g使用した。
【0024】
実施例1
ホスタルックスKS(クラリアント社製、ベンゾオキサゾール蛍光増白剤)をポリエチレンテレフタレートに250ppm含有した250デシテックス/48フィラメントのポリエステルフィラメントを紡糸した。次に該ポリエステルフィラメントを加工速度150m/分、撚数を2800T/M、ファーストヒーター温度195℃、延伸倍率1.6倍、セカンドヒーター温度200℃の条件で仮撚加工しポリエステル加工糸を得た。次に該加工糸を22ゲージ、48口の丸編み機を用いて編地を作成した。
【0025】
得られ丸編地を以下に示す条件にて精練、染色を実施した。
Figure 0003915967
染色後、脱水、乾燥(120℃×3分)を行い、以下の条件で仕上げ剤を付与した。仕上げ剤のピックアップは100%であった。
120℃×2分
高松油脂 SR1000 1.5%omf
明成化学 HP600 0.5%
その後、最終セットを160℃×2分の条件下、テンターにて行い、性量調整し、最終生地を得た。
【0026】
得られた編地はL*値=88であり、また、フェロシアン化カリウム−塩化第二鉄呈色後のL*値=65であった。更にモデル防汚性テストで評価し、結果はΔE*値が6と非常に良好であった。
【0027】
実施例2
実施例1と同様にしてポリエステル繊維加工糸を用い丸編地を作成した。その後、該布帛を実施例1と同様に精練した後、以下の条件で染色加工を実施した。
Figure 0003915967
染色後、脱水、乾燥(120℃×3分)を行い、以下の条件で仕上げ剤を付与した。仕上げ剤のピックアップは100%であった。
120℃×2分
高松油脂 SR1000 3.0% omf
明成化学 HP600 0.5%
その後、最終セットを160℃×2分の条件下、テンターにて行い、性量調整し、最終生地を得た。
【0028】
得られた編地はL*値=88であり、また、フェロシアン化カリウム−塩化第二鉄呈色後のL*値=55であった。更にモデル防汚性テストで評価し、結果はΔE*値が4と非常に良好であった。
【0029】
実施例3
実施例1と同様にしてポリエステル繊維加工糸を用い丸編地を作成した。その後、該布帛を実施例1と同様に精練した後、以下の条件で染色加工を実施した。
Figure 0003915967
染色後、脱水、乾燥(120℃×3分)を行い、その後、最終セットを160℃×2分の条件下、テンターにて行い、性量調整し、最終生地を得た。
【0030】
得られ編地はL*値=87であり、また、フェロシアン化カリウム−塩化第二鉄呈色後のL*値=60であった。更にモデル防汚性テストで評価し、結果はΔE*値が5と非常に良好であった。
【0031】
比較例1
実施例1と同様の編地を用い、実施例1と同様の精練を行った。その後、以下の条件で染色した。
Figure 0003915967
染色後、脱水、乾燥(120℃×3分)を行い、以下の条件で仕上げ剤を付与した。仕上げ剤のピックアップは100%であった。
120℃×2分
高松油脂 SR1000 0.5% omf
明成化学 HP600 0.5%
その後、最終セットを160℃×2分の条件下、テンターにて行い、性量調整し、最終生地を得た。
【0032】
得られた編地はL*値=87であり、また、フェロシアン化カリウム−塩化第二鉄呈色後のL*値=77であった。更にモデル防汚性テストで評価し、結果は、防汚性低下し、ΔE*値が10となり、なお且つ、防汚性の良好な部分と劣る部分が混在している、即ち防汚性が不安定となる傾向が見られた。
【0033】
比較例2
実施例1と同様の編地を用い、SR剤(SR1000)未添加にて実施例1と同様の精練、染色加工を行った。得られた編地はL*値=87であり、また、フェロシアン化カリウム−塩化第二鉄呈色後のL*値=87であった。更にモデル防汚性テストで評価し、結果はΔE*値が15と防汚性が低下した。
【0034】
以上の結果をまとめて表1に示す。
【表1】
Figure 0003915967
【0035】
【発明の効果】
本発明によれば、フェロシアン化カリウム−塩化第二鉄呈色によって、SR加工剤の繊維表面への付着量及び付着状況を充分コントロールすることが出来るため、白度に優れ、かつSR防汚性に優れた高白度ポリエステル系繊維布帛を安定した性能で得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high whiteness polyester fiber excellent in whiteness and further having excellent antifouling properties, particularly SR properties. More specifically, the present invention relates to a polyester fiber suitable for sports clothing, and particularly to a high whiteness polyester fiber that can easily remove mud dirt adhered by sliding or the like by washing.
[0002]
[Prior art]
Polyester fibers generally have high strength, excellent dimensional stability, excellent dyeing fastness, easy crimping of filaments with false twisted yarn, stretchability of fabric, elasticity It has various features such as excellent performance. Therefore, it is frequently used as the main material for sports knit applications.
However, in the case of sports use, it is an environment that tends to get mud dirt, such as an outdoor ground, and because it slides on the ground depending on the sporting item, mud gets easily, and even if mud dirt gets into the knitted fabric and is washed There is a problem that it is difficult to remove, especially in white and pastel colors that are easily noticeable due to mud stains, and the stains are conspicuous, and improvement in antifouling performance has been desired.
[0003]
Conventionally, for the purpose of improving whiteness, a method of adding a fluorescent whitening agent to a polyester fiber at the time of fiber production is already known, and from a fiber containing a benzoxazole type fluorescent whitening agent at the time of production of a polyester fiber. A woven or knitted fabric is proposed.
[0004]
In addition, as a method for improving the antifouling property, the technical proposal in post-processing of dyeing finish is the center, and how to devise antifouling processing on the fiber surface constituting the knitted fabric was a problem. . In the post-processing method, water-absorbing SR processing by hydrophilic processing that makes it easy to remove dirt during washing, and SGR (Soil Guard & Release) processing that has both water-repellent SG and hydrophilic SR properties that are difficult to get dirty and easy to wash off. Has been put to practical use. In addition, many methods have been proposed, such as a method in which a fiber is hydrophilicized by previously fixing a hydrophilic compound or resin by graft polymerization or the like. In these methods, an SR antifouling effect can be seen against ordinary aqueous or oily liquid stains.
[0005]
However, a sufficient effect cannot be obtained unless the antifouling processed product is adhered to the fiber surface by a certain amount or more, that is, the entire fiber surface. Furthermore, it is impossible to verify whether or not the antifouling agent is sufficiently adhered to the fiber surface, and when the processing is completed, there is no other method than measuring practical antifouling properties. It's real.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the current situation as described above, has a high degree of whiteness, and also against dirt such as mud with particles that have entered and adhered to the inside of the fabric at the ground or the like, It is an object of the present invention to provide an antifouling method for a polyester fabric that can be easily removed by washing and that can determine the state of adhesion of the antifouling agent.
[0007]
[Means for Solving the Problems]
That is, the present invention employs the following configuration.
1. An antifouling processing method for a high whiteness polyester fabric, wherein a fabric containing at least a part of a white polyester fiber containing a benzoxazole-based fluorescent pigment is subjected to SR processing with a hydrophilic SR processing agent. The L * value (JIS Z 8729) in the CIE-LAB color system based on the potassium ferrocyanide-ferric chloride coloration is confirmed to be in the following range (1), and the amount and state of adhesion are controlled. An antifouling processing method for high whiteness polyester-based fabrics.
70 ≧ L * value ≧ 50 (1)
2. The anti-stain processing of a high whiteness polyester fabric according to claim 1, wherein the SR processing is performed by coating and fixing a hydrophilic polyester resin processing agent on the fiber surface by a simultaneous dye exhaustion method and / or a pad method. Method.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The polyester referred to in the present invention is a polyester having ethylene terephthalate as a main repeating unit, but may be a polyester obtained by copolymerizing a small amount of a third component, such as 5-sulfoisophthalic acid copolymerized polyester, polybutylene terephthalate, polytriethylene. Examples include methylene terephthalate. These polyesters may contain a matting agent represented by titanium oxide, a stabilizer, a flame retardant, an antistatic agent, a modifier such as a colorant, and the like.
[0009]
In the present invention, the benzoxazole-based fluorescent brightening agent kneaded and added to the polyester fiber is Clariant's Hostalx KS or Eastman Kodak's OB-1 which is a stilbenzobisbenzoxazole derivative. Particularly preferred is a hostalx KS series manufactured by Clariant, which starts melting at 250 ° C. or more and completes melting at about 300 ° C. The melting point of the polyester itself is 250 to 270 ° C., the mixing uniformity in the molten state with the fluorescent whitening agent used in the present invention is excellent, and the whiteness uniformity and spinning operation of the obtained fiber are good. .
[0010]
As a method of adding a fluorescent whitening agent during the production of the raw yarn, there are a method of adding a fluorescent whitening agent at the time of polymerization, a master batch method of once making a high concentration master chip and blending at the time of spinning, etc. If it is made to contain -500 ppm and it has become the predetermined whiteness, it does not interfere.
[0011]
In addition, the polyester antifouling fabric of the present invention exhibits its effect when the polyester fiber of the present invention is in the state of a fabric such as a woven or knitted fabric or a nonwoven fabric.
[0012]
In order to impart antifouling properties to the polyester fabric of the present invention, it is necessary to carry out antifouling processing such as SR processing in post-processing. This is because if the SR (soil release) processing is not performed, the polyester knitted fabric itself is hydrophobic and the removability to mud is not good. By performing SR processing, even if mud is apparently adhered, it becomes easy to fall off by washing.
[0013]
The SR processing can adopt a known method, and may be either a water absorption type or a water / oil repellent type, and the water / oil repellent type is said to be a so-called SGR process that is difficult to get soiled and easily falls off. Is.
[0014]
As the water absorption type SR processing, there are a method of modifying the surface portion of the polyester and modifying the fiber itself. As a method for modifying the surface portion by making it hydrophilic, a surface treatment of a water-absorbing processing agent, specifically, a hydrophilic polyester resin which is a block copolymer of polyethylene glycol and polyethylene terephthalate is desirable. Common water-absorbing SR processing agents include Permalose ™ from ICI and SR agent series from Takamatsu Yushi. Examples of the water absorption SR processing method include simultaneous dyeing exhaustion method and padding method in finishing after dyeing. From the viewpoint of durability of water absorption SR, in particular, simultaneous dyeing exhaustion SR processing and padding. The double SR processing of the method SR processing is preferable.
[0015]
When the SR processing as described above is performed, potassium ferrocyanide-ferric chloride coloring is very preferable because the amount of adhesion and the state of adhesion can be managed. Specifically, the PEG group in the SR processing agent reacts with potassium ferrocyanide, and then reacts with ferric chloride, resulting in a blue color. When the SR processing agent application amount increases (that is, the number of PEG groups increases), as the number of PEG groups increases, the density of bluishness increases, and the L * value in the CIE-LAB color system decreases. In addition, it is possible to manage the adhesion state.
[0016]
The range of L * value in the CIE-LAB color system of the fabric colored by actual potassium ferrocyanide-ferric chloride coloration is 70 ≧ L * value ≧ 50. This is because if the L * value exceeds 70 level, the SR processing agent cannot completely cover the entire fiber surface, so that it is inevitably easy to cause application stains, and the antifouling performance tends to be unstable or decrease. become. Conversely, even if the L * value is less than 50 levels, the SR processing agent is already fully covered on the fiber surface. turn into.
[0017]
If the L * value of the high whiteness polyester antifouling fabric is approximately 80 or more, there is no problem. However, if it is less than 80, there is no problem if the L * value after coloring with ferric ferrocyanide-ferric chloride is 50 to 60 levels or less. This is not preferable because it may be impossible to do so.
[0018]
The polyester fiber of the present invention may be subjected to various functional processing in addition to antifouling processing such as SR processing, deodorizing processing, antibacterial processing, antibacterial processing, UV cut processing, friction melting processing, electrostatic Any processing such as processing and skin care processing may be applied as long as the antifouling property is not significantly impaired and the L * value is not greatly affected.
[0019]
By this processing, the antifouling property, especially the antifouling property against mud dirt, is improved, and the ΔE * value is approximately 3 or more in the model antifouling test using dust (8 types) manufactured by Japan Powder Industry Technology Association. 7 or less, further stabilizing. Incidentally, when this processing is not performed, the ΔE * value not only becomes 10 or more, but also tends to become unstable.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these at all. The evaluation method of each performance in an Example is as follows.
[0021]
(1) Potassium ferrocyanide: K 4 Fe (CN) 6- ferric chloride: FeCl 3 coloration method
Figure 0003915967
(3) L * value measurement in the CIE-LAB color system;
According to JIS Z 8729, measurement was performed using a Minolta spectrocolorimeter CM3700D.
[0022]
(2) The following mud was put in a model antifouling stainless steel bat (thickness 1.5 mm, depth 50 mm, length 500 mm, width 200 mm), and it was hardened with a strong load from above and left for about 24 hours.
Mud: 8 types of dust (manufactured by Japan Powder Industrial Technology Association)
SIO 2 (34.40%), MgO (3.7%), Fe 2 O 3 (17.23%),
TiO 2 (0.4%), Al 2 O 3 (26.32%), CaO (0.3%)
Water was added to the mud and kneaded.
[0023]
(3) Washability (ΔE * value): Using a Minolta spectrocolorimeter CM-3700D, the L * value, a * value, and b * value in the CIE-LAB color system were measured and obtained by the following formula: .
ΔE * = E * 1-E * 2
E * 1: √L * 1 2 + a * 1 2 + b * 1 2
E * 2: √L * 2 2 + a * 2 2 + b * 2 2
E * 1: Fabric before antifouling, E * 2: Fabric after antifouling / washing Washing was performed according to JIS L 0217 method 103 (home washing). As a detergent, 40 g per 30 liters of Lion Oil & Fats Top was used.
[0024]
Example 1
A polyester fiber of 250 dtex / 48 filaments containing 250 ppm polyethylene terephthalate of Hostalx KS (manufactured by Clariant, benzoxazole fluorescent whitening agent) was spun. Next, the polyester filament was false twisted under conditions of a processing speed of 150 m / min, a twist number of 2800 T / M, a first heater temperature of 195 ° C., a draw ratio of 1.6 times, and a second heater temperature of 200 ° C. to obtain a polyester processed yarn. . Next, a knitted fabric was prepared from the processed yarn using a 22 gauge, 48 neck circular knitting machine.
[0025]
The obtained circular knitted fabric was scoured and dyed under the following conditions.
Figure 0003915967
After dyeing, dehydration and drying (120 ° C. × 3 minutes) were performed, and a finish was applied under the following conditions. The finish pick-up was 100%.
120 ℃ × 2min Takamatsu Oil SR1000 1.5% omf
Meisei Chemical HP600 0.5%
Then, the final set was performed with a tenter under the condition of 160 ° C. × 2 minutes, and the amount of properties was adjusted to obtain the final fabric.
[0026]
The obtained knitted fabric had an L * value = 88 and an L * value after coloring of potassium ferrocyanide-ferric chloride = 65. Further, it was evaluated by a model antifouling test, and the result was very good with a ΔE * value of 6.
[0027]
Example 2
A circular knitted fabric was prepared using polyester fiber processed yarn in the same manner as in Example 1. Thereafter, the fabric was scoured in the same manner as in Example 1 and then subjected to dyeing under the following conditions.
Figure 0003915967
After dyeing, dehydration and drying (120 ° C. × 3 minutes) were performed, and a finish was applied under the following conditions. The finish pick-up was 100%.
120 ℃ × 2min Takamatsu Oil SR1000 3.0% omf
Meisei Chemical HP600 0.5%
Then, the final set was performed with a tenter under the condition of 160 ° C. × 2 minutes, and the amount of properties was adjusted to obtain the final fabric.
[0028]
The obtained knitted fabric had an L * value = 88 and an L * value after coloring of potassium ferrocyanide-ferric chloride = 55. Further, it was evaluated by a model antifouling test, and the result was very good with a ΔE * value of 4.
[0029]
Example 3
A circular knitted fabric was prepared using polyester fiber processed yarn in the same manner as in Example 1. Thereafter, the fabric was scoured in the same manner as in Example 1 and then subjected to dyeing under the following conditions.
Figure 0003915967
After dyeing, dehydration and drying (120 ° C. × 3 minutes) were performed, and then the final set was performed with a tenter under the conditions of 160 ° C. × 2 minutes, and the amount of properties was adjusted to obtain the final dough.
[0030]
The obtained knitted fabric had an L * value = 87 and an L * value after coloring of potassium ferrocyanide-ferric chloride = 60. Further, it was evaluated by a model antifouling test, and the result was very good with a ΔE * value of 5.
[0031]
Comparative Example 1
Using the same knitted fabric as in Example 1, the same scouring as in Example 1 was performed. Then, it dye | stained on the following conditions.
Figure 0003915967
After dyeing, dehydration and drying (120 ° C. × 3 minutes) were performed, and a finish was applied under the following conditions. The finish pick-up was 100%.
120 ℃ × 2min Takamatsu Oil SR1000 0.5% omf
Meisei Chemical HP600 0.5%
Then, the final set was performed with a tenter under the condition of 160 ° C. × 2 minutes, and the amount of properties was adjusted to obtain the final fabric.
[0032]
The obtained knitted fabric had an L * value = 87, and an L * value after coloration of potassium ferrocyanide-ferric chloride = 77. Furthermore, it was evaluated by a model antifouling test, and the result was that the antifouling property decreased, and the ΔE * value was 10, and there were both a good antifouling part and an inferior part, that is, the antifouling property was There was a tendency to become unstable.
[0033]
Comparative Example 2
Using the same knitted fabric as in Example 1, the same scouring and dyeing process as in Example 1 was performed with no SR agent (SR1000) added. The obtained knitted fabric had an L * value = 87, and the L * value after coloration with potassium ferrocyanide-ferric chloride = 87. Furthermore, it was evaluated by a model antifouling test.
[0034]
The above results are summarized in Table 1.
[Table 1]
Figure 0003915967
[0035]
【The invention's effect】
According to the present invention, the amount of adhesion of the SR processing agent to the fiber surface and the state of adhesion can be sufficiently controlled by potassium ferrocyanide-ferric chloride coloring, so that the whiteness is excellent and the SR antifouling property is achieved. An excellent high whiteness polyester fiber fabric can be obtained with stable performance.

Claims (2)

ベンゾオキサゾール系の蛍光顔料を含有する白色系ポリエステル系繊維を少なくとも一部に含有する布帛を親水系SR加工剤で後SR加工する高白度ポリエステル系布帛の防汚加工方法であって、加工布帛のフェロシアン化カリウム−塩化第二鉄呈色による、CIE-LAB表色系におけるL*値(JIS Z 8729)が、下記(1)の範囲にあることを確認して付着量及び付着状態を管理することを特徴とする高白度ポリエステル系布帛の防汚加工方法。
70≧L*値≧50・・・(1)
An antifouling processing method for a high whiteness polyester fabric, wherein a fabric containing at least a part of a white polyester fiber containing a benzoxazole-based fluorescent pigment is subjected to SR processing with a hydrophilic SR processing agent. The L * value (JIS Z 8729) in the CIE-LAB color system based on the potassium ferrocyanide-ferric chloride coloration is confirmed to be in the following range (1), and the amount and state of adhesion are controlled. An antifouling processing method for high whiteness polyester-based fabrics.
70 ≧ L * value ≧ 50 (1)
前記SR加工が、親水性ポリエステル樹脂系加工剤を染色同時吸尽法および/またはパッド法で繊維表面に被覆固着させることを特徴とする請求項1記載の高白度ポリエステル系布帛の防汚加工方法。  The anti-stain processing of a high whiteness polyester fabric according to claim 1, wherein the SR processing is performed by coating and fixing a hydrophilic polyester resin processing agent on the fiber surface by a simultaneous dye exhaustion method and / or a pad method. Method.
JP2001362921A 2001-11-28 2001-11-28 Antifouling processing method for polyester fabric. Expired - Fee Related JP3915967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362921A JP3915967B2 (en) 2001-11-28 2001-11-28 Antifouling processing method for polyester fabric.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362921A JP3915967B2 (en) 2001-11-28 2001-11-28 Antifouling processing method for polyester fabric.

Publications (2)

Publication Number Publication Date
JP2003166177A JP2003166177A (en) 2003-06-13
JP3915967B2 true JP3915967B2 (en) 2007-05-16

Family

ID=19173343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362921A Expired - Fee Related JP3915967B2 (en) 2001-11-28 2001-11-28 Antifouling processing method for polyester fabric.

Country Status (1)

Country Link
JP (1) JP3915967B2 (en)

Also Published As

Publication number Publication date
JP2003166177A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3236005B2 (en) Mixed dyed product of disperse dye dyeable fiber and polyurethane fiber and its dyeing method
JP5074590B2 (en) Water-absorbing quick-drying woven / knitted fabric
JP2007177350A (en) Antimicrobial fiber blend
JP2008111221A (en) Antibacterial dyed fabric
JP3915967B2 (en) Antifouling processing method for polyester fabric.
JP2003082556A (en) Polyester-based fiber fabric having high whiteness and method for producing the same
JPH05295673A (en) Dyed fabric product using both normal-pressure dyeable type polyester yarn and polyurethane yarn
KR100624145B1 (en) A sea-island type composite fiber with excellent color strength, and its suede like fabrics
JP4131391B2 (en) Hygroscopic polyester fiber structure and method for producing the same
JP5987361B2 (en) Woven knitted fabric and method for producing the same
JP2000034675A (en) Antibacterial polyester fiber
JP4154664B2 (en) High whiteness printed woven / knitted fabric
JP2010255130A (en) Method for producing dyed water-absorbing and quick-drying woven and knitted fabrics
JP2008150728A (en) Water-absorbing/quick-drying woven and knitted fabrics
JPH11172583A (en) Production of hygroscopic fiber structure
JP3800670B2 (en) Ink-stain resistant synthetic fiber and method for producing the same
JP2005281907A (en) Textile product containing mass-colored fiber and moisture-absorbing/releasing mass-colored polyether ester elastic fiber
JP4833610B2 (en) Flame retardant polyester fiber structure and method for producing the same
JP2006316368A (en) Mixed article of polyester fiber and polyurethane fiber
JP3032644B2 (en) Cloth and low dusting work clothes
JP4427708B2 (en) Polyester fiber knitted fabric and method for producing the same
JP2003055864A (en) Antifouling polyester, knit fabric for cotton blend
JP2010255139A (en) Water-absorbing and diffusing polyester knit
JP2001164436A (en) Polyester combined filament yarn and woven and knitted fabric using the same
JP2000034676A (en) Antibacterial fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R151 Written notification of patent or utility model registration

Ref document number: 3915967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees