JP3912471B2 - Composition for forming inorganic film and method for forming inorganic film - Google Patents

Composition for forming inorganic film and method for forming inorganic film Download PDF

Info

Publication number
JP3912471B2
JP3912471B2 JP19411199A JP19411199A JP3912471B2 JP 3912471 B2 JP3912471 B2 JP 3912471B2 JP 19411199 A JP19411199 A JP 19411199A JP 19411199 A JP19411199 A JP 19411199A JP 3912471 B2 JP3912471 B2 JP 3912471B2
Authority
JP
Japan
Prior art keywords
nitrate
composition
inorganic film
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19411199A
Other languages
Japanese (ja)
Other versions
JP2001019873A (en
Inventor
博 高梨
善美 佐藤
健和 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP19411199A priority Critical patent/JP3912471B2/en
Priority to TW089112901A priority patent/TWI265959B/en
Priority to CNB001204181A priority patent/CN1220913C/en
Priority to KR10-2000-0039107A priority patent/KR100489741B1/en
Publication of JP2001019873A publication Critical patent/JP2001019873A/en
Application granted granted Critical
Publication of JP3912471B2 publication Critical patent/JP3912471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Luminescent Compositions (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無機被膜形成用組成物および無機被膜形成方法に関するものであり、とくに、CRT用ガラスパネル上に蛍光体パターンを形成するのに好適な無機被膜形成用組成物および無機被膜形成方法に関するものである。
【0002】
【従来の技術】
基板上に所望パターンの無機被膜を形成する場合、一般的にポリビニルアルコール(PVA)などの有機高分子化合物、重クロム酸塩などの感光剤、各種粉体(導電性、絶縁性、光吸収性、または蛍光性などの性質を示す粉体)、さらに分散剤等を混合したスラリー状の無機被膜形成用組成物が用いられている。なお一般的に該組成物はネガ型感光性組成物である。
そして、このスラリー状の組成物を基板上に塗布、乾燥した後、マスクを介した放射線の選択的露光により光硬化反応を行って、未露光部を水やアルカリ水溶液などにより除去することにより光硬化パターンを形成し、その後、光硬化パターン中の有機成分を加熱処理により熱分解除去して、基板上に所望パターンの無機被膜を形成している。
【0003】
【発明が解決しようとする課題】
しかしながら、当該組成物を用いた無機被膜の形成に使用する重クロム酸塩は、劇毒物の六価クロムであることから、環境汚染の問題を抱えており、六価クロムを使用しない無機被膜の形成方法が求められている。六価クロムを用いない無機被膜形成方法としては、特開平11−24241号公報、特開平10−83077号公報、特開平8−146598号公報、特開平6−202316号公報、特開平11−84646号公報、特開平8−227153号公報、特開平8−315634号公報、特開平8−50811号公報、特開平8−315637号公報、特開昭63−64953号公報、特開昭61−158861号公報、特開平2−25847号公報等に各種提案されている。
しかし、上記従来技術に使用されている材料は、光硬化パターン中の有機成分を熱分解除去する際、500℃を超える高温を要し、プロセス上の問題から、熱分解温度の低温化が望まれていた。
また、重クロム酸塩を用いた従来の感光性組成物は、熱分解温度が400〜500℃程度であり、実用化のためには、これと同程度の温度で熱分解する無機被膜形成用組成物が望まれる。
【0004】
したがって本発明の目的は、導電性被膜、絶縁性被膜、光吸収性被膜、または蛍光体被膜などの各種無機被膜を低温焼成プロセスで形成することが可能な無機被膜形成用組成物および無機被膜形成方法を提供することであり、とくに500℃以下の低温で無機被膜を形成することが可能な無機被膜形成用組成物および無機被膜形成方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、PVA−重クロム酸塩系の無機被膜形成用組成物を用いて形成した光硬化パターン中の有機成分が、500℃以下の低温で分解除去できるという性質は、重クロム酸塩が熱分解を促進する作用を有しているという知見を得た。
すなわち、重クロム酸塩の添加量が多くなるに従い、光硬化パターン中の有機成分の分解温度が低くなることを試験によりつきとめ、重クロム酸塩に熱分解促進作用があることを確認した。
図1を参照して説明する。重クロム酸塩添加量がゼロの場合、PVAの分解温度は約570℃であるが、重クロム酸塩の添加量が増加すると光硬化後のPVAの熱分解温度が低下し、10重量部の添加では約430℃まで熱分解温度が低下している。
本発明者等は、この重クロム酸塩の熱分解促進効果と同等な効果を奏する材料について鋭意検討した結果、意外にも硝酸塩と有機酸の金属塩に優れた熱分解促進作用が存在することを見出し、本発明を完成することができた。
また、硝酸塩と有機酸の金属塩を混合して用いることにより、さらに熱分解温度を低温化させることができることを見出した。
【0006】
すなわち本発明は、有機高分子化合物、(A)感光剤(ただし硝酸塩は含まない)、(B)粉末、および(C)硝酸塩を含んでなり、該硝酸塩は、硝酸の非金属塩、硝酸セリウム、硝酸鉄および硝酸クロムからなる群から選択された少なくとも1種を含むことを特徴とする無機被膜形成用組成物を提供するものである。
【0007】
また本発明は、(D)有機酸の金属塩をさらに含むことを特徴とする前記の無機被膜形成用組成物を提供するものである。
【0008】
また本発明は、固形組成分に対し(A)成分4〜24重量%、(B)成分70〜95重量%、(C)成分0.1〜20重量%であることを特徴とする前記の無機被膜形成用組成物を提供するものである。
【0009】
また本発明は、(C)成分が硝酸セリウム、硝酸鉄および硝酸クロムの中から選ばれる少なくとも一種を含むことを特徴とする前記の無機被膜形成用組成物を提供するものである。
また本発明は、(C)成分が、硝酸の非金属塩を含むことを特徴とする前記の無機被膜形成用組成物を提供するものである。
また本発明は、(D)成分が、有機酸の鉄塩を含むことを特徴とする前記の無機被膜形成用組成物を提供するものである。
【0010】
また本発明は、有機高分子化合物、(A)感光剤(ただし硝酸塩は含まない)、(B)粉末、および(D)有機酸の金属塩を含んでなることを特徴とする無機被膜形成用組成物を提供するものである。
また本発明は、(D)成分が、有機酸の鉄塩を含むことを特徴とする前記の無機被膜形成用組成物を提供するものである。
【0011】
また本発明は、固形組成分に対し(A)成分4〜24重量%、(B)成分70〜95重量%、(D)成分0.1〜20重量%であることを特徴とする前記の無機被膜形成用組成物を提供するものである。
【0012】
また本発明は、前記の無機被膜形成用組成物を基板上に塗布し、乾燥する工程と、形成された乾燥被膜中の有機成分を500℃以下で熱分解除去せしめる工程とを有する無機被膜形成方法を提供するものである。
【0013】
【発明の実施の形態】
(A)感光剤
(A)感光剤としては、放射線の照射により重合反応や架橋反応等を生じさせ、無機被膜形成用組成物が現像液(水、アルカリ性水溶液、酸性水溶液、溶剤、水−溶剤混合液など)に対し不溶化するような材料であればよい。
このような材料としては、従来から感光剤として知られているジアゾ系感光剤、アジド系感光剤(特開平6−65415号公報、特開平8−334895号公報、特開平7−72620号公報、特開平7−234504号公報)、スチルバゾリウム系感光剤(特開昭55−135834号公報、特開平5−5990号公報)、スチリルピリジニウム系感光剤(特開平5−92955号公報、特開平4−51046号公報)、スチリルキノリニウム系感光剤(特開平4−51046号公報)、ピリジニウムイリド系感光剤(特開平4−8706号公報)、光重合開始剤と不飽和基含有化合物とからなる感光性成分(特開平8−160612号公報、特開平8−328249号公報、特開平7−319160号公報)等が挙げられる。(A)成分は固形組成分に対し、4〜24重量%程度使用される。
【0014】
(B)粉末
(B)粉末としては、特に限定はなく、形成しようとする無機被膜のパターンの種類に応じて、導電性、絶縁性(誘電性)、光吸収性、または蛍光性などの性質を示す材料が用いられる。
【0015】
導電性を有する材料としては、従来から知られているようなAg、Cu、Ni、Au、Pd、Al、Ir、Ru、Rh、Re、Os、およびPt等の導電性金属粉末、またはこれらの導電性金属酸化物粉末が挙げられる。これらは単独、合金または混合粉末としたものを使用することができる。
【0016】
絶縁性(誘電性)を有する材料としては、例えばセラミック固体の微粒子が適用できる。酸化物としては、アルミナ、酸化チタン、チタン酸バリウム、フエライト、イツトリア、ジルコニア、ムライト等が挙げられる。炭化物としては、炭化珪素、炭化タングステン、炭化ジルコニウム、炭化チタン、炭化タンタル等が挙げられる。窒化物としては、窒化珪素、窒化硼素、窒化アルミニウム、窒化ジルコニウム、窒化チタン等が挙げられる。硼化物としては、硼化アルミニウム、硼化チタン、硼化ジルコニウム、硼化タンタル、硼化タングステン等が挙げられる。水酸化物としては、水酸化アルミニウム等が挙げられる。
【0017】
光吸収性を有する材料としては、カーボンブラック、カーボンリファインドおよびカーボンナノチューブのような炭素系顔料の他、鉄黒、コバルトブルー、酸化亜鉛、酸化チタンおよび酸化クロムのような金属酸化物顔料、硫化亜鉛のような硫化物顔料、フタロシアニン系顔料、金属の硫酸塩、炭酸塩、ケイ酸塩およびリン酸塩、ならびにアルミ末、ブロンズ末、亜鉛末を例示することができる。また有機顔料としては、例えば、ナフトールグリーンBのようなニトロソ顔料、ニトロ顔料、ボルドー10B、レーキレッド4Rおよびクロモフタールレッドのようなアゾもしくはアゾレーキ顔料、ピーコックブルーレーキおよびローダミンレーキのようなレーキ顔料、フタロシアニンブルーのようなフタロシアニン顔料、チオインジゴレッドおよびインダトロンブルーのようなスレン顔料、キナクリドン顔料、キナクリジン顔料、ならびにイソインドリノン顔料を挙げることができる。かかる顔料に加えて、吸光性を高めるために染料を同時に具備してもかまわない。
【0018】
蛍光性を有する材料としては、無機もしくは有機蛍光発光化合物のいずれをも用いることができる。無機蛍光発光化合物としては、ZnS:Ag、MgWO4、CaWO4、(Ca,Zn)(PO42:Ti+、Ba227:Ti、BaSi25、:Pb2+、Sr227:Sn2+、SrFB23.5:Eu2+、MgAl1627:Eu2+、タングステン酸塩、イオウ酸塩のような無機酸塩類を例示することができる。また、有機蛍光発光化合物としては、アクリジンオレンジ、アミノアクリジン、キナクリン、アニリノナフタレンスルホン酸誘導体、アンスロイルオキシステアリン酸、オーラミンO、クロロテトラサイクリン、メロシアニン、1,1’−ジヘキシル−2,2’−オキサカルボシアニンのようなシアニン系色素、ダンシルスルホアミド、ダンシルコリン、ダンシルガラクシド、ダンシルトリジン、ダンシルクロリドのようなダンシルクロライド誘導体、ジフェニルヘキサトリエン、エオシン、ε−アデノシン、エチジウムブロミド、フルオレセイン、フォーマイシン、4−ベンゾイルアミド−4’−アミノスチルベン−2,2’−スルホン酸、β−ナフチル3リン酸、オキソノール色素、パリナリン酸誘導体、ペリレン、N−フェニルナフチルアミン、ピレン、サフラニンO,フルオレスカミン、フルオレセインイソシアネート、7−クロロニトロベンゾ−2−オキサ−1,3−ジアゾル、ダンシルアジリジン、5−(ヨードアセトアミドエチル)アミノナフタレン−1−スルホン酸、5−ヨードアセトアミドフルオレセイン、N−(1−アニリノナフチル4)マレイミド、N−(7−ジメチル−4−メチルクマニル)マレイミド、N−(3−ピレン)マレイミド、エオシン−5−ヨードアセトアミド、フルオレセインマーキュリーアセテート、2−[4’−(2’’−ヨードアセトアミド)]アミノナフタレン−6−スルホン酸、エオシン、ローダミン誘導体等が挙げられる。
(B)粉末は、固形組成分に対して、70〜95重量%の範囲で用いることがパターン形成上好ましい。また導電性金属粉末の平均粒子径は0.5〜25μmが好ましい。
【0019】
(C)硝酸塩
本発明では、(C)硝酸塩を添加することにより、光硬化パターン中の有機成分の分解温度を低温化させる効果(以下、単に低温化効果という)を奏する。
(C)硝酸塩としては、硝酸アンモニウム、硝酸ヒドロキシルアンモニウム、硝酸ヒドラジン、硝酸カルシウムなどの塩の他、硝酸カリウム、硝酸ナトリウム、硝酸リチウム、硝酸アルミニウム、硝酸亜鉛、硝酸インジウム、硝酸イットリウム、硝酸イッテルビウム、硝酸ウラニル、硝酸エルビウム、硝酸カドミウム、硝酸ガドリニウム、硝酸ガリウム、硝酸銀、硝酸クロム、硝酸コバルト、硝酸サマリウム、硝酸ジルコニウム、硝酸水銀、硝酸スカンジウム、硝酸スズ、硝酸ストロンチウム、硝酸セシウム、硝酸セリウム、硝酸セリウムアンモニウム、硝酸タリウム、硝酸鉄、硝酸テルビウム、硝酸銅、硝酸トリウム、硝酸鉛、硝酸ニッケル、硝酸ネオジウム、硝酸パラジウム、硝酸バリウム、硝酸ビスマス、硝酸プラセオジウム、硝酸マグネシウム、硝酸マンガン、硝酸ランタン、硝酸ルテニウム、硝酸ルビジウム、硝酸ルテニウム等の金属塩、およびこれらの水和物が挙げられ、これらの中でも特に硝酸セリウム、硝酸鉄、硝酸クロム等の硝酸の金属塩が低温化効果に優れて好ましい。
【0020】
しかし、硝酸の金属塩は、その金属塩の種類によっては、形成した無機被膜のパターン中に残存してその導電性、絶縁性、または蛍光体の発色等に悪影響を及ぼす場合があり、一方、硝酸アンモニウムなどの金属塩以外の塩(非金属塩)は、硝酸の金属塩に比べ低温化効果が低いものの、上記の導電性、絶縁性、または蛍光体の発色等にほとんど悪影響を及ぼさないため、以上のことから、硝酸の金属塩と非金属塩とを適宜混合して用いることも好ましい態様である。
この場合の硝酸の金属塩の配合量は、硝酸の非金属塩に対し、およそ10〜300重量%、特に100〜250重量%であることが好ましく、10重量%未満であると上記の低温化効果が低く、また300重量%を超えると無機被膜の形成パターンの導電性、絶縁性、または蛍光体の発色等に悪影響を及ぼす傾向が高くなる。
(C)成分の配合割合は、上記(A)〜(B)成分の組成、および硝酸塩の種類にもよるが、固形組成分に対して硝酸塩を0.1〜20重量%、特に0.2〜5重量%が好ましい。
【0021】
(D)有機酸の金属塩
本発明では、(C)成分と同様、(D)有機酸の金属塩を添加することにより、低温化効果を奏する。
(D)有機酸の金属塩としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸等の一塩基酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸等の二塩基酸、リンゴ、酒石酸、クエン酸、グリコル酸、乳酸等のオキシカルボン酸、ピルビン酸、アセト酢酸、レビュリン酸等のケト酸の金属塩、例えば鉄、セリウム、クロム塩等が挙げられ、特に鉄を含有する金属塩が好ましい。(D)有機酸の金属塩は、本発明の組成物に対する相容性が(C)硝酸塩に比べて高く、また中性に近い材料であるため保存安定性に優れて好ましい。
本発明では、(D)有機酸の金属塩と上記(C)硝酸塩とを混合して用いると、低温化効果をさらに促進させる効果があり好ましい。
【0022】
なお(D)有機酸の金属塩は、上述の硝酸の金属塩と同様、無機被膜の形成パターンの導電性、絶縁性、または蛍光体の発色等に悪影響を及ぼす場合があるため、硝酸塩としては、硝酸アンモニウムなどの非金属塩を選択するか、あるいは金属塩と非金属塩の混合系を選択することが好ましい。
硝酸の非金属塩と混合して用いる場合、(D)有機酸の金属塩の配合量は、硝酸の非金属塩に対し、およそ10〜300重量%、特に100〜250重量%であることが好ましく、また硝酸の金属塩、および非金属塩と混合して用いる場合には、硝酸の金属塩と有機酸の金属塩の合計量が、硝酸の非金属塩に対し、およそ10〜300重量%、特に100〜250重量%であることが好ましい。
上記のいずれの場合においても、金属塩の配合量が非金属塩に対し10重量%未満であると上記の低温化効果が低く、また300重量%を超えると無機被膜の形成パターンの導電性、絶縁性、または蛍光体の発色等に悪影響を及ぼす傾向が高くなる。
(D)成分の配合割合は、上記(A)〜(B)成分の組成、および有機酸の金属塩の種類にもよるが、固形組成分に対して有機酸の金属塩を0.1〜20重量%、とくに0.2〜5重量%が好ましい。
【0023】
その他の成分
本発明の組成物には、必要に応じて一般的に公知の添加剤、例えば、有機高分子化合物、熱重合禁止剤、増感剤、基板との接着性向上剤、界面活性剤、粉末の沈殿防止剤(帯電剤、分散剤)等を本発明の目的を損なわない範囲で添加することができる。
【0024】
本発明の組成物には、有機高分子化合物を含有させることができる。この有機高分子化合物は、塗膜形成性の向上に寄与する。
有機高分子化合物としては、特に限定されるものではなく、本発明の無機被膜形成用組成物を基板上に塗布、乾燥した後、良好な乾燥被膜を形成でき、現像液に対して溶解性を有する化合物であればよいが、現像液としては、作業環境上の点から、水系現像液が好ましく使用されているため、被膜形成用高分子材料も水、アルカリ水溶液、または水とアルコール等の混合溶媒等に可溶な材料であることが好ましい。したがって、好ましくは、本発明に使用される有機高分子化合物は水溶性ポリマー、アルカリ可溶性ポリマー、およびアルコール可溶性ポリマー等が例示される。
【0025】
例えば水溶性ポリマーは、水すなわちpH5〜8程度の水に溶解するポリマーであれば特に限定されずに用いることができる。具体的には、ポリビニルアルコール、N−メチロールアクリルアミド付加ポリビニルアルコール、変性ポリビニルアルコール(ポリビニルアルコール・ポリアクリレートブロック共重合体、無水アクリル酸を反応させた変性ポリビニルアルコール、グラフト化ポリビニルアルコール等)、カルボキシアルキルセルロース、スルホン酸ソーダ基を有するポリアミド、エーテル結合を有するポリアミド、塩基性窒素またはアンモニウム塩型窒素を有するポリアミド、ポリビニルピロリドン等が挙げられるが、これらに限定されるものではない。中でも、比較的安価であることからポリビニルアルコールが好適に用いられる。水溶性ポリマーは1種だけを用いてもよく、あるいは2種以上を組み合わせて用いてもよい。
【0026】
また、アルカリ可溶性ポリマーは、pH8程度以上のアルカリ水溶液に溶解もしくは分散型のポリマーであれば特に限定されずに用いることができ、例えば、−COOH、−PO32、−SO3H、−SO2NH2、−SO2NH−SO2−、およびSO2−NH−CO−等の基を含むポリマーが挙げられる。
このようなポリマーとしては、具体的には、無水マレイン酸変性ポリブタジエン、カルボキシル基含有スチレンブタジエンコポリマー、マレイン酸エステル樹脂、β−メタクリロイルオキシエチル−N−(p−トリスルホニル)−カルバメートの重合体、およびこれらのポリマーを構成するモノマーに類似のモノマーと他のモノマーとのコポリマー、酢酸ビニル/クロトン酸コポリマー、スチレン/無水マレイン酸コポリマー、メタクリル酸エステル/メタクリル酸コポリマー、メタクリル酸/スチレン/アクリロニトリルコポリマー、およびセルロースアセテートフタレート等が挙げられるが、これらに限定されるものではない。中でもセルロースアセテート類が透明性、溶解性の点で好ましく用いられる。アルカリ可溶性ポリマーは1種だけを用いてもよく、あるいは2種以上を組み合わせて用いてもよい。
【0027】
また、アルコール可溶性ポリマーは、好ましくはポリアクリル酸、ポリメタクリル酸、およびアルコール可溶性ナイロン等を挙げることができる。アルコール可溶性ナイロンとしては具体的には、8ナイロン、6ナイロン/66ナイロン、6ナイロン/66ナイロン/610ナイロン、6ナイロン/66ナイロン/610ナイロン/612ナイロン、4,4’−ジアミノジシクロヘキシルメタン/ヘキサメチレンジアミン/アジピン酸/ε−カプロラクタム共重合体等が例示的に挙げられるが、これらに限定されるものではない。中でもポリアクリル酸、ポリメタクリル酸、8ナイロン、4,4’−ジアミノジシクロヘキシルメタン/ヘキサメチレンジアミン/アジピン酸/ε−カプロラクタム共重合体等が透明性、溶解性の点で好ましく用いられる。アルコール可溶性ポリマーは1種だけを用いてもよく、あるいは2種以上を組み合わせて用いてもよい。有機高分子化合物は固形組成分に対し、0.5〜20重量%程度使用される。
また本発明の組成物は、上記(A)〜(D)成分、および必要に応じて添加されるその他の成分からなる固形組成分を溶剤と混合して塗布液の形で用いることが好ましい。溶剤としては、水、アルコール、エーテル、エステルなどを挙げることができ、中でも水、アルコール、水−アルコール混合溶剤等が作業環境上の点で好ましい。
【0028】
無機被膜形成方法
本発明の無機被膜の形成方法の一例として、カラーCRT(陰極線管)のための蛍光パターンの形成方法を以下に述べる。
ブラックマトリックスパターンが形成されたガラスパネル内面に、本発明の組成物を塗布、乾燥して乾燥被膜を形成する。
次いで、シャドウマスクを介した放射線の選択的露光を行った後、水等の現像液を用いて未露光部を除去し、ドットもしくはストライプ状の光硬化パターンを形成する。この光硬化パターンの形成工程を、赤(R)、緑(G)、青(B)の蛍光体ごとに繰り返し行って蛍光体3色の光硬化パターンを作成した後、当該光硬化パターン中の有機成分が分解する温度条件、例えば500℃以下で加熱処理して、蛍光体パターンを形成する。
【0029】
【実施例】
以下、本発明を実施例および比較例によりさらに説明するが、これらによってなんら制限されるものではない。
比較例
【0030】
【表1】
(A)成分:光重合開始剤+不飽和基含有化合物 18.04重量部
[光重合開始剤:ベンジルジメチルケタール(0.04重量部)、不飽和基含有化合物:ペンタエリスリトールトリアクリレート(18.0重量部)]
(B)成分:青色蛍光体 80.0重量部
[製品名:P22−HCB1(化成オプトニクス(株)製)、ZnS:Ag粉末(平均粒子径7〜10μm)]
有機高分子化合物:ポリメタクリル酸(重合度2000) 2.0重量部
熱重合禁止剤:ハイドロキノンモノメチルエーテル 0.0017重量部
溶媒:水−メタノール混合溶媒 100.0重量部
[水:メタノール=60:40(重量比)]
【0031】
上記の組成からなるネガ型感光性組成物である無機被膜形成用組成物を300rpmで回転するガラスパネル上に滴下塗布し、70℃で5分間乾燥して、厚さ14μmの乾燥被膜を形成した。
次いで1kWの超高圧水銀灯でシャドウマスクを介した選択的露光を行い、水現像、乾燥を行って光硬化パターンを形成した。
光硬化パターンの一部をサンプリングして、熱重量分析(TG)を行った結果、有機成分の熱分解温度は561℃であった。
なお、上記の熱分解温度は、有機成分の熱分解に伴う重量減少の後、TG曲線の傾きがほぼ0になったときの温度とした。上記光硬化パターンを500℃で10分間焼成したところ、得られた蛍光体パターンは褐色であり、有機成分が完全に分解していないことがわかった。
【0032】
実施例1
比較例に記載のネガ型感光性組成物に硝酸第二鉄を0.41重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は475℃であった。また、光硬化パターンを475℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0033】
実施例2
比較例に記載のネガ型感光性組成物に硝酸アンモニウムを0.45重量部、硝酸第二鉄を0.9重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は437℃であった。また、光硬化パターンを437℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0034】
実施例3
比較例に記載のネガ型感光性組成物にクエン酸鉄アンモニウムを1.46重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は494℃であった。また、光硬化パターンを494℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0035】
実施例4
比較例に記載のネガ型感光性組成物に硝酸アンモニウムを0.45重量部、クエン酸鉄アンモニウムを0.9重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は450℃であった。また、光硬化パターンを450℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0036】
実施例5
比較例に記載のネガ型感光性組成物に硝酸第二鉄を1.35重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は408℃であった。また、光硬化パターンを408℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0037】
実施例6
比較例に記載のネガ型感光性組成物に硝酸第二セリウムアンモニウムを1.35重量部添加した以外は、比較例と同様にして光硬化パターンを形成し、比較例と同様にして、光硬化パターン中の有機成分の熱分解温度を測定した。
その結果、有機成分の熱分解温度は386℃であった。また、光硬化パターンを386℃で10分間焼成したところ、得られた蛍光体パターンは白色であり、有機成分が完全に分解していることがわかった。
【0038】
【発明の効果】
本発明によれば、導電性被膜、絶縁性被膜、光吸収性被膜、または蛍光体被膜などの各種無機被膜を低温焼成プロセスで形成することが可能な無機被膜形成用組成物および無機被膜形成方法が提供される。
【図面の簡単な説明】
【図1】重クロム酸塩添加量とPVAの分解温度の関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic film forming composition and an inorganic film forming method, and more particularly to an inorganic film forming composition and an inorganic film forming method suitable for forming a phosphor pattern on a CRT glass panel. Is.
[0002]
[Prior art]
When an inorganic film having a desired pattern is formed on a substrate, generally, an organic polymer compound such as polyvinyl alcohol (PVA), a photosensitizer such as dichromate, and various powders (conductivity, insulation, light absorption) Or a powder exhibiting properties such as fluorescence), and a slurry-like inorganic film forming composition in which a dispersant or the like is further mixed. In general, the composition is a negative photosensitive composition.
And after apply | coating and drying this slurry-like composition on a board | substrate, photocuring reaction is performed by the selective exposure of the radiation through a mask, and light is removed by removing an unexposed part with water, alkaline aqueous solution, etc. A cured pattern is formed, and then an organic component in the photocured pattern is thermally decomposed and removed by heat treatment to form an inorganic film having a desired pattern on the substrate.
[0003]
[Problems to be solved by the invention]
However, since the dichromate used for forming the inorganic coating using the composition is a hexavalent chromium which is a toxic poison, it has a problem of environmental pollution, and an inorganic coating that does not use hexavalent chromium is used. There is a need for a forming method. As an inorganic film forming method not using hexavalent chromium, JP-A-11-24241, JP-A-10-83077, JP-A-8-146598, JP-A-6-202316, JP-A-11-84646. JP-A-8-227153, JP-A-8-315634, JP-A-8-50811, JP-A-8-315637, JP-A-63-64953, JP-A-61-1586861 Various proposals are made in Japanese Laid-Open Patent Publication No. H02-25847.
However, the materials used in the above prior art require a high temperature exceeding 500 ° C. when the organic components in the photocuring pattern are thermally decomposed and removed. It was rare.
In addition, the conventional photosensitive composition using dichromate has a thermal decomposition temperature of about 400 to 500 ° C., and for practical use, for forming an inorganic film that is thermally decomposed at the same temperature. A composition is desired.
[0004]
Accordingly, an object of the present invention is to provide an inorganic film forming composition and an inorganic film forming capable of forming various inorganic films such as a conductive film, an insulating film, a light absorbing film, or a phosphor film by a low temperature baking process. An object of the present invention is to provide a method for forming an inorganic film and an inorganic film forming method capable of forming an inorganic film at a low temperature of 500 ° C. or lower.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have the property that the organic component in the photocured pattern formed using the PVA-bichromate inorganic film forming composition can be decomposed and removed at a low temperature of 500 ° C. or less. The knowledge that salt has the effect | action which accelerates | stimulates thermal decomposition was acquired.
That is, it was confirmed by a test that the decomposition temperature of the organic component in the photocuring pattern was lowered as the amount of dichromate added was increased, and it was confirmed that dichromate has a thermal decomposition promoting action.
A description will be given with reference to FIG. When the addition amount of dichromate is zero, the decomposition temperature of PVA is about 570 ° C., but when the addition amount of dichromate increases, the thermal decomposition temperature of PVA after photocuring decreases, In addition, the thermal decomposition temperature is lowered to about 430 ° C.
As a result of earnestly examining the material having an effect equivalent to the thermal decomposition promoting effect of dichromate, the present inventors surprisingly have an excellent thermal decomposition promoting action on the metal salt of nitrate and organic acid. The present invention was completed.
It has also been found that the thermal decomposition temperature can be further lowered by using a mixture of a nitrate and a metal salt of an organic acid.
[0006]
  That is, the present inventionOrganic polymer compounds,(A) Photosensitizer(However, nitrate is not included), (B) powder, and (C) nitrate.The nitrate includes at least one selected from the group consisting of a non-metallic salt of nitric acid, cerium nitrate, iron nitrate and chromium nitrate.An inorganic film-forming composition is provided.
[0007]
The present invention also provides (D) the composition for forming an inorganic film, further comprising (D) a metal salt of an organic acid.
[0008]
Further, the present invention is characterized in that the component (A) is 4 to 24% by weight, the component (B) is 70 to 95% by weight, and the component (C) is 0.1 to 20% by weight based on the solid composition. An inorganic film forming composition is provided.
[0009]
In the present invention, the component (C) is nitric acidAt least one selected from cerium, iron nitrate and chromium nitrateThe above-mentioned composition for forming an inorganic film is provided.
The present invention also provides the above-mentioned composition for forming an inorganic coating, wherein the component (C) contains a nonmetallic salt of nitric acid.
The present invention also provides the above-mentioned composition for forming an inorganic coating, wherein the component (D) contains an iron salt of an organic acid.
[0010]
  The present invention also providesOrganic polymer compounds,(A) Photosensitizer(However, nitrate is not included)And (B) a powder, and (D) a metal salt of an organic acid.
  The present invention also provides the above-mentioned composition for forming an inorganic coating, wherein the component (D) contains an iron salt of an organic acid.
[0011]
The present invention is also characterized in that (A) component is 4 to 24% by weight, (B) component is 70 to 95% by weight, and (D) component is 0.1 to 20% by weight based on the solid composition. An inorganic film forming composition is provided.
[0012]
Further, the present invention provides an inorganic film forming process comprising the steps of applying the inorganic film forming composition on a substrate and drying it, and thermally decomposing and removing organic components in the formed dried film at 500 ° C. or less. A method is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(A) Photosensitizer
(A) As a photosensitizer, a polymerization reaction or a crosslinking reaction is caused by irradiation of radiation, and the composition for forming an inorganic film is converted into a developer (water, alkaline aqueous solution, acidic aqueous solution, solvent, water-solvent mixture, etc.). Any material that insolubilizes can be used.
Examples of such materials include diazo photosensitizers and azide photosensitizers conventionally known as photosensitizers (JP-A-6-65415, JP-A-8-334895, JP-A-7-72620, JP-A-7-234504), stilbazolium-based photosensitizers (JP-A-55-135834, JP-A-5-5990), styrylpyridinium-based photosensitizers (JP-A-5-92955, JP-A-4-292). No. 51046), a styrylquinolinium photosensitizer (JP-A-4-51046), a pyridinium ylide photosensitizer (JP-A-4-8706), a photopolymerization initiator and an unsaturated group-containing compound. Photosensitive components (Japanese Patent Laid-Open Nos. 8-160612, 8-328249, and 7-319160). The component (A) is used in an amount of about 4 to 24% by weight based on the solid composition.
[0014]
(B) Powder
(B) There is no particular limitation on the powder, and a material exhibiting properties such as conductivity, insulation (dielectric), light absorption, or fluorescence, depending on the type of inorganic coating pattern to be formed. Used.
[0015]
Examples of the conductive material include conventionally known conductive metal powders such as Ag, Cu, Ni, Au, Pd, Al, Ir, Ru, Rh, Re, Os, and Pt, or these. Examples thereof include conductive metal oxide powders. These can be used alone, in the form of an alloy or mixed powder.
[0016]
As the material having insulating properties (dielectric properties), for example, ceramic solid fine particles can be applied. Examples of the oxide include alumina, titanium oxide, barium titanate, ferrite, ittria, zirconia, and mullite. Examples of the carbide include silicon carbide, tungsten carbide, zirconium carbide, titanium carbide, and tantalum carbide. Examples of the nitride include silicon nitride, boron nitride, aluminum nitride, zirconium nitride, and titanium nitride. Examples of the boride include aluminum boride, titanium boride, zirconium boride, tantalum boride, tungsten boride and the like. Examples of the hydroxide include aluminum hydroxide.
[0017]
Light-absorbing materials include carbon-based pigments such as carbon black, carbon refined and carbon nanotubes, metal oxide pigments such as iron black, cobalt blue, zinc oxide, titanium oxide and chromium oxide, and sulfurization Examples thereof include sulfide pigments such as zinc, phthalocyanine pigments, metal sulfates, carbonates, silicates and phosphates, and aluminum powder, bronze powder and zinc powder. Examples of organic pigments include nitroso pigments such as naphthol green B, nitro pigments, azo or azo lake pigments such as Bordeaux 10B, lake red 4R and chromoftal red, lake pigments such as peacock blue lake and rhodamine lake. And phthalocyanine pigments such as phthalocyanine blue, selenium pigments such as thioindigo red and indatron blue, quinacridone pigments, quinacridine pigments, and isoindolinone pigments. In addition to such a pigment, a dye may be provided at the same time in order to increase the light absorbency.
[0018]
As the fluorescent material, either inorganic or organic fluorescent compounds can be used. Examples of inorganic fluorescent compounds include ZnS: Ag, MgWOFour, CaWOFour, (Ca, Zn) (POFour)2: Ti+, Ba2P2O7: Ti, BaSi2OFive,: Pb2+, Sr2P2O7: Sn2+, SrFB2O3.5: Eu2+, MgAl16O27: Eu2+And inorganic acid salts such as tungstate and sulfurate. Examples of the organic fluorescent compound include acridine orange, aminoacridine, quinacrine, anilinonaphthalene sulfonic acid derivative, anthroyloxystearic acid, auramine O, chlorotetracycline, merocyanine, 1,1′-dihexyl-2,2′-. Cyanine dyes such as oxacarbocyanine, dansylsulfoamide, dansylcholine, dansylgalacside, dansyl tolidine, dansyl chloride derivatives such as dansyl chloride, diphenylhexatriene, eosin, ε-adenosine, ethidium bromide, fluorescein, fomycin 4-benzoylamide-4′-aminostilbene-2,2′-sulfonic acid, β-naphthyl triphosphate, oxonol dye, parinaric acid derivative, perylene, N-phenylnaphthyl Amine, pyrene, safranine O, fluorescamine, fluorescein isocyanate, 7-chloronitrobenzo-2-oxa-1,3-diasol, dansylaziridine, 5- (iodoacetamidoethyl) aminonaphthalene-1-sulfonic acid, 5- Iodoacetamidofluorescein, N- (1-anilinonaphthyl4) maleimide, N- (7-dimethyl-4-methylcoumanyl) maleimide, N- (3-pyrene) maleimide, eosin-5-iodoacetamide, fluorescein mercury acetate, 2 -[4 '-(2' '-iodoacetamido)] aminonaphthalene-6-sulfonic acid, eosin, rhodamine derivatives and the like.
(B) It is preferable on the pattern formation to use (B) powder in 70 to 95 weight% with respect to solid composition. The average particle size of the conductive metal powder is preferably 0.5 to 25 μm.
[0019]
(C) Nitrate
In the present invention, by adding (C) nitrate, the effect of lowering the decomposition temperature of the organic component in the photocuring pattern (hereinafter, simply referred to as “lowering effect”) is exhibited.
(C) Examples of nitrates include ammonium nitrate, hydroxylammonium nitrate, hydrazine nitrate, calcium nitrate, potassium nitrate, sodium nitrate, lithium nitrate, aluminum nitrate, zinc nitrate, indium nitrate, yttrium nitrate, ytterbium nitrate, uranyl nitrate, Erbium nitrate, cadmium nitrate, gadolinium nitrate, gallium nitrate, silver nitrate, chromium nitrate, cobalt nitrate, samarium nitrate, zirconium nitrate, mercury nitrate, scandium nitrate, tin nitrate, strontium nitrate, cesium nitrate, cerium nitrate, cerium ammonium nitrate, thallium nitrate , Iron nitrate, terbium nitrate, copper nitrate, thorium nitrate, lead nitrate, nickel nitrate, neodymium nitrate, palladium nitrate, barium nitrate, bismuth nitrate, praseodymium nitrate, magnesium nitrate Examples include metal salts such as nesium, manganese nitrate, lanthanum nitrate, ruthenium nitrate, rubidium nitrate, ruthenium nitrate, and hydrates thereof. Among these, metal salts of nitric acid such as cerium nitrate, iron nitrate, and chromium nitrate are particularly mentioned. It is preferable because of its excellent low temperature effect.
[0020]
However, the metal salt of nitric acid, depending on the type of the metal salt, may remain in the pattern of the formed inorganic film and adversely affect its conductivity, insulation, or phosphor coloration, Salts other than metal salts such as ammonium nitrate (non-metallic salts) have a lower temperature-lowering effect than nitric acid metal salts, but have little adverse effect on the above-mentioned conductivity, insulation, or phosphor coloration. From the above, it is also a preferable aspect that a metal salt of nitric acid and a nonmetal salt are appropriately mixed and used.
In this case, the amount of the metal salt of nitric acid is about 10 to 300% by weight, particularly preferably 100 to 250% by weight, and preferably less than 10% by weight, based on the nonmetal salt of nitric acid. The effect is low, and if it exceeds 300% by weight, there is a high tendency to adversely affect the conductivity, insulation, or phosphor coloration of the inorganic film formation pattern.
The blending ratio of the component (C) depends on the composition of the components (A) to (B) and the type of nitrate, but 0.1 to 20% by weight, particularly 0.2 ~ 5 wt% is preferred.
[0021]
(D) Metal salt of organic acid
In the present invention, as with the component (C), the effect of lowering the temperature is achieved by adding the metal salt of the organic acid (D).
(D) Examples of metal salts of organic acids include monobasic acids such as formic acid, acetic acid, propionic acid and butyric acid, dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid, apple and tartaric acid , Oxycarboxylic acids such as citric acid, glycolic acid, and lactic acid, and metal salts of keto acids such as pyruvic acid, acetoacetic acid, and levulinic acid, such as iron, cerium, and chromium salts. preferable. (D) A metal salt of an organic acid is preferable because it has a higher compatibility with the composition of the present invention than (C) nitrate, and is a material close to neutrality, so that it has excellent storage stability.
In the present invention, it is preferable to use a mixture of (D) a metal salt of an organic acid and the above (C) nitrate in order to further promote the effect of lowering the temperature.
[0022]
Note that (D) the metal salt of an organic acid, like the above-mentioned metal salt of nitric acid, may adversely affect the conductivity, insulation, or phosphor coloration of the inorganic film formation pattern. It is preferable to select a non-metal salt such as ammonium nitrate or a mixed system of a metal salt and a non-metal salt.
When mixed with a nonmetallic salt of nitric acid, the blending amount of the (D) organic acid metal salt is about 10 to 300% by weight, particularly 100 to 250% by weight, based on the nonmetallic salt of nitric acid. Preferably, when used in a mixture with a metal salt of nitric acid and a non-metal salt, the total amount of the metal salt of nitric acid and the metal salt of an organic acid is approximately 10 to 300% by weight based on the non-metal salt of nitric acid. In particular, it is preferably 100 to 250% by weight.
In any of the above cases, if the blending amount of the metal salt is less than 10% by weight with respect to the non-metal salt, the effect of lowering the temperature is low, and if it exceeds 300% by weight, the conductivity of the formation pattern of the inorganic coating film, There is a higher tendency to adversely affect the insulating properties or color development of the phosphor.
The blending ratio of the component (D) depends on the composition of the components (A) to (B) and the type of the metal salt of the organic acid. 20% by weight, in particular 0.2 to 5% by weight is preferred.
[0023]
Other ingredients
In the composition of the present invention, generally known additives such as an organic polymer compound, a thermal polymerization inhibitor, a sensitizer, an adhesion improver with a substrate, a surfactant, An anti-precipitation agent (charging agent, dispersing agent) or the like can be added within a range that does not impair the object of the present invention.
[0024]
The composition of the present invention can contain an organic polymer compound. This organic polymer compound contributes to the improvement of the coating film formability.
The organic polymer compound is not particularly limited, and after coating and drying the inorganic film-forming composition of the present invention on a substrate, a good dry film can be formed, which is soluble in a developer. As a developer, an aqueous developer is preferably used as the developer from the viewpoint of the working environment. Therefore, the polymer material for film formation is also water, an aqueous alkaline solution, or a mixture of water and alcohol. A material soluble in a solvent or the like is preferable. Accordingly, preferably, the organic polymer compound used in the present invention is exemplified by a water-soluble polymer, an alkali-soluble polymer, an alcohol-soluble polymer, and the like.
[0025]
For example, the water-soluble polymer is not particularly limited as long as it is a polymer that dissolves in water, that is, water having a pH of about 5 to 8. Specifically, polyvinyl alcohol, N-methylolacrylamide-added polyvinyl alcohol, modified polyvinyl alcohol (polyvinyl alcohol / polyacrylate block copolymer, modified polyvinyl alcohol reacted with acrylic anhydride, grafted polyvinyl alcohol, etc.), carboxyalkyl Examples thereof include, but are not limited to, cellulose, polyamide having a sulfonic acid soda group, polyamide having an ether bond, polyamide having basic nitrogen or ammonium salt nitrogen, and polyvinylpyrrolidone. Among them, polyvinyl alcohol is preferably used because it is relatively inexpensive. Only one type of water-soluble polymer may be used, or two or more types may be used in combination.
[0026]
The alkali-soluble polymer can be used without particular limitation as long as it is a polymer dissolved or dispersed in an alkaline aqueous solution having a pH of about 8 or more. For example, -COOH, -POThreeH2, -SOThreeH, -SO2NH2, -SO2NH-SO2-And SO2Examples thereof include a polymer containing a group such as —NH—CO—.
Specific examples of such a polymer include maleic anhydride-modified polybutadiene, carboxyl group-containing styrene butadiene copolymer, maleic ester resin, β-methacryloyloxyethyl-N- (p-trisulfonyl) -carbamate polymer, And copolymers of monomers similar to those constituting these polymers with other monomers, vinyl acetate / crotonic acid copolymers, styrene / maleic anhydride copolymers, methacrylate esters / methacrylic acid copolymers, methacrylic acid / styrene / acrylonitrile copolymers, And cellulose acetate phthalate, but are not limited thereto. Of these, cellulose acetates are preferably used in terms of transparency and solubility. Only one alkali-soluble polymer may be used, or two or more alkali-soluble polymers may be used in combination.
[0027]
The alcohol-soluble polymer preferably includes polyacrylic acid, polymethacrylic acid, and alcohol-soluble nylon. Specific examples of the alcohol-soluble nylon include 8 nylon, 6 nylon / 66 nylon, 6 nylon / 66 nylon / 610 nylon, 6 nylon / 66 nylon / 610 nylon / 612 nylon, 4,4′-diaminodicyclohexylmethane / hexa. Examples thereof include, but are not limited to, methylenediamine / adipic acid / ε-caprolactam copolymer. Among them, polyacrylic acid, polymethacrylic acid, 8 nylon, 4,4′-diaminodicyclohexylmethane / hexamethylenediamine / adipic acid / ε-caprolactam copolymer and the like are preferably used in terms of transparency and solubility. Only one alcohol-soluble polymer may be used, or two or more alcohol-soluble polymers may be used in combination. The organic polymer compound is used in an amount of about 0.5 to 20% by weight based on the solid composition.
The composition of the present invention is preferably used in the form of a coating liquid by mixing a solid composition comprising the above components (A) to (D) and other components added as necessary with a solvent. Examples of the solvent include water, alcohol, ether, ester, etc. Among them, water, alcohol, water-alcohol mixed solvent, and the like are preferable from the viewpoint of the working environment.
[0028]
Inorganic film forming method
As an example of the inorganic film forming method of the present invention, a fluorescent pattern forming method for a color CRT (cathode ray tube) will be described below.
The composition of the present invention is applied to the inner surface of the glass panel on which the black matrix pattern is formed and dried to form a dry film.
Next, after selective exposure of radiation through a shadow mask, unexposed portions are removed using a developing solution such as water to form a photocuring pattern in the form of dots or stripes. This photo-curing pattern forming step is repeated for each phosphor of red (R), green (G), and blue (B) to create a photo-curing pattern of three colors of phosphors. A phosphor pattern is formed by heat treatment under a temperature condition in which the organic component is decomposed, for example, 500 ° C. or less.
[0029]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, these are not restrict | limited at all.
Comparative example
[0030]
[Table 1]
Component (A): photopolymerization initiator + unsaturated group-containing compound 18.04 parts by weight
[Photopolymerization initiator: benzyldimethyl ketal (0.04 parts by weight), unsaturated group-containing compound: pentaerythritol triacrylate (18.0 parts by weight)]
Component (B): Blue phosphor 80.0 parts by weight
[Product name: P22-HCB1 (manufactured by Kasei Optonics Co., Ltd.), ZnS: Ag powder (average particle size: 7-10 μm)]
Organic polymer compound: Polymethacrylic acid (degree of polymerization 2000) 2.0 parts by weight
Thermal polymerization inhibitor: Hydroquinone monomethyl ether 0.0017 parts by weight
Solvent: Water-methanol mixed solvent 100.0 parts by weight
[Water: methanol = 60: 40 (weight ratio)]
[0031]
A composition for forming an inorganic film, which is a negative photosensitive composition having the above composition, was dropped onto a glass panel rotating at 300 rpm and dried at 70 ° C. for 5 minutes to form a dry film having a thickness of 14 μm. .
Subsequently, selective exposure through a shadow mask was performed with an ultra-high pressure mercury lamp of 1 kW, and water development and drying were performed to form a photocuring pattern.
As a result of sampling a part of the photocuring pattern and performing thermogravimetric analysis (TG), the thermal decomposition temperature of the organic component was 561 ° C.
In addition, said thermal decomposition temperature was made into temperature when the inclination of TG curve became substantially 0 after the weight reduction accompanying thermal decomposition of an organic component. When the said photocuring pattern was baked at 500 degreeC for 10 minute (s), the obtained phosphor pattern was brown and it turned out that the organic component has not decomposed | disassembled completely.
[0032]
Example 1
A photocuring pattern was formed in the same manner as in the comparative example except that 0.41 part by weight of ferric nitrate was added to the negative photosensitive composition described in the comparative example. The thermal decomposition temperature of the organic component was measured.
As a result, the thermal decomposition temperature of the organic component was 475 ° C. Moreover, when the photocuring pattern was baked at 475 degreeC for 10 minute (s), the obtained phosphor pattern was white and it turned out that the organic component has decomposed | disassembled completely.
[0033]
Example 2
A photocuring pattern was formed in the same manner as in the comparative example except that 0.45 parts by weight of ammonium nitrate and 0.9 part by weight of ferric nitrate were added to the negative photosensitive composition described in the comparative example. In the same manner as described above, the thermal decomposition temperature of the organic component in the photocuring pattern was measured.
As a result, the thermal decomposition temperature of the organic component was 437 ° C. Further, when the photocured pattern was baked at 437 ° C. for 10 minutes, it was found that the obtained phosphor pattern was white and the organic component was completely decomposed.
[0034]
Example 3
A photocuring pattern was formed in the same manner as in the comparative example except that 1.46 parts by weight of ammonium iron citrate was added to the negative photosensitive composition described in the comparative example. The thermal decomposition temperature of the organic component was measured.
As a result, the thermal decomposition temperature of the organic component was 494 ° C. Further, when the photocured pattern was baked at 494 ° C. for 10 minutes, it was found that the obtained phosphor pattern was white and the organic component was completely decomposed.
[0035]
Example 4
A photocuring pattern was formed in the same manner as in the comparative example except that 0.45 part by weight of ammonium nitrate and 0.9 part by weight of ammonium iron citrate were added to the negative photosensitive composition described in the comparative example. In the same manner as described above, the thermal decomposition temperature of the organic component in the photocuring pattern was measured.
As a result, the thermal decomposition temperature of the organic component was 450 ° C. Moreover, when the photocuring pattern was baked at 450 degreeC for 10 minute (s), the obtained phosphor pattern was white and it turned out that the organic component has decomposed | disassembled completely.
[0036]
Example 5
A photocuring pattern was formed in the same manner as in the comparative example, except that 1.35 parts by weight of ferric nitrate was added to the negative photosensitive composition described in the comparative example. The thermal decomposition temperature of the organic component was measured.
As a result, the thermal decomposition temperature of the organic component was 408 ° C. Moreover, when the photocuring pattern was baked at 408 ° C. for 10 minutes, it was found that the obtained phosphor pattern was white and the organic component was completely decomposed.
[0037]
Example 6
Except for adding 1.35 parts by weight of ceric ammonium nitrate to the negative photosensitive composition described in the comparative example, a photocuring pattern was formed in the same manner as in the comparative example. The thermal decomposition temperature of the organic component in the pattern was measured.
As a result, the thermal decomposition temperature of the organic component was 386 ° C. Further, when the photocured pattern was baked at 386 ° C. for 10 minutes, it was found that the obtained phosphor pattern was white and the organic component was completely decomposed.
[0038]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, an inorganic film forming composition and an inorganic film forming method capable of forming various inorganic films such as a conductive film, an insulating film, a light absorbing film, or a phosphor film by a low-temperature baking process. Is provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of dichromate added and the decomposition temperature of PVA.

Claims (10)

水溶性ポリマー、アルカリ可溶性ポリマー、もしくはアルコール可溶性ポリマーである有機高分子化合物
(A)感光剤(ただし硝酸塩は含まない)
(B)粉末、および
(C)硝酸塩
を含んでなり、該硝酸塩は、硝酸の非金属塩、硝酸セリウム、硝酸鉄および硝酸クロムからなる群から選択された少なくとも1種を含むことを特徴とする無機被膜形成用組成物。
Organic polymer compound that is water-soluble polymer, alkali-soluble polymer, or alcohol-soluble polymer (A) Photosensitizer (however, nitrate is not included)
(B) powder, and (C) comprising nitrate, the nitrate comprising at least one selected from the group consisting of a non-metal salt of nitric acid, cerium nitrate, iron nitrate and chromium nitrate An inorganic film forming composition.
(D)有機酸の金属塩をさらに含むことを特徴とする請求項1に記載の無機被膜形成用組成物。  The composition for forming an inorganic film according to claim 1, further comprising (D) a metal salt of an organic acid. 固形組成分に対し(A)成分4〜24重量%、(B)成分70〜95重量%、(C)成分0.1〜20重量%であることを特徴とする請求項1または2に記載の無機被膜形成用組成物。  The component (A) is 4 to 24% by weight, the component (B) is 70 to 95% by weight, and the component (C) is 0.1 to 20% by weight based on the solid composition. An inorganic film forming composition. (C)成分が硝酸セリウム、硝酸鉄および硝酸クロムからなる群から選択された少なくとも1種を含むことを特徴とする請求項1ないし3のいずれか1項に記載の無機被膜形成用組成物。  (C) Component contains at least 1 sort (s) selected from the group which consists of cerium nitrate, iron nitrate, and chromium nitrate, The composition for inorganic film formation of any one of Claim 1 thru | or 3 characterized by the above-mentioned. (C)成分が、硝酸の非金属塩を含むことを特徴とする請求項1ないし4のいずれか1項に記載の無機被膜形成用組成物。  (C) Component contains the nonmetallic salt of nitric acid, The composition for inorganic film formation of any one of Claim 1 thru | or 4 characterized by the above-mentioned. (D)成分が、有機酸の鉄塩を含むことを特徴とする請求項2に記載の無機被膜形成用組成物。  The composition for forming an inorganic film according to claim 2, wherein the component (D) contains an iron salt of an organic acid. 水溶性ポリマー、アルカリ可溶性ポリマー、もしくはアルコール可溶性ポリマーである有機高分子化合物
(A)感光剤(ただし硝酸塩は含まない)
(B)粉末、および
(D)有機酸の金属塩
を含んでなることを特徴とする無機被膜形成用組成物。
Organic polymer compound that is water-soluble polymer, alkali-soluble polymer, or alcohol-soluble polymer (A) Photosensitizer (however, nitrate is not included)
A composition for forming an inorganic coating, comprising (B) a powder, and (D) a metal salt of an organic acid.
(D)成分が、有機酸の鉄塩を含むことを特徴とする請求項7に記載の無機被膜形成用組成物。  (D) Component contains the iron salt of organic acid, The composition for inorganic film formation of Claim 7 characterized by the above-mentioned. 固形組成分に対し(A)成分4〜24重量%、(B)成分70〜95重量%、(D)成分0.1〜20重量%であることを特徴とする請求項7または8に記載の無機被膜形成用組成物。  The component (A) is 4 to 24% by weight, the component (B) is 70 to 95% by weight, and the component (D) is 0.1 to 20% by weight based on the solid composition. An inorganic film forming composition. 請求項1ないし9のいずれか1項に記載の無機被膜形成用組成物を基板上に塗布し、乾燥する工程と、形成された乾燥被膜中の有機成分を500℃以下で熱分解除去せしめる工程とを有する無機被膜形成方法。  The process of apply | coating the composition for inorganic film formation of any one of Claim 1 thru | or 9 on a board | substrate, and drying, The process of carrying out the thermal decomposition removal of the organic component in the formed dry film at 500 degrees C or less An inorganic film forming method comprising:
JP19411199A 1999-07-08 1999-07-08 Composition for forming inorganic film and method for forming inorganic film Expired - Fee Related JP3912471B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19411199A JP3912471B2 (en) 1999-07-08 1999-07-08 Composition for forming inorganic film and method for forming inorganic film
TW089112901A TWI265959B (en) 1999-07-08 2000-06-29 Composition used for forming inorganic envelope and method to form inorganic envelope
CNB001204181A CN1220913C (en) 1999-07-08 2000-07-07 Composition used for forming inorganic envelope and method to form inorganic envelope
KR10-2000-0039107A KR100489741B1 (en) 1999-07-08 2000-07-08 Composition for forming inorganic film and process for forming inorganic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19411199A JP3912471B2 (en) 1999-07-08 1999-07-08 Composition for forming inorganic film and method for forming inorganic film

Publications (2)

Publication Number Publication Date
JP2001019873A JP2001019873A (en) 2001-01-23
JP3912471B2 true JP3912471B2 (en) 2007-05-09

Family

ID=16319113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19411199A Expired - Fee Related JP3912471B2 (en) 1999-07-08 1999-07-08 Composition for forming inorganic film and method for forming inorganic film

Country Status (4)

Country Link
JP (1) JP3912471B2 (en)
KR (1) KR100489741B1 (en)
CN (1) CN1220913C (en)
TW (1) TWI265959B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313582A (en) * 2001-04-17 2002-10-25 Matsushita Electric Ind Co Ltd Light emitting element and display device
JP2003326627A (en) * 2002-05-09 2003-11-19 Mitsubishi Polyester Film Copp Colored film for coating metallic sheet
JP6745977B2 (en) * 2017-03-21 2020-08-26 富士フイルム株式会社 Curable composition, cured film, light-shielding film, solid-state imaging device, solid-state imaging device, and method for producing cured film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680653B2 (en) * 1988-09-08 1994-10-12 株式会社東芝 Pattern formation method
KR930009523A (en) * 1991-11-27 1993-06-21 배동현 How to Make Pumpkin Noodles
JPH06264054A (en) * 1993-03-11 1994-09-20 Nichia Chem Ind Ltd Production of phosphor for cathode ray tube
JPH06349857A (en) * 1993-06-11 1994-12-22 Hitachi Ltd Manufacture of liquid crystal-display
JP3817749B2 (en) * 1994-03-17 2006-09-06 日産化学工業株式会社 Coating agent for pattern formation of silica-containing inorganic oxide film by ultraviolet irradiation and pattern formation method
JP3817748B2 (en) * 1994-03-17 2006-09-06 日産化学工業株式会社 Coating agent for pattern formation of inorganic oxide film by ultraviolet irradiation and pattern formation method
JP3817750B2 (en) * 1994-03-17 2006-09-06 日産化学工業株式会社 Coating agent for pattern formation of metal oxide film by ultraviolet irradiation and pattern formation method
JPH09329891A (en) * 1996-06-12 1997-12-22 Nippon Kayaku Co Ltd Resin composition, its film and its cured matter

Also Published As

Publication number Publication date
TWI265959B (en) 2006-11-11
CN1282889A (en) 2001-02-07
KR100489741B1 (en) 2005-05-16
CN1220913C (en) 2005-09-28
JP2001019873A (en) 2001-01-23
KR20010049747A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
JP3105501B2 (en) Photopolymerizable photosensitive phosphor paste composition and method of forming phosphor film on plasma display panel using the same
TWI322332B (en)
JP3912471B2 (en) Composition for forming inorganic film and method for forming inorganic film
JP2006268027A (en) Method for manufacturing plasma display panel and transfer film
TWI272638B (en) Conductive paste composition, transcription film to form electrode and electrode for plasma display panel
KR100327360B1 (en) Photosensitive paste composition with low temperature firing property for plasma display panel
JPH1090511A (en) Composition for nonconductive light shielding layer, nonconductive light shielding layer and color filter
JPS6337930B2 (en)
WO2005085360A1 (en) Composition containing inorganic powder, transfer film, and method of forming inorganic sinter
EP0081680A2 (en) Composition for and method of making picture tube fluorescent screen
JP2000007872A (en) Composition containing inorganic powder, transfer film, and production of plasma display panel using them
JP3740545B2 (en) Photosensitive base material composition for lift-off and paste pattern forming method using the same
JPH09329891A (en) Resin composition, its film and its cured matter
JP2007148438A (en) Transfer film
JPS6010064B2 (en) Composition for forming picture tube fluorescent film and method for forming picture tube fluorescent film
JPH0342318B2 (en)
JPH10134723A (en) Plasma display
KR20020011560A (en) Photopolymerization type photosensitive phosphor paste composition and method for making fluorescent layer of PDP using them
JP2003268367A (en) Fluorescent substance for forming fluorescent film and slurry thereof
JP2006045270A (en) Resin composition containing inorganic powder, transfer film and manufacturing method of plasma display panel
JP4346756B2 (en) Photosensitive composition
JPH09316148A (en) Resin composition, its film and its cured product
JPH1143522A (en) Fluophor-dispersed, ray-sensitive composition
JP2001084893A (en) Manufacture of plasma display panel
JP2986024B2 (en) Phosphor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Ref document number: 3912471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees