JP3911983B2 - 後方監視装置 - Google Patents

後方監視装置 Download PDF

Info

Publication number
JP3911983B2
JP3911983B2 JP2000297268A JP2000297268A JP3911983B2 JP 3911983 B2 JP3911983 B2 JP 3911983B2 JP 2000297268 A JP2000297268 A JP 2000297268A JP 2000297268 A JP2000297268 A JP 2000297268A JP 3911983 B2 JP3911983 B2 JP 3911983B2
Authority
JP
Japan
Prior art keywords
vehicle
host vehicle
road
lane
behind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000297268A
Other languages
English (en)
Other versions
JP2002104113A (ja
Inventor
智弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000297268A priority Critical patent/JP3911983B2/ja
Publication of JP2002104113A publication Critical patent/JP2002104113A/ja
Application granted granted Critical
Publication of JP3911983B2 publication Critical patent/JP3911983B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばカメラで自車両後方の画像を撮像し、その画像から、自車両後方の他車両を検出し、場合によっては危険を判定したり、警告を発したりする車両用の後方監視装置に関するものである。
【0002】
【従来の技術】
このような後方監視装置としては、例えば特開2000−20686号公報に記載されるものがある。この後方監視装置は、自車両の後部に、後側方に向けてビデオカメラを取付け、その自車両の走行中に得られた撮像画像の各点が全体として収束するような無限遠点又は消失点(一般にFOE:Focus of Expansionと呼ばれる)を求めると共に、前記撮像画像中に他車両の画像として認識された画像の特徴点を抽出し、その特徴点の時間的な移動を移動ベクトル、即ちオプティカルフローとして求め、このオプティカルフローが前記無限遠点又は消失点から発散する方向に向かっているか、或いは無限遠点又は消失点に収束する方向に向かっているかに応じて、隣接車線を走行中の他車両或いは後続の他車両の、自車両に対して接近してくる相対速度或いは相対距離或いは相対的位置関係を算出するものである。そして、それらの他車両の危険性を判定し、危険性有りと判定された場合には警告を発するように構成されている。
【0003】
【発明が解決しようとする課題】
ところで、前述のような後方監視装置で他車両を検出し、危険性有りと判定したときに警告を発する構成では、自車両に接近してくる他車両が、自車両と同じ車線を走行しているのか、隣接車線を走行しているのかに応じて、警告の仕方が異なる。例えば、隣接車線を走行している接近他車両に対しては、自車両が、その車線に車線変更をしようとしている場合にのみ警告が必要であるが、それ以外は警告不要である。これを達成するためには、接近他車両の走行車線を正しく検出する必要があり、従って走行車線を区分するレーンマーカ(白線)の形状を検出する必要が生じる。このため、従来の後方監視装置では、レーンマーカの画像とその他の道路や背景などの画像との輝度差を利用して、それらの間の境界、即ちエッジを求め、これによりレーンマーカの形状を検出している。
【0004】
しかしながら、このレーンマーカの検出処理は、撮像画像の広い範囲に及び、しかも検出されるエッジ画像には、画面内の他車両や物体のエッジ成分も含まれているため、レーンマーカのみを正確に検出するために複雑な認識処理が必要となり、演算処理所要時間が長くなってしまう。しかも、後方監視装置としては、前述したオプティカルフローによる他車両検出処理も行われなければならず、この演算処理も複雑であるため、トータルで必要な演算処理所要時間が膨大なものとなり、警告装置として使用するには適さない内容となってしまうという問題がある。
【0005】
処理内容を簡素化するために、前記レーンマーカ検出処理を行わず、画像内の予め設定された領域を各車線領域として、他車両検出処理のみを行う構成も考えられるが、そのようにすると、例えばカーブ路を走行している場合には、想定される車線領域と実際の車線領域とにずれが生じ、他車両の正しい走行車線検出ができず、前述したような正確な警告処理ができない。
【0006】
本発明は、これらの諸問題を解決すべく開発されたものであり、自車両の過去の挙動から、自車両後方の道路の状態を推定することにより、複雑な演算処理を行うことなく、自車両後方の他車両の走行車線を検出することが可能な後方監視装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明のうち請求項1に係る後方監視装置は、自車両の後方の画像を撮像する撮像手段と、過去の自車両の挙動から自車両後方の道路の状態を推定する後方道路状態推定手段と、前記撮像手段で撮像された画像内に、前記後方道路状態推定手段で推定された自車両後方の道路状態に応じた所定の領域を設定し、その所定の領域内で他車両を検出する他車両検出手段とを備え、前記後方道路状態推定手段は、前記過去の自車両の挙動として、旋回状態検出量と自車速とを用いて自車両後方の道路の状態を推定すると共に自車両後方の道路の消失点を算出し、前記他車両検出手段は、前記後方道路状態推定手段で算出された自車両後方の道路の消失点と前記撮像手段で撮像された自車両後方の画像上の予め設定され且つ自車両走行車線領域及び自車両走行車線の右側隣接車線領域及び自車両走行車線の左側隣接車線領域を抽出するための所定点とを結んで前記所定の領域を設定することを特徴とするものである。
【0008】
た、本発明のうち請求項2に係る後方監視装置は、前記請求項1の発明において、前記撮像手段で撮像された画像のうち、自車両近傍に所定のレーンマーカ検出領域を設定し、そのレーンマーカ検出領域でレーンマーカの位置を検出する自車両近傍レーンマーカ検出手段を備え、前記後方道路状態推定手段は、前記自車両近傍レーンマーカ検出手段で検出されたレーンマーカの位置を用いて、自車両後方の道路の状態を推定することを特徴とするものである。
【0009】
また、本発明のうち請求項に係る後方監視装置は、前記請求項1又は2の発明において、前記後方道路状態推定手段は、前記自車両近傍レーンマーカ検出手段で検出された過去所定時間のレーンマーカの位置の記録を用いて、自車両後方の道路の状態を推定することを特徴とするものである。
また、本発明のうち請求項に係る後方監視装置は、前記請求項1乃至の発明において、自車両後方の道路勾配を検出する後方道路勾配検出手段を備え、前記後方道路状態推定手段は、前記後方道路勾配検出手段で検出された自車両後方の道路勾配を用いて、自車両後方の道路の状態を推定することを特徴とするものである。
【0010】
また、本発明のうち請求項に係る後方監視装置は、前記請求項1乃至の発明において、前記後方道路状態推定手段は、所定の周波数以上の自車両挙動変化を除去する高周波数域遮断フィルタを備えたことを特徴とするものである。
また、本発明のうち請求項に係る後方監視装置は、前記請求項1乃至の発明において、前記後方道路状態推定手段は、所定の周波数域の自車両挙動変化を除去する所定周波数域遮断フィルタを備えたことを特徴とするものである。
【0011】
【発明の効果】
而して、本発明のうち請求項1に係る候補監視装置によれば、過去の自車両の挙動から自車両後方の道路の状態を推定し、算出された自車両後方の道路の消失点と撮像された自車両後方の画像上の予め設定された所定点とを結んで、撮像された自車両後方画像内に、推定された自車両後方の道路状態に応じた所定の領域を設定し、その所定の領域内で他車両を検出する構成としたため、撮像画像の広い範囲に亘ってレーンマーカを検出することなく、走行車線の凡その形状と、他車両が走行している走行車線とを検出することが可能となり、演算処理の所要時間を短縮することができる。
【0012】
また、過去の自車両の挙動として、旋回状態検出量と自車速とを用いる構成としたため、例えば旋回状態検出量として操舵角、ヨーレート、横加速度等を適用すれば、容易且つ安価に自車両挙動を検出することができ、これらから容易に自車両後方の道路状態を推定することができる。
【0013】
また、本発明のうち請求項に係る後方監視装置によれば、撮像された画像のうち、自車両近傍に所定のレーンマーカ検出領域を設定し、そのレーンマーカ検出領域でレーンマーカの位置を検出し、そのレーンマーカの位置を用いて、自車両後方の道路の状態を推定する構成としたため、自車両後方の道路状態と各走行車線の形状とを正確に検出することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。
【0014】
また、本発明のうち請求項に係る後方監視装置装置によれば、検出された過去所定時間のレーンマーカの位置の記録を用いて、自車両後方の道路の状態を推定する構成としたため、自車両後方の道路状態と各走行車線の形状とをより一層正確に検出することができ、その分だけ他車両が走行している走行車線をより一層正確に検出することが可能となる。
【0015】
また、本発明のうち請求項に係る後方監視装置によれば、自車両後方の道路勾配を検出し、その自車両後方の道路勾配を用いて、自車両後方の道路の状態を推定する構成としたため、自車両後方の道路状態を正確に検出することができ、その分だけ各走行車線の形状と他車両が走行している走行車線とを正確に検出することが可能となる。
【0016】
また、本発明のうち請求項に係る後方監視装置によれば、高周波数域遮断フィルタで所定の周波数以上の自車両挙動変化を除去する構成としたため、修正舵等による微小な車両挙動変化成分を除去して、自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。
【0017】
また、本発明のうち請求項に係る後方監視装置によれば、所定周波数域遮断フィルタで所定の周波数域の自車両挙動変化を除去する構成としたため、車線変更で生じる自車両挙動変化の周波数域を、この所定周波数遮断フィルタで除去するようにすれば、自車両の車線変更に伴う誤差の影響を除去して自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の後方監視装置を利用した警報装置の概略構成ブロック図である。この後方監視装置1は、ステアリングホイールに取付けられた操舵角センサ2で検出される操舵角θと、車速センサ3で検出される車速Vとから自車両の挙動を推定する車両挙動推定部1aを備えている。また、この後方監視装置1は、車両後部に取付けられたCCDカメラなどの車両後方カメラ4で撮像される自車両後方画像を読込み、合わせて前記車両挙動推定部1aからの自車両挙動を記憶して、自車両後方の道路状態を推定し、その自車両後方の道路状態から他車両とその走行車線とを検出する他車両検出部1bを備えている。また、この後方監視装置1は、車両に設けられているターンシグナル装置5の作動状態を読込み、合わせて前記他車両検出部1bで検出された他車両とその走行車線とから危険性を判定し、危険性有りと判定される場合に、車両に設けられた警報装置6を駆動する警報発生部1cを備えている。
【0019】
前記後方監視装置1は、マイクロコンピュータなどの演算処理装置を備えており、前記車両挙動推定部1aや、他車両検出部1bや、警報発生部1cは演算処理によって構成されている。図2は、この後方監視装置1の演算処理装置内で行われる演算処理のフローチャートであり、その演算処理装置内で所定のサンプリング時間(この場合は100msec. )毎にタイマ割込処理される。なお、このフローチャートでは、特に通信のためのステップを設けていないが、例えばフローチャート中で得られた情報は随時記憶装置に記憶されるし、必要な情報は随時記憶装置から読出される。また、各装置間も相互通信を行っており、必要な情報は、主として制御を司っている装置から常時読み込まれ、送られてきた情報は、随時記憶装置に記憶される。
【0020】
この演算処理のステップS1では、同ステップ内で行われる個別の演算処理に従って、前記車両後方カメラ4で撮像した自車両後方の全画面情報を読込み、ディジタルフィールドなどからなる配列に入力する。本実施形態では、例えば図3に示すように、全画像の右下隅部を原点とし、右上方に向けて、縦座標(垂直座標)をx座標、横座標(水平座標)をy座標として、各画素毎に色合い、明度、輝度等の情報を記憶する。
【0021】
次にステップS2に移行して、前記操舵角センサ2で検出された操舵角θを読込む。
次にステップS3に移行して、同ステップ内で行われる個別の演算処理に従って、前記ステップS2で読込んだ操舵角θの平滑化処理を行う。この操舵角θの平滑化は、微小な修正舵の影響を除去するためのものであり、そうした修正舵は比較的高周波数域の操作となるので、所定の周波数域以上の操舵角変化を除去するローパスフィルタを用いればよい。除去される周波数域は、凡そ2Hz以上である。
【0022】
次にステップS4に移行して、前記車速センサ3で検出された自車速Vを読込む。
次にステップS5に移行して、同ステップ内で行われる個別の演算処理に従って、前記平滑化されて記憶されている操舵角データ及び記憶されている自車速データを用いて、自車両の後方の道路の消失点(無限遠点)を推定する。具体的には、以下のようにして消失点の推定を行う。即ち、この後方監視装置1の記憶装置には、過去所定時間(n×ΔT)における平滑化された操舵角θk (k=0,1,…,n)及び自車速Vk (k=0,1,…,n)が記憶されている。つまり、記憶装置には、過去前記所定サンプリング時間ΔT毎にn個のデータが蓄積されており、ここではk回前の記憶されたデータがθk 、Vk であることを示す。そして、図4に示すように、自車両の後方にX軸、側方にY軸を設定し、下記1〜3式に従って、前記記憶されている操舵角θk 、自車速Vk から自車両が走行した後方道路の状態(形状)を推定する。
【0023】
【数1】
Figure 0003911983
【0024】
ここで、Kは操舵角θに対するヨー角の比を示す所定値であり、mは0からnまでの整数である。
前記1〜3式によって、前記図4の(X,Y)座標における、自車両の走行した道路状態を推定することが可能となる。前記1式、2式で算出される座標値(Xm ,Ym )は、即ち自車両が走行してきた軌跡を示す。次に、前記1式で、X座標値が所定値(例えば200m)を越えるようなmを求め、1,2式から、消失点座標(XVP,YVP)を算出する。次に、この座標値を下記4〜6式によって画像平面に逆透視変換し、図3に示す画像平面内での消失点VPの位置(xVP,yVP)を算出する。
【0025】
x=X・f/L ……… (4)
y=Y・f/L ……… (5)
L=(X2 +Y2 1/2 ……… (6)
ここで、fは車両後方カメラ4の焦点距離である。
次にステップS6に移行して、同ステップ内で行われる個別の演算処理に従って、次回以後の処理のために、操舵角データ、自車速データをメモリする。
【0026】
次にステップS7に移行して、同ステップ内で行われる個別の演算処理に従って、後方道路の領域抽出を行う。即ち、図3に示すように、前記ステップS5で算出した消失点VPに対し、予め画像内で設定されているA〜Dの各点を結び、そのうちのB点と消失点VPとを結ぶ線分と、C点と消失点VPとを結ぶ線分とで囲まれる三角形の領域を自車両走行車線領域とし、同様にA点と消失点VPとを結ぶ線分と、B点と消失点VPとを結ぶ線分とで囲まれる領域を自車両が走行している車線の右側隣接車線領域とし、同様にC点と消失点VPとを結ぶ線分と、D点と消失点VPとを結ぶ線分とで囲まれる領域を自車両が走行している車線の左側隣接車線領域とする。このようにして設定される車線領域は、レーンマーカを検出していないので、完全に実際の車線領域と一致しているわけではないが、車線の幅は或る程度決まっており、車両後方カメラ4で撮像される画像内の各レーンマーカの位置も或る程度決まっていることから、それらのレーンマーカが写り込むであろう点A〜Dと消失点VPとを結べば、凡そ各車線領域を抽出することができる。
【0027】
次にステップS8に移行して、同ステップ内で行われる個別の演算処理に従って、前記ステップS7で抽出した各車線領域毎にオプティカルフローの検出を行う。このオプティカルフローの検出は、例えば図5に示すように、各車占領域を例えば5画素四方の微小領域に分割し、前回の後方画像における各微小領域が、今回の後方画像内でどの方向に移動しているかを検出するものである。
【0028】
次にステップS9に移行して、同ステップ内で行われる個別の演算処理に従って、他車両の位置と相対速度を検出する。具体的には、前記図5に示すように、前記ステップS8で検出したオプティカルフローのうち、画像内で下方に移動するオプティカルフローは、即ち自車両に接近する物体、この場合は他車両になるので、その位置を求め、更にその位置から透視逆変換をかけることによって他車両までの距離Lが求まり、更にそのオプティカルフローの長さから他車両の相対速度Vrを求めることができる。図5の場合は、前記点A、点B、消失点VPで囲まれる右側隣接車線に画像下方へのオプティカルフロー(F部)を検出し、これが接近する他車両となる。
【0029】
次にステップS10に移行して、同ステップ内で行われる個別の演算処理に従って、運転者によるターンシグナル操作の状況を読込む。具体的には、ターンシグナルスイッチが何れの方向に操作されているかによって、運転者の車線変更の意思を検出する。
次にステップS11に移行して、同ステップ内で行われる個別の演算処理に従って、接近車両があるか否かの判定を行い、接近車両がある場合にはステップS12に移行し、そうでない場合にはメインプログラムに復帰する。具体的には、前記ステップS9で検出した他車両の位置と相対速度に合わせて、前記ステップS10で読込んだターンシグナル操作状況から、例えば前記図5で検出した右側隣接車線のF部の他車両に対し、運転者が右側の車線に車線変更しようとし、更に当該他車両が十分に速いか又は近いかを判定して、接近車両有りの判定を行う。接近状態の判定には、前記他車両までの距離Lを相対速度Vrで除した余裕時間Tpが予め設定した所定時間(例えば3秒)以下であるか否かの判定を用いてもよい。
【0030】
前記ステップS12では、同ステップ内で行われる個別の演算処理に従って、前記警報装置6に対し、所定の警報発令処理を行ってからメインプログラムに復帰する。
この演算処理では、前述のようにして、複雑なレーンマーカ検出を行うことなく、車線の凡その形状と、他車両の走行車線位置を検出することができるため、演算処理所要時間を短縮することができる。また、旋回状態検出量として操舵角θを用い、この操舵角θと自車速Vとから容易且つ安価に自車両挙動を検出することができ、これらから容易に自車両後方の道路状態を推定することができる。また、ローパスフィルタによって修正舵等による微小な車両挙動変化成分を除去することにより、自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。なお、前記車線領域の抽出では、例えば道路形状をx、yの多項式等で簡単に近似するようにすれば、より一層精度の高い車線領域抽出が可能となる。
【0031】
以上より、前記車両後方カメラ4及び図2の演算処理のステップS1が本発明の撮像手段を構成し、以下同様に、操舵角センサ2、車速センサ3及び図2の演算処理のステップS2〜ステップS6が後方道路状態推定手段を構成し、図2の演算処理のステップS7〜ステップS9が他車両検出手段を構成し、図2の演算処理のステップS3が高周波数域遮断フィルタを構成している。
【0032】
次に、本発明の後方監視装置の第2実施形態について、図6〜図9を用いて説明する。この後方監視装置の概略構成を示す図6は、前記第1実施形態の図1と類似しており、同等の構成要素には同等の符号を付してある。この実施形態では、前記他車両検出部1bと車両後方カメラ4との間に近傍白線(レーンマーカ)検出部1dが付加されている。この近傍白線検出部1dは、自車両の極近傍のレーンマーカを検出し、より正確に車線形状を検出するためのものである。
【0033】
この後方監視装置1も、実際には演算処理装置が行う演算処理によって構成されている。図7は、その演算処理のフローチャートである。この演算処理には、前記第1実施形態の図2の演算処理と同等のステップも多数存在するが、新たに付加されたステップを理解し易くするために、全てのステップの説明を行う。
この演算処理も、所定のサンプリング時間(この場合は100msec. )毎にタイマ割込処理される。なお、このフローチャートでは、特に通信のためのステップを設けていないが、例えばフローチャート中で得られた情報は随時記憶装置に記憶されるし、必要な情報は随時記憶装置から読出される。また、各装置間も相互通信を行っており、必要な情報は、主として制御を司っている装置から常時読み込まれ、送られてきた情報は、随時記憶装置に記憶される。
【0034】
この演算処理のステップS21では、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記車両後方カメラ4で撮像した自車両後方の全画面情報を読込み、ディジタルフィールドなどからなる配列に入力する。
次にステップS22に移行して、前記第1実施形態と同様に、前記操舵角センサ2で検出された操舵角θを読込む。
【0035】
次にステップS23に移行して、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記ステップS22で読込んだ操舵角θの平滑化処理を行う。
次にステップS24に移行して、同ステップ内で行われる個別の演算処理に従って、前記ステップS23で平滑化された操舵角から車線変更成分を除去する。この操舵角車線変更成分除去処理は、車線変更に伴う操舵角変化を除去するものであり、凡そ0.5〜2Hz程度の操舵角変化を、バンドパスフィルタによって除去する。
【0036】
次にステップS25に移行して、前記第1実施形態と同様に、前記車速センサ3で検出された自車速Vを読込む。
次にステップS26に移行して、同ステップ内で行われる個別の演算処理に従って、前記平滑化されて記憶されている操舵角データ及び記憶されている自車速データを用いて、自車両の後方の道路の形状(状態)を推定する。具体的には、前記第1実施形態で説明した1〜3式に従って、自車両が走行してきた軌跡を表す座標値(Xm ,Ym )を求め、夫々に前記第1実施形態で説明した4〜6式による逆透視変換を行って、画像上の道路形状座標値(xm ,ym )を算出する(図9参照)。
【0037】
次にステップS27に移行して、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、次回以後の処理のために、操舵角データ、自車速データをメモリする。
次にステップS28に移行して、同ステップ内で行われる個別の演算処理に従って、自車両近傍の白線(レーンマーカ)検出を行う。具体的には、図8に示すように、自車両後方画像の下端部、つまり自車両に最も近い部分にレーンマーカ検出領域Gを設定し、この領域G内でのみ、輝度の高い点を左右一つずつ検出する(図中のB’点、C’点)。一般に、白線のレーンマーカ画像は輝度が高く、容易に検出することができる。なお、破線のレーンマーカが途切れている部分では、レーンマーカを検出することができない。その場合には、前回検出したレーンマーカ位置を流用する。
【0038】
次にステップS29に移行して、同ステップ内で行われる個別の演算処理に従って、後方道路の領域抽出を行う。この実施形態でも、前記第1実施形態と同じ画像座標を用いているので、前記ステップS28で検出したレーンマーカ点、B’点、C’点のy座標値yB’、yC’を用い、隣接車線の仮想レーンマーカ点A’点、D’点のy座標値yA’、yD’を下記7式、8式から求める。
【0039】
yA’=yB’−(yC’−yB’) ……… (7)
yD’=yC’+(yC’−yB’) ……… (8)
次に、図9に示すように、前記ステップS26で算出した画像上の道路形状座標値(xm ,ym )を用いて、前記A’点〜D’点の夫々を通るレーンマーカ座標値(xA’m ,yA’m )〜(xD’m ,yD’m )を下記9〜13式に従って設定する。なお、x0 、y0 、xn 、yn は、夫々、mが0又はnのときのx座標値、y座標値を示している。
【0040】
xA’m =xB’m =xC’m =xD’m =xm ……… (9)
yA’m =ym +(yA’−y0 )・(xm −xn )/(x0 −xn )………(10)
yB’m =ym +(yB’−y0 )・(xm −xn )/(x0 −xn )………(11)
yC’m =ym +(yC’−y0 )・(xm −xn )/(x0 −xn )………(12)
yD’m =ym +(yD’−y0 )・(xm −xn )/(x0 −xn )………(13)
次にステップS30に移行して、同ステップ内で行われる個別の演算処理に従って、前記ステップS29で抽出した各車線領域毎にオプティカルフローの検出を行う。このオプティカルフローの検出そのものは、前記第1実施形態のそれと同等である。
【0041】
次にステップS31に移行して、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、他車両の位置と相対速度を検出する。
次にステップS32に移行して、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、運転者によるターンシグナル操作の状況を読込む。
【0042】
次にステップS33に移行して、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、接近車両があるか否かの判定を行い、接近車両がある場合にはステップS34に移行し、そうでない場合にはメインプログラムに復帰する。
前記ステップS34では、前記第1実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記警報装置6に対し、所定の警報発令処理を行ってからメインプログラムに復帰する。
【0043】
この演算処理では、前述のようにして、複雑なレーンマーカ検出を行うことなく、車線の凡その形状と、他車両の走行車線位置を検出することができるため、演算処理所要時間を短縮することができる。また、旋回状態検出量として操舵角θを用い、この操舵角θと自車速Vとから容易且つ安価に自車両挙動を検出することができ、これらから容易に自車両後方の道路状態を推定することができる。また、後方画像内自車両近傍にレーンマーカ検出領域を設定し、そのレーンマーカ検出領域でレーンマーカの位置を検出し、そのレーンマーカの位置を用いて、自車両後方の車線の形状を推定する構成としたため、自車両後方の各走行車線の形状と正確に検出することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。また、ローパスフィルタによって修正舵等による微小な車両挙動変化成分を除去することにより、自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。また、バンドパスフィルタで車線変更で生じる自車両挙動変化の周波数域を除去するようにしたため、自車両の車線変更に伴う誤差の影響を除去して自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。
【0044】
以上より、前記車両後方カメラ4及び図7の演算処理のステップS21が本発明の撮像手段を構成し、以下同様に、操舵角センサ2、車速センサ3及び図7の演算処理のステップS22〜ステップS27が後方道路状態推定手段を構成し、図7の演算処理のステップS28が自車両近傍レーンマーカ検出手段を構成し、図7の演算処理のステップS29〜ステップS31が他車両検出手段を構成し、図7の演算処理のステップS23が高周波数域遮断フィルタを構成し、図7の演算処理のステップS24が所定周波数域遮断フィルタを構成している。
【0045】
次に、本発明の後方監視装置の第3実施形態について、図10〜図12を用いて説明する。この後方監視装置の概略構成を示す図10は、前記第2実施形態の図6と類似しており、同等の構成要素には同等の符号を付してある。この実施形態では、前記車両挙動推定部1aへの入力に、道路の勾配を検出する勾配センサ7が付加されている。この勾配センサ7としては、例えば特開平9−133699号公報や特開平7−172128号公報に記載されるものが適用可能である。
【0046】
この後方監視装置1も、実際には演算処理装置が行う演算処理によって構成されている。図11は、その演算処理のフローチャートである。この演算処理には、前記第1実施形態の図2や第2実施形態の図7の演算処理と同等のステップも多数存在するが、新たに付加されたステップを理解し易くするために、全てのステップの説明を行う。
【0047】
この演算処理も、所定のサンプリング時間(この場合は100msec. )毎にタイマ割込処理される。なお、このフローチャートでは、特に通信のためのステップを設けていないが、例えばフローチャート中で得られた情報は随時記憶装置に記憶されるし、必要な情報は随時記憶装置から読出される。また、各装置間も相互通信を行っており、必要な情報は、主として制御を司っている装置から常時読み込まれ、送られてきた情報は、随時記憶装置に記憶される。
【0048】
この演算処理のステップS41では、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記車両後方カメラ4で撮像した自車両後方の全画面情報を読込み、ディジタルフィールドなどからなる配列に入力する。
次にステップS42に移行して、前記第1、第2実施形態と同様に、前記操舵角センサ2で検出された操舵角θを読込む。
【0049】
次にステップS43に移行して、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記ステップS42で読込んだ操舵角θの平滑化処理を行う。
次にステップS44に移行して、前記第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記ステップS43で平滑化された操舵角から車線変更成分を除去する。
【0050】
次にステップS45に移行して、前記第1、第2実施形態と同様に、前記車速センサ3で検出された自車速Vを読込む。
次にステップS46に移行して、前記勾配センサ7で検出された道路勾配αを読込む。
次にステップS47に移行して、同ステップ内で行われる個別の演算処理に従って、前記平滑化されて記憶されている操舵角データ及び記憶されている自車速データ及び記憶されている道路勾配データを用いて、自車両の後方の道路の形状(状態)を三次元的に推定する。具体的には、前記第1実施形態で説明した図4のX軸、Y軸に加えて、鉛直方向にZ軸を設定し、前記第1実施形態で説明した1〜3式に加えて、下記14式に従って、自車両が走行してきた軌跡を表す座標値(Xm ,Ym ,Zm )を求め、夫々に前記第1実施形態で説明した4〜6式に加えて、下記15式による逆透視変換を行って、画像上の道路形状座標値(xm ,ym ,zm )を算出する。
【0051】
【数2】
Figure 0003911983
【0052】
z=Z・f/L ………(15)
次にステップS48に移行して、同ステップ内で行われる個別の演算処理に従って、次回以後の処理のために、操舵角データ、自車速データ、道路勾配データをメモリする。
次にステップS49に移行して、前記第2実施形態と同様にして、同ステップ内で行われる個別の演算処理に従って、自車両近傍の白線(レーンマーカ)検出を行う。
【0053】
次にステップS50に移行して、前記ステップS49で検出したレーンマーカの位置、即ち前記B’点、C’点のy座標値yB’0 、yC’0 をメモリする。次にステップS51に移行して、同ステップ内で行われる個別の演算処理に従って、後方道路の領域抽出を行う。この実施形態でも、前記第1実施形態と同じ画像座標を用いているので、前記ステップS49で検出したレーンマーカ点、B’点、C’点の最新のy座標値yB’0 、yC’0 を用い、隣接車線の仮想レーンマーカ点A’点、D’点のy座標値yA’0 、yD’0 を下記16式、17式から求める。
【0054】
yA’0 =yB’0 −(yC’0 −yB’0 ) ………(16)
yD’0 =yC’0 +(yC’0 −yB’0 ) ………(17)
次に、図12に示すように、前記ステップS47で算出した画像上の道路形状座標値(xm ,ym ,zm )を用いて、前記A’点〜D’点の夫々を通るレーンマーカ座標値(xA’m ,yA’m ,zA’m )〜(xD’m ,yD’m ,zD’m )を下記18〜23式に従って設定する。
【0055】
xA’m =xB’m =xC’m =xD’m =xm ………(18)
yA’m =ym +(yA’0 −y0 )・(xm −xn )/(x0 −xn )………(19)
yB’m =ym +(yB’0 −y0 )・(xm −xn )/(x0 −xn )………(20)
yC’m =ym +(yC’0 −y0 )・(xm −xn )/(x0 −xn )………(21)
yD’m =ym +(yD’0 −y0 )・(xm −xn )/(x0 −xn )………(22)
zA’m =zB’m =zC’m =zD’m =zm ………(23)
次にステップS52に移行して、同ステップ内で行われる個別の演算処理に従って、前記ステップS51で抽出した各車線領域毎にオプティカルフローの検出を行う。このオプティカルフローの検出そのものは、前記第1実施形態のそれと同等である。
【0056】
次にステップS53に移行して、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、他車両の位置と相対速度を検出する。次にステップS54に移行して、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、運転者によるターンシグナル操作の状況を読込む。
【0057】
次にステップS55に移行して、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、接近車両があるか否かの判定を行い、接近車両がある場合にはステップS56に移行し、そうでない場合にはメインプログラムに復帰する。
前記ステップS56では、前記第1、第2実施形態と同様に、同ステップ内で行われる個別の演算処理に従って、前記警報装置6に対し、所定の警報発令処理を行ってからメインプログラムに復帰する。
【0058】
この演算処理では、前述のようにして、複雑なレーンマーカ検出を行うことなく、車線の凡その形状と、他車両の走行車線位置を検出することができるため、演算処理所要時間を短縮することができる。また、旋回状態検出量として操舵角θを用い、この操舵角θと自車速Vとから容易且つ安価に自車両挙動を検出することができ、これらから容易に自車両後方の道路状態を推定することができる。また、後方画像内自車両近傍にレーンマーカ検出領域を設定し、そのレーンマーカ検出領域でレーンマーカの位置を検出し、そのレーンマーカの位置を用いて、自車両後方の車線の形状を推定する構成としたため、自車両後方の各走行車線の形状を正確に検出することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。また、検出された過去所定時間のレーンマーカの位置の記録を用いて、自車両後方の道路の状態を推定する構成としたため、自車両後方の各走行車線の形状をより一層正確に検出することができ、その分だけ他車両が走行している走行車線をより一層正確に検出することが可能となる。また、検出した道路勾配をを用いて、自車両後方の道路の状態を推定する構成としたため、自車両後方の道路状態を正確に検出することができ、その分だけ各走行車線の形状と他車両が走行している走行車線とを正確に検出することが可能となる。また、ローパスフィルタによって修正舵等による微小な車両挙動変化成分を除去することにより、自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。また、バンドパスフィルタで車線変更で生じる自車両挙動変化の周波数域を除去するようにしたため、自車両の車線変更に伴う誤差の影響を除去して自車両後方の道路状態を安定して推定することができ、その分だけ他車両が走行している走行車線を正確に検出することが可能となる。
【0059】
以上より、前記車両後方カメラ4及び図11の演算処理のステップS41が本発明の撮像手段を構成し、以下同様に、前記勾配センサ7及び図11の演算処理のステップS46が道路勾配検出手段を構成し、操舵角センサ2、車速センサ3及び図11の演算処理のステップS42〜ステップS48が後方道路状態推定手段を構成し、図11の演算処理のステップS49、ステップS50が自車両近傍レーンマーカ検出手段を構成し、図11の演算処理のステップS51〜ステップS53が他車両検出手段を構成し、図11の演算処理のステップS43が高周波数域遮断フィルタを構成し、図11の演算処理のステップS44が所定周波数域遮断フィルタを構成している。
【0060】
なお、前記各実施形態では、旋回状態検出手段として操舵角センサを用いたが、これに代えて、或いは加えて、自車両のヨーレートを検出するヨーレートセンサや、自車両の横加速度を検出する横加速度センサを用いてもよい。
また、道路勾配を検出する手段として勾配センサを用いたが、これに代えて、例えばエンジン出力を推定するスロットル開度と車体の加減速度を検出する前後加速度センサとを組合せて道路勾配を検出することも可能である。
【0061】
また、前記各実施形態では、夫々の演算処理装置にマイクロコンピュータを用いたが、これに代えて各種の論理回路を用いることも可能である。
【図面の簡単な説明】
【図1】本発明の後方監視装置の第1実施形態を示すシステム構成図である。
【図2】図1の後方監視装置で行われる演算処理のフローチャートである。
【図3】図2の演算処理の説明図である。
【図4】図2の演算処理の説明図である。
【図5】図2の演算処理の説明図である。
【図6】本発明の後方監視装置の第2実施形態を示すシステム構成図である。
【図7】図6の後方監視装置で行われる演算処理のフローチャートである。
【図8】図7の演算処理の説明図である。
【図9】図7の演算処理の説明図である。
【図10】本発明の後方監視装置の第3実施形態を示すシステム構成図である。
【図11】図10の後方監視装置で行われる演算処理のフローチャートである。
【図12】図11の演算処理の説明図である。
【符号の説明】
1は後方監視装置
2は操舵角センサ
3は車速センサ
4は車両後方カメラ
5はターンシグナル装置
6は警報装置
7は勾配センサ

Claims (6)

  1. 自車両の後方の画像を撮像する撮像手段と、過去の自車両の挙動から自車両後方の道路の状態を推定する後方道路状態推定手段と、前記撮像手段で撮像された画像内に、前記後方道路状態推定手段で推定された自車両後方の道路状態に応じた所定の領域を設定し、その所定の領域内で他車両を検出する他車両検出手段とを備え、前記後方道路状態推定手段は、前記過去の自車両の挙動として、旋回状態検出量と自車速とを用いて自車両後方の道路の状態を推定すると共に自車両後方の道路の消失点を算出し、前記他車両検出手段は、前記後方道路状態推定手段で算出された自車両後方の道路の消失点と前記撮像手段で撮像された自車両後方の画像上の予め設定され且つ自車両走行車線領域及び自車両走行車線の右側隣接車線領域及び自車両走行車線の左側隣接車線領域を抽出するための所定点とを結んで前記所定の領域を設定することを特徴とする後方監視装置。
  2. 前記撮像手段で撮像された画像のうち、自車両近傍に所定のレーンマーカ検出領域を設定し、そのレーンマーカ検出領域でレーンマーカの位置を検出する自車両近傍レーンマーカ検出手段を備え、前記後方道路状態推定手段は、前記自車両近傍レーンマーカ検出手段で検出されたレーンマーカの位置を用いて、自車両後方の道路の状態を推定することを特徴とする請求項1に記載の後方監視装置。
  3. 前記後方道路状態推定手段は、前記自車両近傍レーンマーカ検出手段で検出された過去所定時間のレーンマーカの位置の記録を用いて、自車両後方の道路の状態を推定することを特徴とする請求項1又は2に記載の後方監視装置。
  4. 自車両後方の道路勾配を検出する後方道路勾配検出手段を備え、前記後方道路状態推定手段は、前記後方道路勾配検出手段で検出された自車両後方の道路勾配を用いて、自車両後方の道路の状態を推定することを特徴とする請求項1乃至3の何れか一項に記載の後方監視装置。
  5. 前記後方道路状態推定手段は、所定の周波数以上の自車両挙動変化を除去する高周波数域遮断フィルタを備えたことを特徴とする請求項1乃至4の何れか一項に記載の後方監視装置。
  6. 前記後方道路状態推定手段は、所定の周波数域の自車両挙動変化を除去する所定周波数域遮断フィルタを備えたことを特徴とする1乃至5の何れか一項に記載の後方監視装置。
JP2000297268A 2000-09-28 2000-09-28 後方監視装置 Expired - Fee Related JP3911983B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297268A JP3911983B2 (ja) 2000-09-28 2000-09-28 後方監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297268A JP3911983B2 (ja) 2000-09-28 2000-09-28 後方監視装置

Publications (2)

Publication Number Publication Date
JP2002104113A JP2002104113A (ja) 2002-04-10
JP3911983B2 true JP3911983B2 (ja) 2007-05-09

Family

ID=18779404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297268A Expired - Fee Related JP3911983B2 (ja) 2000-09-28 2000-09-28 後方監視装置

Country Status (1)

Country Link
JP (1) JP3911983B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266220B2 (en) 2002-05-09 2007-09-04 Matsushita Electric Industrial Co., Ltd. Monitoring device, monitoring method and program for monitoring
JP2004101481A (ja) * 2002-09-12 2004-04-02 Matsushita Electric Works Ltd レーダ装置
JP2005205930A (ja) * 2004-01-20 2005-08-04 Clarion Co Ltd ドライブレコーダ装置
JP2009116723A (ja) * 2007-11-08 2009-05-28 Denso Corp 車線変更支援装置
JP4952561B2 (ja) * 2007-12-13 2012-06-13 株式会社デンソー 車載用画像処理装置及び車載用画像表示装置
JP4533936B2 (ja) 2008-02-01 2010-09-01 日立オートモティブシステムズ株式会社 画像処理装置、及びこれを備えた車両検知装置
JP5361901B2 (ja) 2008-10-31 2013-12-04 株式会社小糸製作所 前照灯制御装置
JP6295524B2 (ja) * 2013-07-02 2018-03-20 日産自動車株式会社 光軸補正装置
JP6256509B2 (ja) * 2016-03-30 2018-01-10 マツダ株式会社 電子ミラー制御装置
KR102177614B1 (ko) * 2020-01-09 2020-11-12 렉스젠(주) 교통 정보 수집을 위한 차로 생성 시스템 및 그 방법
GB2598082A (en) * 2020-07-08 2022-02-23 Continental Automotive Gmbh Road mirror detection system and method
KR102388054B1 (ko) * 2020-12-17 2022-04-21 (주)우신특장 공사차량 충돌방지시스템

Also Published As

Publication number Publication date
JP2002104113A (ja) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4962581B2 (ja) 区画線検出装置
US8730325B2 (en) Traveling lane detector
JP6045889B2 (ja) 車載用制御装置
JP3911983B2 (ja) 後方監視装置
JPH11203445A (ja) 車両用画像処理装置
JP2011065219A (ja) 道路曲率推定装置
JP2020067698A (ja) 区画線検出装置及び区画線検出方法
JP2008257378A (ja) 物体検出装置
JP5539250B2 (ja) 接近物体検知装置及び接近物体検知方法
JP3823782B2 (ja) 先行車両認識装置
JP3562250B2 (ja) 先行車両検出装置
JP2012252501A (ja) 走行路認識装置及び走行路認識用プログラム
JP3868915B2 (ja) 前方監視装置及びその方法
JP2002236927A (ja) 車線モデリングシステムの曲線路認識方法
JP3729005B2 (ja) 車両の後方監視装置
JP2005170290A (ja) 障害物検出装置
JP6174884B2 (ja) 車外環境認識装置および車外環境認識方法
JPH1011585A (ja) 物体検出装置
WO2022009537A1 (ja) 画像処理装置
JP3732108B2 (ja) 車線認識のための画像処理装置並びに画像処理法
JP4897539B2 (ja) 障害物検知装置
JP2007233469A (ja) 物体検出装置及びその方法
JP2005267331A (ja) 車両周囲監視装置
JP2007233487A (ja) 歩行者検出方法、装置、およびプログラム
JP4314870B2 (ja) 車線検出装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees