JP3911219B2 - 連続流下式人工ゼオライト製造装置 - Google Patents

連続流下式人工ゼオライト製造装置 Download PDF

Info

Publication number
JP3911219B2
JP3911219B2 JP2002244233A JP2002244233A JP3911219B2 JP 3911219 B2 JP3911219 B2 JP 3911219B2 JP 2002244233 A JP2002244233 A JP 2002244233A JP 2002244233 A JP2002244233 A JP 2002244233A JP 3911219 B2 JP3911219 B2 JP 3911219B2
Authority
JP
Japan
Prior art keywords
slurry
flow path
output
flow
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002244233A
Other languages
English (en)
Other versions
JP2004083313A5 (ja
JP2004083313A (ja
Inventor
玉 小笠原
Original Assignee
有限会社新日本ゼオライト
株式会社Ohcカーボン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社新日本ゼオライト, 株式会社Ohcカーボン filed Critical 有限会社新日本ゼオライト
Priority to JP2002244233A priority Critical patent/JP3911219B2/ja
Publication of JP2004083313A publication Critical patent/JP2004083313A/ja
Publication of JP2004083313A5 publication Critical patent/JP2004083313A5/ja
Application granted granted Critical
Publication of JP3911219B2 publication Critical patent/JP3911219B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フライアッシュ等の石炭灰、天然パーライトの焼成物など人工ゼオライトの原料粉末にアルカリ水溶液を添加してスラリー化し、これを連続的に熱水処理し、効率良くNa型又はK型の人工ゼオライトを製造する装置に関する。特に、本発明で特に構成された流下流路装置を用いて格別簡易な設備で熱水処理を効率よく実行し、製品を安定して割安に製造し得ると共に、その加熱保持及び冷却の制御を予め定められた仕様書通りに正確に行うことにより、完成された人工ゼオライトの品質、特に陽イオン交換能力(CEC)を格別高くすることができるようにした連続流下式人工ゼオライト製造装置に関する。
【0002】
【従来の技術】
近年、人工ゼオライトの需要が高まり、その製造装置たるプラントが各所で建設されつつある。従来の人工ゼオライトの製造方法及び装置の例としては、例えば特開平6−321525号公報(改質石炭灰の製造方法)に示されるものの例がある。この方法は、その公報の特許請求の範囲に記載の通り、「石炭灰にアルカリ水溶液を添加し、撹拌しながらスラリー化して温度90〜100℃にて熱水処理した後に、該スラリー温度70℃以下の条件にて脱液機により余剰のアルカリ水溶液と生成結晶物を分離精製することを特徴とする改質石炭灰の製造方法」である。
【0003】
この方法は、100℃以上の高温、例えば130℃で熱水処理すると、必然的に加圧処理が必要で設備が大型となり運転費も高くなることを避けるため、100℃以下の低温で処理するようにしたものである。現在実際プラント建設されて稼働され、人工ゼオライト、特に石炭灰の改質設備として注目され、一つの見本となっている。
【0004】
しかしながら、実際建設され、見本となっている上記プラントにあっては、実際稼働すると、次のような不具合いが散見される。まず、バッチ処理であり、固液比、即ち1kgの原料粉末に対して3〜4リットルのアルカリ水溶液を混合するため、スラリー容量が大であり、1回当り10トンの人工ゼオライトを製造するには最低40トンのタンクが必要であり、必ずしも設備を小型化できない。又大型釜によるバッチ処理であるので、自ずと最大処理能力に限界が生ずる。
【0005】
さらに、完成された人工ゼオライトの品質が安定せず、高品質の人工ゼオライト、即ち陽イオン交換容量CEC(meq/100g)を高くできないという問題点がある。その理由について示すと、一般に人工ゼオライトの熱水処理では次表1に示すように、一定の反応温度で一定時間保持することにより最高のCECが得られることが知られている。また識者の知見では、投入及び排出を含め昇温、降温は直線的温度変化であることを予定して、長くとも反応時間の1/2内とすべきであり、より好ましくは急冷すべきであることが教示されている。いわば台形的制御が基本構成となっている。オーバ反応も好ましくない。
【0006】
【表1】
Figure 0003911219
にも拘わらず、従来の低温釜型の人工ゼオライト製造装置では、投入時間、加熱時間、排出時間が反応に大きく影響し、反応誤差、即ち最大反応及び最小反応の偏差が余りにも大きく、上記教示の枠を超え、品質を大幅に劣化しているのである。また、熱水処理における加熱温度は、100℃より上の高温の方が品質上は好ましく、かつ所要のアルカリ量も少なくて済むこと等が知られている。
【0007】
また、従来、上記バッチ式の欠点を除去し、効率アップを図ることを目的として特開2002―37622号公報(人工ゼオライトの製造方法及び人工ゼオライトの製造装置)が提案されている。この方法及び装置は、人工ゼオライトの原料をアルカリ水溶液に混入して成るスラリーを長尺の横置き型の連続した反応管内に連続的に送り込み、人工ゼオライトを連続的に製造することを試みたものである。しかしながら、この公報による人工ゼオライトの製造装置では、原料粉末の物理的性状に関連して実用上少なからず問題点が有る。
【0008】
第1に、反応管が横型とされている点が問題である。何故なら、例えば石炭灰がフライアッシュである場合、粉末は、蒿比重0.8〜1.0で、粒径は0.2mm〜1μ以下であり、各粒径によって、アルカリ水溶液中での沈澱速度に相当大きな差があり、反応管内を流れるスラリー中で、大径粒子の沈澱を生じる可能性がある。そこで、大径粒子の沈澱を生じさせないためには、勢い流速を1m/s程度以上に上昇させなければならない点である。前述したように、反応時間は、130〜140℃でも30分必要であり、流速を1m/sとすれば、この間にスラリーは、1800m(4m×450本)進むので、例えば管径10cmにて、長さ1800mの管長が必要となるという点である。これは、平面上で蛇行させようとも相当長大な設備となる。保守、点検、メンテナンス、加えて毎日の運転の開始、終了時におけるスラリー交換作業等を考慮すると、実施が実際困難となることが予測される。
【0009】
第2に、段状に蛇行された横型の連続した1本の反応管では、スラリーを上から下に、又は下から上に流すにしろ前記粒径に応じた各粒子の反応時間の制御が困難であり、粒径に応じて大きな反応誤差が生じるという点である。この誤差は、流速を降下させると更に大となる。反応誤差が大となると当然に全体としてCECが低くなり、品質劣化する。
【0010】
第3に、近年、人工ゼオライトを塩共存下の下に効率よく反応させる方法が提案されているが、アルカリ水溶液として海水等の塩共存下溶液を用いる場合、管路を鉄やステンレス、銅等の金属で作ることができない。テフロン(登録商標)コーティングや琺瑯ならば対応可能と考えられるが、管路が長過ぎ、接続部分での被膜処理が困難で、その実施が困難と考えられる。
【0011】
第4に、反応管を立型として上下に蛇行させ、流速を1/10に低下させ、それに伴い管長低下を図ることが考えられるが、それでも管路が連続しているので管路全体をコーティングするのが困難であり、また、長尺の連続的管路は、保持、点検、メンテナンスにも利便性が悪く、更なる改良が必要とされてきた。
【0012】
【発明が解決しようとする課題】
以上の通り、従来のバッチ式に代わる連続式の人工ゼオライト製造装置は、反応装置として連続した長大な反応管を必要とするため、管長大で設備が大がかりなものとなると共に、原料粉末の粒径に応じて愛昧な反応誤差を生じ、品質劣化するという問題点があった。また、管内コーティングが困難で、また、保持、点検、メンテナンスの利便性が悪いという問題点があった。
【0013】
そこで、本発明は、連続式でありながら設備を極めて簡易化でき、運転、保守、点検、メンテナンスが容易で、運転コストを一層低減することができ、しかも粒径に応じた粒子の遅れをうまく制御して、より高品質の人工ゼオライトを効率良く製造することができる連続流下式人工ゼオライト製造装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決することのできる本発明の第一の人工ゼオライト製造装置は、100℃近くの低温熱水処理に対応するもので、人工ゼオライトの原料にアルカリ水溶液を添加して生成されたスラリーを単位時間当り一定量づつ連続的に出力するスラリー連続出力装置と、
一方の立型流路の上端から入力されたスラリーを他方の立型流路上端から流下出力する機能的にはU字形状の立型流路ユニットを直列に多数連結して成り、前段ユニットから流下出力されるスラリーを順次次段のユニットに流下させる形で長尺の上下蛇行流路を形成した流下流路装置と、
前記流下流路装置を流れるスラリーを100℃に近い温度に加熱保持する加熱保持装置と、
前記流下流路装置から出力される反応後のスラリーと前記スラリー連続出力装置から出力される反応前のスラリーとを向流させ、両スラリーの保有熱量を相互に交換し合う向流式熱交換装置と、を備えたことを特徴とする。
【0015】
原料粉末としては、フライアッシュや天然パーライトの焼成物を粉砕して得られる粒径1mm以下の粉末等を用いることができる。粉末粒子は、これをアルカリ水溶液に混入した場合の沈澱速度vcm/sを計測した上で選択使用する。
【0016】
例えば、フライアッシュの粒径は0.2mm〜1μm以下の様々な分布を有し、粒径0.1mmのフライアッシュの沈澱速度は3〜5cm/s位であるのに対し、粒径0.1μmのフライアッシュの沈澱速度は0.005cm/sと相当遅い。従って、このフライアッシュを搬送する流速Vcm/sは、必ず5cm/s以上としなければならない。逆に、流速VをV1として定める場合、この流速V1で搬送できる値として、原料の粒径を制限しなければならない。実用的な見地から、原料ゼオライトの最大粒径は1mmが限度であり、これ以上の粒径原料は、流速を無闇に上昇させなければならないので、本発明には適用し難い。
【0017】
スラリー連続出力装置としては、例えば一定時間一定量のスラリーを吐出する定量ポンプの例がある。または、一定サイズの管から一定圧でスラリーを吐出させる例がある。一般には、スラリー連続出力装置の前段には、スラリー撹拌ないし溶解装置を付属させる。これは、加熱装置を50〜70℃で数十分〜2時間程度混練し、原料のケイ酸アルミをある程度溶解させておくというものである。従って、一般には、スラリー連続出力装置は、70℃に予熱されたスラリーを反応装置に対し吐出する形となる。
【0018】
流下流路装置は、一方の立型流路の上端から入力されたスラリーを他方の立型流路の上端から流下する機能的にはU字形状の立型流路ユニットを直列に多数連続して成る。機能的にとは、一本の管をU字形状に曲げたものや、2本の短管の底部をエネルギーを用いて接続したものの他、2本の短管の底部を直接的に短管を用いて接続する等により、上下往復路を構成したもの全てを含むことを意味する。流速一定とすることにより、続流路により、反応時間を正確に保つことができる。即ち、スラリーは、各ユニットを経由し、順次次のユニットに自然流下される。U字形状の立型流路ユニットは、例えば、一対の一定長の管材を並列に並べて立て、その下端をU字管やジョイント材で接続して構成される。ジョイント材としては、U字状の接続部材を用いても良く、相互に短直管で接続しても良い。各流路の上端位置は管材の切断面で定まるものでは無く、一般には、これら流路に夫夫接続されるスラリー入出力用の管の高さ位置で定まる。
【0019】
流下流路装置のスラリー入口から投入された原料スラリーは、流路を上下に蛇行しながら出口へ向う。原料粉末は、アルカリ水溶液の流れに対し、上方への流れに対しては遅れ、下方への流れに対しては進む。粒子の沈澱速度をv、流速をVとするとき、上下蛇行流路に対する粒子の流れに対する遅延率δは、次の数式1で示される。
【0020】
【数1】
Figure 0003911219
数式1において、具体的な値で示すと、v=5cm/s、V=10cm/sのとき、δ=33%となる。V=15cm/sとすればδ=12.5%である。人工ゼオライトの生成反応は、粒子分子の分解と再結合に起因するものであるから、大径粒子において遅延時間が発生するのは、まさに好都合である。そもそも、従来の反応時間の設定は、実験室で大径粒子を基準として定められていたものであるから、本発明の沈殿速度の理論から、反応時間は、遅延時間分だけ短く設定して良いことになる。従って、原料粉末の最大粒径のものについての沈澱速度vを計測し、それに合わせて流速Vを定めれば、粒子の流れに対する遅延率δを制御でき、その反応時間、及び流路総長を短くすることができる。流路を上下に形成する最大の利点である。流速Vを最大粒径粒子の沈澱速度vより大としなければならない点を数式で示すと、次の数式2が成立する。
【0021】
【数2】
Figure 0003911219
数式2において、流速Vを余りに大とすると、所要の反応時間を確保するのに必要な流路総長Lが大となる。従って、この限りにおいて流速Vは小さい方が良い。これらのことから、流速Vは、沈澱速度vの1.5〜3倍の範囲で定める。
【0022】
加熱保持装置は、流下流路装置、加熱するヒータやそれを囲む温水槽等で構成できる。加熱温度は、98〜100℃の間に制御するのが一般的である。温度一定に保持することにより、品質安定を保つことができる。
【0023】
向流式の熱交換装置は、前記流下流路装置から出力される反応後のスラリーと前記スラリー連続出力装置から出力される反応前のスラリーとを向流させ、両スラリーの保持熱量を相互に交換し、入力スラリーを反応温度近くまで上昇させ、出力スラリーを70℃近くまで急冷する。出力スラリーは、続いて、低温タンクや冷水で熱交換し、常温まで一気に急冷することができる。
【0024】
以上示した流下流路装置の構成において、流路の断面面積をSm、流速をVcm/s、時間当りのスラリー処理量をQm/H、反応時間をt分、流路総長をLm、とすると、これらの間には、次の数式3、4が成立する。
【0025】
【数3】
Figure 0003911219
【数4】
Figure 0003911219
数式3及び数式4において、具体例を示すと、例えば時間当り1トンのフライアッシュを製造するとき、固液比4の場合、5mのスラリーが処理されなければならない。最大粒径0.3mmであれば、沈澱速度5cm/sであるので、流速Vは、例えば10cm/sに設定する。この場合の遅延率δは33%である。反応温度98℃にて、150分加熱反応させるとするとき、時間当り1トンのフライアッシュを製造するものとしてこれらの関係を表2に示す。
【0026】
【表2】
Figure 0003911219
断面積Sが55cmの管径は8.73cmである。管径を2倍とすれば、4倍の量の処理を行うことができる。遅延率δを参照して反応時間を30%短縮すれば、反応時間は105分で済む。流路総長1mも、900mのところ、630mで済む。
【0027】
本発明の連続流下式人工ゼオライト製造装置によれば、スラリー連続出力装置から連続的に出力されるスラリーを流下流路装置に送ることにより、反応温度一定にして、反応時間を一定とし、高品質高CECの人工ゼオライトを製造することができる。
【0028】
本発明の第2の連続流下式人工ゼオライト製造装置は、100℃より上の高温熱水処理に対応可能としたもので、人工ゼオライトの原料にアルカリ水溶液を添加して生成されたスラリーを連続的に加圧して出力するスラリー連続出力装置と、
一方の立型流路の上端から入力されたスラリーを他方の立型流路の上端から流下出力する機能的にはU字形状の立型流路ユニットを直列に多数連結して成り、前段ユニットから流下出力されるスラリーを順次次段のユニットに流下させる形で長尺の上下蛇行流路を形成した流下流路装置と、
前記流下流路装置を流れるスラリーを 100℃より高い温度に加熱保持する加熱保持装置と、
前記流下流路装置の各流路を同圧に維持する均圧化装置と、
前記流下流路装置から出力される反応後のスラリー及び前記スラリー連続出力装置から出力される反応前のスラリーとを向流させ、両スラリーの保有熱量を相互に交換し合う向流式熱交換装置と、
前記流下流路装置から出力されるスラリーに、前記均圧化装置で定まる圧力より低い値の圧力に近い圧力を掛けつつ、前記スラリー連続出力装置が出力する量のスラリーを順次排出する背圧弁的機能弁と、を備えたこを特徴とする。
【0029】
本発明の高温熱水処理対応のものは、前述の低温熱水処理対応のものに比べ、スラリーを連続的に加圧して出力する点と、均圧化装置を設けた点と、背圧弁的機能弁を設けた点が大きく異なる。
【0030】
均圧化装置は、高温熱水処理による0.2〜0.6Psの高圧下に伴って、この加圧下で各ユニット間で自然な流れを形成可能とすべく、流下流路装置の各流路を同圧に維持するために構成される。各流路開放端を同圧に維持する手段としては、各流路の上端を均圧管で接続するか、若しくは、各流路を同圧容器内に配置する等の例がある。各流路を同圧に維持することにより、各流路が大気圧下に置かれた場合、即ち低温熱水処理の場合と同様の流れを形成することができる。
【0031】
背圧弁的機能弁は、高温熱水処理では、流下流路装置を加圧し、これにスラリーを加圧して供給するので、流下流路装置の出力側に、例えば背圧弁を必要とする。背圧弁の設定圧は、流下流路装置を同圧か又はそれより少し低い値とする。ただし、その制御範囲が0.005Ps以上の場合には、流下流路装置内の最終段ユニットの水位変動が大きくなり、スラリーの円滑な流れが阻止される可能性がある。そこで、本発明では、背圧弁的機能弁として、最終段ユニット又はその次段に水位センサを設け、この水位を一定に保つような背圧弁の制御圧力を変化させることも行う。極端には、背圧弁を単に開閉弁とし、これを前記水位センサで開閉制御することでも対応できる。主副開閉弁を設け、水位に応じ、バイパス弁のみを開閉制御することでも対応できる。背圧弁的機能弁は、要は、流下流路装置の流れを阻止すること無く、高性能背圧弁を設けたのと同等に入力スラリーを連続出力できる構成とすれば良い。
【0032】
以上により、本発明の高温熱水処理対応の連続流下式人工ゼオライト製造装置によれば、加圧入力されたスラリーを上下蛇行させながら、一定高温、一定時間加熱保持することができる。また、出力スラリーを入力スラリーと熱交換し、熱効率を高くして急冷することができる。流速一定とすれば、反応時間(t分)は、流路総長で定まる。流路総長は装置定数であり、表1及び表2に示した関係からたとえば反応時間30分、流路長180mとされる。数式1〜4は、そのまま成立する。高性能、高CECの人工ゼオライトを効率良く連続的に製造することができる。しかも流下流路装置は2重釜装置等や、一本の反応管のもの等と比べて簡易、コンパクトであり、製造に伴い必要となる工数(人件費)も格別低く抑えることができ、高品質で安価な人工ゼオライトを提供できる。
【0033】
【発明の実施の形態】
以下、添付図面を参照して本発明の一実施の形態を説明する。図1は、本発明の一実施形態に係る連続流下式人工ゼオライト製造装置の配置図である。図2〜図5には、各部の詳細ないし具体例を示す。低温熱処理対応ものは、高温熱処理対応のものに比べ、加圧系及び加熱系装置が異なるのみであるので、高温熱処理対応のものについて示す。
【0034】
図1において、本発明の一実施の形態に係る連続流下式人工ゼオライト製造装置FFSは、フライアッシュ等の原料1を苛性ソーダ水溶液と混合してスラリー化し、これを熱水処理し、Na型の人工ゼオライト2を製造するものである。製造工場の土間3には、撹拌器付の撹拌タンク4、5と、蒸気ボイラ6、苛性ソーダの原液タンク7、2〜4規定の苛性ソーダ水溶液を貯溜するアルカリ水溶液(NaOH)タンク8、水タンク9、等が配置されている。撹拌タンク4、5とポンプ類とでスラリー供給装置が構成される。撹拌タンク4、5には、第1及び第2のスラリーポンプSP−1、SP−2が付属されている。第2のスラリーポンプSP−2は、吐出圧が0.7Ps以上のものを使用するものとする。塩共存下による効率的反応を実証するため、海水タンク10が配置されることも有る。各タンク間は、適宜内部コーティングされた鋼管、或いは樹脂製のパイプ類で接続され、各パイプには、適宜水ポンプ、或いはスラリーポンプが配置される。フライアッシュ1の搬送には、クレーンやコンベヤ、或いはショベルカー等が用いられる。
【0035】
前記タンク5の後段には、熱交換装置11及び本発明の流下流路装置としての反応装置12が配置される。熱交換装置11から出力された反応後のスラリーは、次いでタンク5、タンク4で熱交換し、バッファタンク13に移される。バッファタンク13に次いでは、遠心分離機14が配置され、遠心分離されたケーキは洗浄タンク15で洗浄され、乾燥されてNa型の人工ゼオライト2が製造される。遠心分離機14の代りにデカンタが用いられることもある。バッファタンク13に至る配管には、背圧弁的機能弁BPが設けられている。
【0036】
図3に示すように、熱交換装置11は、4本の向流式熱交換器16(16−1、16−2、16−3、16−4)を備えて成る。各熱交換器16は、図2に示すように、両端にヘッダ17を有し、その間を多数の細管18で接続して成る。また、前記細管18間に形成される空間を内部通路19とし、その通路両端に流体の出入口を備えて成る。ヘッダ17側の出入口を17(IN)、17(OUT)とし、内部通路19側の出入口を19(IN)、19(OUT)とする。両出入口17(IN)、17(OUT)、19(IN)、19(OUT)を出入りする流体の進行方向は、対向方向とされ、向流式とされる。図1及び図3において、反応前のスラリーは、撹拌タンク4、5を経て、第1の熱交換器16−1のヘッダ入口17(IN)へ圧入され、出口17(OUT)から出力され、次いで、第2段、第3段、第4段の熱交換器16−2、16−3、16−4へ移される。第4段の熱交換器16―4の内部通路19には、例えば0.3Psの蒸気が送られている。一方、反応後のスラリーは、第3段の熱交換器16−3の内部通路19についての入口19(IN)から入力され出口19(OUT)から出力され、次いで第2段、第1段の熱交換器16−2、16−1へと逆方向に移される。これにより、反応前のスラリーは、例えば70℃から反応温度である130℃近くまで昇温される。一方、反応後のスラリーは、反応温度130℃から、反応前の入力スラリー温度(70℃)に近い温度まで急冷される。急冷速度は、数十秒程度である。
【0037】
また、反応後のスラリーは、第1の熱交換器16−1から出力されて後、
図1に示した撹拌タンク5、4で熱交換され、タンク温度を上昇させると共に40℃程度まで冷却され、その後冷水冷却されて、常温に近い温度例えば30℃になる。
【0038】
以上の構成の熱交換装置11により、反応前後のスラリーは向流式の熱交換器16によって相互に熱交換され、追加の加温又は冷却によって高速に反応温度へ加温され又は室温へ冷却される。所要のエネルギーは、蒸気で加温する分と、冷却水による放熱分であり、熱効率は80%以上節約できる。
【0039】
図4は、前記反応装置(流下流路装置)12の外観構成例を示す斜視図である。図5は、その内部構造を示す斜視図である。本例の反応装置には、図5に示す10個の流下流路最小ユニットU1〜U10を1つのボックスユニット20として形成し、各流下流路ボックスユニット20−1,20−2,20−3を直列に3台接続して成る。
【0040】
図5に示すように、流下流路ボックスユニット20の内部には、10個の流下流路最小ユニットU1〜U10が直列に配列されている。各最小ユニットUiは、例えば有効長3mの高さとされ、上下往復にて6mの流路を形成すべく、2本の立管21A、21Bの低部を接続管22で接続してなる。入力側の立管21Aの有効長の上端では、水位L1を定めてスラリー供給端T1が接続され、他方の管21Bの上端には、略同一水位でスラリー流下管23が次段のユニット方向へ向けて突設されている。
【0041】
最小ユニットU1〜U10の上方には、均圧管24が配置され、均圧管24と各立管21A、21Bで構成される各流路を同圧とすべく、均圧分岐管25が接続されている。分岐管25のサイズを立管21A、21Bと同サイズで示してあるが、分岐管25は、いわばエア抜きの役目を為すものであるので、より細い管で構成できる。また、各流路を夫夫分岐管25で接続するのでは無く、複数流路をまとめた管を1本の分岐管で接続するような形とすることもできる。
【0042】
各最小ユニットUiは、前段最小ユニットから流下されるスラリーを入力し、次段に流下すべく、水位L1、L2、L3・・・に差を設けている。水位差は5〜10cmが適切で、機能的には大きい程良い。水位差は即ち落差であり、スラリー撹拌が期待できるからである。ただし、水位差を余りに大きくすると、初段と終段との間に大きな差、例えば10cm×10ユニットで1mの差が生じ、その分装置が大型となるので、10cm程度に止めるのが好ましい。最終段の最小ユニットU10から流下されたスラリーは、次のボックスユニット20−2、20−3へ移るべく、ボックス接続管26で相互に接続する。接続管26は下り勾配とする。
【0043】
以上のボックスユニット20及び最小ユニットUi構成により、各ユニット数に応じた流路が構成される。例えば、10ユニットで60mであり、3台のボックスユニット20−1,20−2,20−3を相互に接続することにより、180mの流路構成とすることができる。
【0044】
ボックス20の内部にはヒータ、例えば蒸気管を導入し、各流路を流れるスラリーを反応温度、例えば130℃に加熱する。ボックス20の内部に直接蒸気を入れると、ボックス20の外箱に圧力が加わり、圧力容器としなければならない。
【0045】
そこで、例えば、ボックス20の内側に機械油や天ぷら油のような沸点が160℃より高い温度の液体を入れ、それを蒸気管等で加温するか、又は、ユニット内のみ電気ヒータや蒸気ヒータで加熱すれば、ボックス自体は常圧で取り扱える。ボックス20の外側全体は、適宜保温する。
【0046】
図4の右下方には、油を蒸気管で加熱するものとして、油排出用のプラグ27と、蒸気管28とを示している。
【0047】
前記均圧管24の内部圧力は、前記反応温度に応じ、例えば0.3Psとする。均圧管24の一端には、安全弁Sの他、空気抜弁を設ける。図5の下方に示すブラックボックスBXは、初段流路の下端にて、流速Vに乗れずに沈澱した粒子、即ち、粒径が相当粗く、沈澱速度vが速すぎるものを、装置進行前に除去する装置である。装置内を目詰まりさせないために必要な装置である。この部分のみを故意に流速低下させ、例えば4cm/sとして、0.1mm以上の粒子を完全に取り除くこともできる。取り除いた粒子は、破砕し、再投入できる。表3及び表4に運転条件及び生産量計算例を示す。
【0048】
【表3】
Figure 0003911219
【表4】
Figure 0003911219
表3に示すように、ゼオライト原料粉末の沈殿速度vを実測し、その2倍程度に流速を定める。遅延率δは数式1により定まる。
【0049】
表4に示すように、管径100mmの流路にて日量4.5トンの人工ゼオライトを製造することができる。他の条件を同一として管径を変化させると、120mmで日量6.84トン、150mmで日量10.125トン、200mmでは18トンとなる。反応温度の上昇、塩共存下での反応、大径粒子の遅延等を考慮し、反応時間の短縮、即ち流速の増加を図れば、その分生産量を30%程度増加させることができる。
【0050】
図6及び図7は、図4及び図5に示した反応装置12の単位ユニットUiの変形例を示す正面断面図及び左側面図である。
【0051】
図6において、本例の反応装置12では、均圧管24と接続される分岐管25を細くして示してある。立管21A、21Bの底部を結ぶ接続管22の形が異なるが、同一機能を果たす。各接続管22の底部には、スラリー排出用のドレン管29が接続されている。
【0052】
また、本例では、最終ボックスユニット20−3の最終段に、背圧弁的機能弁BPを適切に制御するための、水位センサ(電極棒)LSを取り付けている。即ち、本発明の反応装置12Aでは、均圧管24を設け、各流路を同圧化し、流下管23から次々とユニットUiへスラリー流下すべく流れを作っている。ところが、通常の背圧弁を用いて最終流下管23からスラリーを吐出すると、背圧値の変化に基づいて流量が変化し、各流路の水位を変化させてしまう。また、背圧が小さいと、均圧管24内部の蒸気を吹き出してしまう。この量が小さいときは特に問題ないが、それでも熱量損失を生じる。そこで、本例では、最終段に流量調節用タンク30を設け、その内部に水位センサLSを設け、その水位が最大及び最小の水位LU,LDの範囲に来るよう、背圧弁的機能弁BPを制御することができる。本発明に示す背圧弁的機能弁BPは、例えば、所要流量より僅かに少ない量の通常排出弁31にバイパス弁32を設け、タンク30内の水位を一定とすべくバイパス弁31を開閉制御する。
【0053】
図7に示すように、ボックスユニット20の内部には沸点の高い油33が入れられ、蒸気管28でこれを反応温度に加熱するようになっている。従って、各ユニットUi内のスラリーは反応温度に加熱保持される。また、大気開放された油面の中で、各流路は均圧管24を介して独立配置されているので、スラリーは図6で示した流路を川又は谷のように円滑に流れ、スラリーポンプSP−2で連続的に加圧入力された量づつ背圧弁的機能弁BPから連続的に出力することができる。
【0054】
図8は、以上の如き連続流下式人工ゼオライト製造装置FFSの反応特性を示す時間及び温度の設図である。温度を70℃まで上げ撹拌タンク4.5で撹拌し、スラリーポンプSP−2で熱交換装置11、反応装置12、12Aへスラリーを圧入する。熱交換装置11の通過時間は30秒ないし1分程度である。スラリーは、例えば30分間反応装置12,12A内で流下し、反応する。反応後のスラリーは、熱交換装置11、及び撹拌タンク4、5に備えた熱交換器で熱交換されて急冷され、その後水冷されて、30℃程度まで急冷される。製造工程は連続であり、工数少なく格安の人工ゼオライトを製造することができる。また、図8の如く、正確に制御されるので、高品質、高CECの人工ゼオライトを製造することができる。
【0055】
冷却されて出力された反応後のスラリーは、遠心分離機14を用いて脱液され、脱液された苛性ソーダは、NaOHタンク8へ回収されてリサイクルされる。3回程度の繰り返し利用が可能である。脱液された原料はケーキとなり、その後洗浄タンク15を用いて洗浄され、再度脱液されて、乾燥処理し、Na型人工ゼオライトとされる。Ca、Mg、Fe等他のイオンとイオン置換されて、他の型の人工ゼオライトとされることもある。表5に、熱量計算を示す。
【0056】
【表5】
Figure 0003911219
表5に示すように、表4の設計に従った場合、フライアッシュ0.57トン/Hを製造するのに全熱量31万kcal/Hを必要とする。しかるに本発明の人工ゼオライト製造装置では、高効率の向流式熱交換装置11を使っているので、内28万kcal以上の熱量を回収でき、1kgのフライアッシュを製造するのに約50kcalの熱量で済む。
【0057】
以上示したように、本発明の人工ゼオライト製造装置によれば、撹拌タンク4、5を主体として構成されたスラリー供給装置でスラリーを生成し、熱交換装置11を介して連続流下式反応装置12、12Aで反応させ、再度熱交換装置11を介して出力することができる。ここに、熱交換装置は向流式とされ、入出力スラリーを相互に熱交換するので、熱効率が良く、急冷可能で高品質の人工ゼオライトを製造することができる。
【0058】
図9は、反応装置12Bの他の実施形態を示す斜視図である。ドラム形の圧力容器34内に所要数の最小ユニットUi(U1〜U11)と図6で示したような流量調節タンク30を入れ、出力スラリーを背圧弁的機能弁BPを介して出力するようにしている。タンク30の下には蒸気トラップ35を設けている。容器34内には、例えば0.3Psの蒸気を入れ、内部全体を均圧化して反応温度に保つ。本例では、各ユニットUiが一定圧力に保たれるので、容器34そのものが均圧化装置を構成し、均圧管24を設ける必要は無い。
【0059】
本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜設計的変更を加えることができ、各種態様で実施できる。
【0060】
【発明の効果】
以上の通り、本発明は、特許請求の範囲に記載の通り、一方の立型流路の上端から入力されたスラリーを他方の立型流路上端から流下出力する機能的にはU字形状の立型流路ユニットを直列に多数連結して成り、前段ユニットから流下出力されるスラリーを順次次段のユニットに流下される形で長尺の上下蛇行流路を形成する流下流路装置を有する。従って、一対の立型流路から成る最小ユニットの組み合わせで連続的流れを作ることができる。一本の連続した長尺流路をつくるのと異なって、塩共存下反応対応として内面コーティングも容易であり、製作容易であり、保持、点検、メンテナンスも容易である。
【0061】
また、立型であるので、大径粒子を遅延させて、その反応時間を制御でき、高品質、高CECの人工ゼオライトを製造できる。
【0062】
さらに、反応前後のスラリーを連続的に向流させて熱交換するので、熱効率が向上するのはもとより、反応後のスラリーを急冷でき、高品質、高CECの人工ゼオライトを製造できる。
【0063】
さらに、本発明の流下流路装置は、均圧装置等を用いて適宜加圧することができ、高温下での反応を可能として、流路総長を適宜短くでき、変更可能条件を大として、適切な条件設定を行うことにより、高効率、高性能の人工ゼオライトを格別安く製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る連続流下式人工ゼオライト製造装置の配置図である。
【図2】熱交換器の構造を示す縦断面図である。
【図3】前記熱交換器を用いて構成される熱交換装置の向流内容を示す配置図である。
【図4】反応装置(流下流路装置)の外観構成例を示す斜視図である。
【図5】反応装置の内部構造として流下流路の構成例を示す斜視図である。
【図6】流下流路の他の構成例を拡大して示す断面図である。
【図7】図6の左側面で示す加熱方式の設明図である。
【図8】本発明の反応特性を示す時間及び温度の線図である。
【図9】反応装置の他の構成例を示す斜視図である。
【符号の説明】
1 原料
2 Na型人工ゼオライト
3 工場土間
4、5 撹拌タンク
6 蒸気ボイラ
7 原液タンク
8 NaOHタンク
9 水タンク
10 海水タンク
11 熱交換装置
12、12A、12B 反応装置(流下流路装置)
13 バッファタンク
14 遠心分離機
15 洗浄タンク
16 熱交換器
17 ヘッダ
17(IN) ヘッダ入口
17(OUT) ヘッダ出口
18 細管
19 内部通路
19(IN) 内部通路入口
19(OUT) 内部通路出口
20(20−1,20−2,20−3)ボックスユニット
21A、21B 立管
22 底部接続管
23 スラリー流下管
24 均圧管
25 均圧分岐管
26 ボックスユニット接続管
27 油ドレンプラグ
28 油加熱用蒸気管
29 スラリードレン管
30 流量調節用タンク
31 通常排出弁
32 バイパス弁
33 油
34 ドラム形圧力容器
35 蒸気トラップ
FFS 連続流下式人工ゼオライト製造装置
V 流速
v 粒子の沈殿速度
Ui(U1〜U10) 流下流路最小ユニット
BX ブラックボックス
L1、L2、L3 水位

Claims (2)

  1. 人工ゼオライトの原料にアルカリ水溶液を添加して生成されたスラリーを単位時間当り一定量づつ連続的に出力するスラリー連続出力装置と、
    一方の立型流路の上端から入力されたスラリーを他方の立型流路上端から流下出力する機能的にはU字形状の立型流路ユニットを直列に多数連結して成り、前段ユニットから流下出力されるスラリーを順次次段のユニットに流下させる形で長尺の上下蛇行流路を形成した流下流路装置と、
    前記流下流路装置を流れるスラリーを100℃に近い温度に加熱保持する加熱保持装置と、
    前記流下流路装置から出力される反応後のスラリー、及び前記スラリー連続出力装置から出力される反応前のスラリーとを向流させ、両スラリーの保有熱量を相互に交換し合う向流式熱交換装置と、を備えたことを特徴とする連続流下式人工ゼオライト製造装置。
  2. 人工ゼオライトの原料にアルカリ水溶液を添加して生成されたスラリーを連続的に加圧して出力するスラリー連続出力装置と、
    一方の立型流路の上端から入力されたスラリーを他方の立型流路の上端から流下出力する機能的にはU字形状の立型流路ユニットを直列に多数連結して成り、前段ユニットから流下出力されるスラリーを順次次段のユニットに流下させる形で長尺の上下蛇行流路を形成した流下流路装置と、
    前記流下流路装置を流れるスラリーを100℃より高い温度に加熱保持する加熱保持装置と、
    前記流下流路装置の各流路を同圧に維持する均圧化装置と、
    前記流下流路装置から出力される反応後のスラリー及び前記スラリー連続出力装置から出力されるスラリーとを向流させ、両スラリーの保有熱量を相互に交換し合う向流式熱交換装置と、
    前記流下流路装置から出力される反応前のスラリーに、前記均圧化装置で定まる圧力より低い値の圧力に近い圧力を掛けつつ、前記スラリー連続出力装置が出力する量のスラリーを順次排出する背圧弁的機能弁と、を備えたことを特徴とする連続流下式人工ゼオライト製造装置。
JP2002244233A 2002-08-23 2002-08-23 連続流下式人工ゼオライト製造装置 Expired - Fee Related JP3911219B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244233A JP3911219B2 (ja) 2002-08-23 2002-08-23 連続流下式人工ゼオライト製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244233A JP3911219B2 (ja) 2002-08-23 2002-08-23 連続流下式人工ゼオライト製造装置

Publications (3)

Publication Number Publication Date
JP2004083313A JP2004083313A (ja) 2004-03-18
JP2004083313A5 JP2004083313A5 (ja) 2005-02-24
JP3911219B2 true JP3911219B2 (ja) 2007-05-09

Family

ID=32052785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244233A Expired - Fee Related JP3911219B2 (ja) 2002-08-23 2002-08-23 連続流下式人工ゼオライト製造装置

Country Status (1)

Country Link
JP (1) JP3911219B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037083B (zh) * 2008-03-28 2014-02-05 3M创新有限公司 用于粒子表面改性的方法

Also Published As

Publication number Publication date
JP2004083313A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
JPH0532326B2 (ja)
US20180009692A1 (en) Apparatus for salt separation under supercritical water conditions
US9718717B2 (en) Optimised hydrothermal carbonisation method and facility for implementing same
CN104986796A (zh) 连续化水热法制备亚微米材料的装置系统及其制备工艺
JP3911219B2 (ja) 連続流下式人工ゼオライト製造装置
CN108479653B (zh) 一体式微通道反应装置及利用该装置制备二-(2-氯乙基)磷酸二酯的方法
CN107790072A (zh) 费托浆态床反应系统和费托合成反应的方法
CN111760543B (zh) 一种精密调控的超临界水热合成反应系统
CN108905265A (zh) 钒酸钠连续冷却结晶设备及其生产方法
CN103920428A (zh) 超临界反应装置及其工艺方法
JP3911212B2 (ja) 連続式人工ゼオライト製造装置
CN110283086A (zh) 一种连续化生产间氨基苯酚的方法及装置
CN108067167B (zh) 浆态床反应系统和费托合成反应的方法
CN210994311U (zh) 一种一步法合成咪草烟的生产装置
JP2002068731A (ja) 人工ゼオライトの製造方法およびその製造装置
CN105408686B (zh) 用于从热工艺流回收热的壳管式装置
CN208612448U (zh) 一种环流反应器
CN101054473B (zh) 一种耦合生产设备及生产工艺
CN206535528U (zh) 一种反应釜高位槽物料滴加引流装置
EP3935136A1 (en) Heat transfer system
CN215139888U (zh) 一种硝酸胍连续硝化反应器
CN217527497U (zh) 连续式反应装置
CN110090602B (zh) 一种加氢反应系统
CN219308679U (zh) 一种等温合成甲胺装置
CN220724053U (zh) 一种低沸点油密闭加热式油水分离装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees