JP3909266B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP3909266B2
JP3909266B2 JP2002152891A JP2002152891A JP3909266B2 JP 3909266 B2 JP3909266 B2 JP 3909266B2 JP 2002152891 A JP2002152891 A JP 2002152891A JP 2002152891 A JP2002152891 A JP 2002152891A JP 3909266 B2 JP3909266 B2 JP 3909266B2
Authority
JP
Japan
Prior art keywords
plate
ceramic body
heating element
resistance heating
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002152891A
Other languages
Japanese (ja)
Other versions
JP2003347177A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002152891A priority Critical patent/JP3909266B2/en
Publication of JP2003347177A publication Critical patent/JP2003347177A/en
Application granted granted Critical
Publication of JP3909266B2 publication Critical patent/JP3909266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にウェハを加熱する際に用いるウェハ加熱装置に関するものであり、例えば半導体ウェハや液晶装置あるいは回路基板等のウェハ上に薄膜を形成したり、前記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成する際に好適なウェハ支持部材に関するものである。
【0002】
【従来の技術】
半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのウェハ支持部材が用いられている。
【0003】
従来の半導体製造装置は、複数のウェハを一括して加熱するバッチ式と、1枚ずつ加熱する枚様式とがあり、枚葉式には、温度制御性に優れているので、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるに伴い、ウェハ支持部材が広く使用されている。
【0004】
このようなウェハ支持部材として、例えば特開2001−203156号公報や特開2001−313249号公報には、図6に示すようなウェハ支持部材が提案されている。
【0005】
このウェハ支持部材71は、板状セラミック体72、金属ケース79、を主要な構成要素としたもので、アルミニウム等の金属からなる有底状の金属ケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状セラミック体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状セラミック体72の下面に、例えば図7に示すような同心円状の抵抗発熱体75を備えるようになっていた。
【0006】
さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77が金属ケース79の底部79aに形成されたリード線引出用の孔76に挿通されたリード線78と電気的に接続されるようになっていた。
【0007】
ところで、このようなウェハ支持部材71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にするためには、ウェハの温度分布を均一にすることが重要である。その為、これまでウェハの面内の温度差を小さくするため、抵抗発熱体75の抵抗分布を調整したり、抵抗発熱体75の温度を分割制御することが行われている。また、熱引きを発生し易い構造の特開2002−76102号公報や特許第2527836号公報に記載のウェハ支持部材では、ウェハWの周辺域の発熱域を増大させる等の提案がなされていた。
【0008】
しかし、いずれも非常に複雑で微妙な構造、制御が必要になるという課題があり、簡単な構造で温度分布を更に均一に加熱できるようなウェハ支持部材が求められていた。
【0009】
【発明が解決しようとする課題】
近年生産効率の向上の為、ウェハサイズの大型化が進んでいるが、半導体素子自体も多様化し、必ずしも大判ウェハで製造することが生産効率の向上にはつながらず、ひとつの装置で、多種多様のウェハサイズや熱処理条件に対応可能な装置が望まれている。
【0010】
更に、半導体素子の配線微細化に伴い使用され始めた化学増幅型レジストにおいては、ウェハの温度の均一性は勿論のこと、ウェハを熱処理装置に載置した瞬間から離脱し熱処理を終了させるまでの過渡的な温度履歴も極めて重要となり、ウェハ載置直後から概ね60秒以内にウェハの温度が均一に安定することが望まれている。
【0011】
しかしながら、特開2002−76102号公報に紹介されている装置では、板状セラミックス体の抵抗発熱体が形成された領域に相当する表面領域の内側に、半導体ウェハを直接或いは表面から一定の距離離間させて載置する領域が存在するウェハ支持部材が示されているが、ウェハの温度差は0.5〜1℃と大きく、しかも板状セラミックス体の外周の低温領域の影響が大きく温度が安定するまでの応答時間が大きくなる虞があった。
【0012】
また、特開2001−313249号公報に記載の図6のウェハ支持部材では板状セラミックス体72の周辺を係止リング81、ボルト80と繊維入り樹脂製の断熱性の接続部材74で金属ケース79と接続しているが、樹脂製の接続部材74が熱サイクルにより変形し板状セラミックス体72が傾いたり変位したりして位置精度を保持することが難しく、長期間に渡りウェハWを加熱するとウェハの面内温度差が大きくなるとの虞があった。また、熱が板状セラミックス体72と接する係止リング81からボルト80に流れ金属ケース79に逃げることから、板状セラミック体の周辺部の温度がバラツキ、板状セラミックス体72に載せたウェハWの面内温度差も0.5℃と大きくなるとの虞があった。
【0013】
更に、ウェハWを均一に加熱したり、ウェハWを急速に昇温したり急速に降温させる時間が大きくなる虞があった。
【0014】
【課題を解決するための手段】
本発明者等は、上記の課題について鋭意検討した結果、窒化アルミニウムを主成分とする焼結体からなる板状セラミックス体の一方の主面にAu、Ag、Cu、Pd、PtおよびRhの少なくとも一種の金属粒子とガラスと金属酸化物とからなる抵抗発熱体を備え、他方の主面にウェハ加熱面を備えたウェハ支持部材であって、前記抵抗発熱体に電力を供給する給電部と、該給電部を囲む金属ケースとを有し、該金属ケースの開口部の外周に接触部材を介して前記板状セラミックス体の他方の主面の周辺部を接続してあり、前記板状セラミックス体の外周部に位置する前記抵抗発熱体は同心円状の円弧状パターンを有し、前記抵抗発熱体の外接円の直径が前記板状セラミックス体の直径の92〜95%とする。
【0015】
また、前記抵抗発熱体は、前記外接円に接する円弧状パターンと、該円弧状パターンに連続して繋がった連結パターンとを備え、前記外接円の一部に前記円弧状パターンのない空白域が存在し、この空白域の間隔が、前記板状セラミックス体の直径と前記外接円の直径との差より小さくする。
【0016】
更に、前記円弧状パターンの線幅は、前記円弧状パターンに繋がる前記連結パターンの線幅と、同等或いは小さくする。また、前記板状セラミックス体の厚みが1〜7mmで、前記抵抗発熱体の厚みが5〜70μmであるとともに、前記抵抗発熱体の外接円の面積に対する抵抗発熱体の面積の比率が5〜50%とする。
【0017】
そして、上記抵抗発熱体と、上記板状セラミック体との熱膨張係数の差が3.0×10-6/℃以下とするとウェハの面内温度差を小さくでき好ましい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0019】
図1は本発明ウェハ支持部材1の1例を示す断面図で、炭化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状セラミックス体2の一方の主面を、ウェハWを載せる載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に接続する給電部6を具備し、給電部6に給電端子11が接続している。これらの給電部6を囲む金属ケース19が接続部材17を介して板状セラミックス体2の他方の主面の周辺部に固定されている。
【0020】
また、ウェハリフトピン25は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させウェハWを載置面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子27で板状セラミックス体2の温度を測定しながらウェハWを加熱することができる。
【0021】
尚、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、ウェハWの片当たり等による温度バラツキを防止するようにしている。また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。
【0022】
図2は本発明ウェハ支持部材の他の実施例を示す断面図で、図1と異なり、板状セラミックス体の外周面13に接続部材17を介して金属ケースと固定してある。
【0023】
図3は抵抗発熱体5のパターン形状の1例を示し、抵抗発熱体5の周辺部は同心円状をした円弧状パターン5aとこれらと連続して繋がっている連結パターン5bからなり、板状セラミックス体2の外周部に位置する前記抵抗発熱体5は同心状の円弧状パターン5aを有する事が好ましく、載置面3を均一に加熱できるパターン形状であれば良い。また、均熱性を改善するため、抵抗発熱体5を周辺部に4個と中心部に2個の合計6個のパターンに分割している。またパターンの線幅や粗密を調整し、発熱量の密度に分布をつけて均熱性を改善しても良い。
【0024】
本発明のウェハ支持部材1は、板状セラミックス体2の一方の主面において、前記抵抗発熱体5の外接円Cの直径DCが前記板状セラミックス体2の直径Dの9〜9%であることを特徴とする。
【0025】
抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの90%より小さいと、ウェハを急速に昇温したり急速に降温させる時間が大きくなりウェハWの温度応答特性が劣る。また、板状セラミックス体2の直径Dが大きくなり、均一に加熱できるウェハWの大きさが板状セラミックス体2の直径Dに比較して小さくなり、ウェハWを加熱する電力に対するウェハ加熱効率が悪くなる。更に、板状セラミックス体2が大きくなることからウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行う必要がある半導体製造装置の設置面積に対する稼働率を低下させ好ましくない。
【0026】
抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの99%より大きいと接触部材17と抵抗発熱体5の外周との間隔が小さく抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の円弧状パターン5aが存在しない部分からも熱が流れ、外周部の円弧状パターン5aが板状セラミックス体2の中心部へ曲がっていることから抵抗発熱体5を囲む外接円Cに沿って円弧状パターン5aが欠落する部分Pの温度が低下しウェハWの面内温度差を大きくする。
【0027】
より好ましくは、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの92〜97%である。
【0028】
特に、板状セラミックス体2と金属ケース19の外形が略同等で、板状セラミックス体2を下から金属ケース19が支える図1のウェハ支持部材1の場合、ウェハWの面内の温度差を小さくするには、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの92〜95%であり、更に好ましくは93〜95%である。
【0029】
一方、板状セラミックス体2の外周面13を覆うように金属ケース19が接続した図2のウェハ支持部材の場合には、抵抗発熱体5の外接円Cの直径DCが板状セラミックス体2の直径Dの95〜98%が好ましく、更に好ましくは96〜97%である。
【0030】
尚、本発明のウェハ支持部材1は板状セラミックス体2の周辺部下面に金属ケース19を接続したり、板状セラミックス体2の外周面13で金属ケースと接続した例で説明したが、周辺部下面と外周面との両方同時に金属ケース19と接続したウェハ支持部材1も含まれることは当然である。
【0031】
更に、本発明のウェハ支持部材1において、抵抗発熱体5の外接円Cと接する円弧状パターン5aと、該円弧状パターンと連続して繋がった連結パターン5bとを備え、前記外接円Cの一部に前記円弧状のパターンのない空白域Pが存在し、この空白域Pの間隔Sが、前記板状セラミックス体の直径Dと前記外接円Cの直径DCとの差(以下、Lと略する)より小さいことが好ましい。
【0032】
間隔SがLより大きいと空白域Pの熱が板状セラミックス体の周辺部へ流れ空白域Pの温度が下がる虞がある。しかし、間隔SがLより小さいと空白域Pの温度が下がり難く板状セラミックス体2の載置面3に載せたウェハWの周辺部の一部の温度が低下せずウェハW面内の温度差が小さくなり好ましい。
【0033】
上記空白域Pの温度を下げないためには、空白域の温度を上げる必要があり、空白域を加熱する連結パターン5bの抵抗を同等か或いは大きくして発熱量を増大すると、空白域Pの温度が下がる虞が小さくなり、ウェハWの面内温度が均一となり好ましい。印刷法等で作成した抵抗発熱体5が面状の場合、円弧状パターン5aの線幅Wpより連結パターン5bの線幅Wsを小さくすることで連結パターン5bの抵抗を大きくすることができ、連結パターン5bの温度を円弧状パターン5aの温度より高めることでウェハWの面内温度を均一とすることができる。
【0034】
また、板状セラミックス体2の厚みは1〜7mmで、上記抵抗発熱体5の厚みは5〜70μmであるとともに、上記抵抗発熱体を囲む外接円Cの面積に対し、上記外接円Cに占める抵抗発熱体5の面積の比率が5〜50%であることが好ましい。
【0035】
即ち、抵抗発熱体5を囲む外接円Cの面積に対し、抵抗発熱体5の面積の比率を5%未満とすると、抵抗発熱体5の相対向する対向領域において、対向領域の対向間隔S1が大きくなり過ぎることから、抵抗発熱体5のない間隔S1に対応した載置面3の表面温度が他の部分と比較して小さくなり、載置面3の温度を均一にすることが難しい。
【0036】
逆に抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率が50%を超えると、板状セラミック体2と抵抗発熱体5との間の熱膨張差を3.0×10−6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎること、板状セラミック体2は変形し難いセラミック焼結体からなるものの、その板状セラミック体2の厚みtが1mm〜7mmと薄いことから抵抗発熱体5を発熱させると、載置面3側が凹となるように板状セラミック体2に反りが発生し、その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度バラツキが大きくなるがある。
【0037】
なお、好ましくは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を10%〜30%、さらには15%〜25%とすることが好ましい。
【0038】
より具体的には、抵抗発熱体5は外周部に相対する対領域を有し、上記対領域の間隔S1が0.5mm以上で、上記板状セラミックス体2の板厚の3倍以下であることが好ましい。上記対領域の間隔S1が0.5mm以下では抵抗発熱体5を印刷し形成する際に抵抗発熱体5の対領域でひげ状の突起が発生しその部分が短絡する虞がある。また、上記対領域の間隔S1が板状セラミックス体2の厚みの3倍をえると、対領域S1に対応するウェハWの表面にクールゾーンが発生しウェハWの面内温度差を大きくする虞があるからである。
【0039】
さらに、このような効果を効率良く発現させるには、抵抗発熱体5の膜厚を5〜70μmとすることが好ましい。
【0040】
抵抗発熱体5の膜厚が5μmを下回ると、抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、抵抗発熱体5の厚みが70μmをえると、外接円P1に対し、抵抗発熱体5の占める面積の比率を50%以下としても抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状セラミック体の温度変化により抵抗発熱体5の伸び縮みによる影響で板状セラミック体2が変形する虞がある。また、スクリーン印刷で均一の厚みに印刷することが難しくウェハWの表面の温度差が大きくなったりする虞があるからである。なお、好ましい抵抗発熱体5の厚みは10〜30μmとすることが良い。
【0041】
次に、更に詳細な他の構成や製法について説明する。
【0042】
本発明ウェハ支持部材の板状セラミックス体2の厚みtは1〜7mmで、100〜200℃のヤング率が200〜450MPaである板状セラミック体2からなることが好ましい。
【0043】
100〜200℃のヤング率が200〜450MPaである板状セラミック体2の材質としては、炭化珪素、アルミナ、窒化珪素、サイアロン、窒化アルミニウムを用いることができ、この中でも特に窒化アルミニウムは50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プズマ性にも優れることから、板状セラミック体2の材質として好適である。
【0044】
尚、板状セラミックス体2の厚みは、2〜5mmとすると更に好ましい。板状セラミックス体2の厚みが2mmより薄いと、板状セラミックス体2の強度がなくなり抵抗発熱体5の発熱による加熱時、ガス噴射口24らの冷却エアーを吹き付けた際に、冷却時の熱応力に耐えきれず、板状セラミックス体2にクラックが発生する虞があるからである。また、板状セラミックス体2の厚みが5mmをえると、板状セラミックス体2の熱容量が大きくなるので加熱および冷却時の温度が安定するまでの時間が長くなる虞がある。
【0045】
有底の金属ケース19は側壁部22と底面21を有し、板状セラミックス体2はその有底の金属ケース19の開口部を覆うように設置してある。また、有底の金属ケース19には冷却ガスを排出するための孔23が施されており、板状セラミックス体2の抵抗発熱体5に給電するための給電部6に導通するための給電端子11,板状セラミックス体2を冷却するためのガス噴射口24、板状セラミックス体2の温度を測定するための測温素子27を設置してある。
【0046】
なお、有底の金属ケース19の深さは10〜50mmで、底面21は、板状セラミックス体2から10〜50mmの距離に設置することが望ましい。更に好ましくは20〜30mmである。これは、板状セラミックス体2と有底の金属ケース19相互の輻射熱により載置面3の均熱化が容易となると同時に、外部との断熱効果があるので、載置面3の温度が一定で均一な温度となるまでの時間が短くなるためである。
【0047】
板状セラミックス体2は、有底の金属ケース19開口部の外周にボルト16を貫通させ、板状セラミックス体2と有底の金属ケース19が直接当たらないように、リング状の接触部材17を介在させ、有底の金属ケース19側より弾性体18を介在させてナット20を螺着することにより弾性的に固定している。これにより、板状セラミックス体2の温度が変動した場合に有底の金属ケース19が変形しても、上記弾性体18によってこれを吸収し、これにより板状セラミックス体2の反りを抑制し、ウェハ表面に、板状セラミックス体2の反りに起因する温度ばらつきが発生することを防止できるようになる。
【0048】
リング状の接触部材17の断面は多角形や円形の何れでも良いが、板状セラミックス体2と接触部材17が平面で接触する場合において、板状セラミックス体2と接触部材17の接する接触部の幅は0.1mm〜13mmであれば、板状セラミックス体2の熱が接触部材17を介して有底の金属ケース19に流れ量を小さくすることができる。そして、ウェハWの面内の温度差が小さくウェハWを均一に加熱することができる。更に好ましくは0.1〜8mmである。接触部材17の接触部の幅が0.1mm以下では、板状セラミックス体2と接触固定した際に接触部が変形し、接触部材が破損する虞がある。また、接触部材17の接触部の幅が13mmをえる場合には、板状セラミックス体2の熱が接触部材に流れ、板状セラミックス体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは接触部材17と板状セラミックス体2の接触部の幅は0.1mm〜8mmであり、更に好ましくは0.1〜2mmである。
【0049】
また、接触部材17の熱伝導率は板状セラミックス体2の熱伝導率より小さいことが好ましい。接触部材17の熱伝導率が板状セラミックス体2の熱伝導率より小さければ板状セラミックス体2に載せたウェハW面内の温度分布を均一に加熱することができると共に、板状セラミックス体2の温度を上げたり下げたりする際に、接触部材17との熱の伝達量が小さく有底の金属ケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。
【0050】
接触部材17の熱伝導率が板状セラミックス体2の熱伝導率の10%より小さいウェハ支持部材1では、板状セラミックス体2の熱が有底の金属ケース19に流れ難く、板状セラミックス体2から有底の金属ケース19に熱が、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により流れる熱が多くなり逆に効果が小さい。
【0051】
接触部材17の熱伝導率が板状セラミックス体2の熱伝導率より大きい場合には、板状セラミックス体2の周辺部の熱が接触部材17を介して有底の金属ケース19に流れ、有底の金属ケース19を加熱すると共に、板状セラミックス体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底の金属ケース19が加熱されることからガス噴射口24からエアを噴射し板状セラミックス体2を冷却しようとしても有底の金属ケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に一定温度になるまでの時間が大きくなる虞があった。
【0052】
一方、前記接触部材17を構成する材料としては、小さな接触部を保持するために、接触部材のヤング率は1GPa以上が好ましく、更に好ましくは10GPa以上である。このようなヤング率とすることで、接触部の幅が0.1mm〜8mmと小さく、板状セラミックス体2を有底の金属ケース19に接触部材17を介してボルト16で固定しても、接触部材17が変形することが無く、板状セラミックス体2が位置ズレしたり平行度が変化したりすることなく、精度良く保持することができる。
尚、接触部材をフッ素系に樹脂やガラス繊維を添加した樹脂からなる接触部材では得られない精度を達成することができる。
【0053】
前記接触部材17の材質としては鉄とカーボンからなる炭素鋼やニッケル、マンガン、クロムを加えた特殊鋼等の金属がヤング率が大きく好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe―Ni−Co系合金の所謂コバールが好ましく、板状セラミックス体2の熱伝導率より小さくなるように接触部材17の材料を選択することが好ましい。
【0054】
更に、接触部材17と板状セラミックス体2との接触部を小さく、且つ接触部が小さくても接触部が欠損しパーティクルを発生する虞が小さく安定な接触部を保持できるために、板状セラミックス体2に垂直な面で切断した接触部材17の断面は多角形より円形が好ましく、断面の直径1mm以下の円形のワイヤを接触部材17として使用すると板状セラミックス体2と有底の金属ケース19の位置が変化することなくウェハWの表面温度を均一にしかも迅速に昇降温することが可能である。
【0055】
次に、ウェハ支持部材1をレジスト膜形成用として使用する場合のウェハ支持部材1の製法と構成に付いて述べる。
【0056】
板状セラミックス体2の主成分を炭化珪素にすると、大気中の水分等と反応してガスを発生させることもないため、ウェハW上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。
【0057】
なお、板状セラミックス体2を形成する炭化珪素質焼結体は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al23)イットリア(Y23)のような金属酸化物を添加して十分混合し、平板状に加工したのち、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。
【0058】
炭化珪素質焼結体を板状セラミックス体2として使用する場合、半導電性を有する板状セラミックス体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが400μmをえると、板状セラミックス体2を形成する炭化珪素質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層として機能しなくなる。その為、絶縁層としてガラスを用いる場合、絶縁層4の厚みは100〜400μmの範囲で形成することが好ましく、望ましくは200μm〜350μmの範囲とすることが良い。
【0059】
さらに、板状セラミックス体2の載置面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1μm〜0.5μmに研磨しておくことが好ましい。
【0060】
一方、板状セラミックス体2を、窒化アルミニウムを主成分とする焼結体で形成する場合は、主成分の窒化アルミニウムに対し、焼結助剤としてY23やYb23等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。板状セラミックス体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層を形成することもある。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。
【0061】
この絶縁層を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0℃〜200℃の温度域における熱膨張係数が板状セラミックス体2を構成するセラミックスの熱膨張係数に対し−5〜+5×10-7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、板状セラミックス体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。
【0062】
なお、ガラスからなる絶縁層を板状セラミックス体2上に被着する手段としては、前記ガラスペーストを板状セラミックス体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストを600℃以上の温度で焼き付けすれば良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体又は窒化アルミニウム質焼結体からなる板状セラミックス体2を850〜1300℃程度の温度に加熱し、絶縁層を被着する表面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。
【0063】
図4は本発明のウェハ支持部材における抵抗発熱体5のパターン形状の他の例を示す。抵抗発熱体5は周辺部に4個と中心部に1個の合計5個のパターンに分割された例を示す。
【0064】
また、図5は抵抗発熱体5が1個のパターン形状からなる他の例を示す。
【0065】
図7に示すように、板状セラミック体22の中心から放射方向に見て、抵抗発熱体25の間隔が密な部分と粗な部分が交互に現れる抵抗発熱体パターンでは、粗な部分に対応するウェハWの表面温度は小さく、密な部分に対応するウェハWの温度は大きくなり、ウェハWの表面の全面を均一に加熱することが難しいことから好ましくない。
【0066】
抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含む電極ペーストを印刷法で板状セラミック体2に印刷、焼き付けしたもので、金属粒子としては、Au、Ag、Cu、Pd、PtおよびRhの少なくとも一種の金属を用いることが好ましく、またガラスフリットとしては、B、Si、Znを含む酸化物からなり、板状セラミック体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましく、さらに金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いることが好ましい。
【0067】
ここで、抵抗発熱体5を形成する金属粒子として、Au、Ag、Cu、Pd、PtおよびRhの少なくとも一種の金属を用いるのは、電気抵抗が小さいからである。
【0068】
抵抗発熱体5を形成するガラスフリットとして、B、Si、Znを含む酸化物からなり、抵抗発熱体5を構成する金属粒子の熱膨張係数が板状セラミック体2の熱膨張係数より大きいことから、抵抗発熱体5の熱膨張係数を板状セラミック体2の熱膨張係数に近づけるには、板状セラミック体2の熱膨張係数より小さな4.5×10-6/℃以下の低膨張ガラスを用いることが好ましいからである。
【0069】
また、抵抗発熱体5を形成する金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いるのは、抵抗発熱体5の中の金属粒子と密着性が優れ、しかも熱膨張係数が板状セラミック体2の熱膨張係数と近く、板状セラミック体2との密着性も優れるからである。
【0070】
ただし、抵抗発熱体5に対し、金属酸化物の含有量が80%を超えると、板状セラミック体2との密着力は増すものの、抵抗発熱体5の抵抗値が大きくなり好ましくない。その為、金属酸化物の含有量は60%以下とすることが良い。
【0071】
そして、導電性の金属粒子とガラスフリットや金属酸化物からなる抵抗発熱体5は、板状セラミック体2との熱膨張差が3.0×10-6/℃以下であるものを用いることが好ましい。
【0072】
即ち、抵抗発熱体5と板状セラミック体2との熱膨張差を0.1×10−6/℃とすることは製造上難しく、逆に抵抗発熱体5と板状セラミック体2との熱膨張差が3.0×10−6/℃を超えると、抵抗発熱体5を発熱させた時、板状セラミック体2との間に作用する熱応力によって、載置面3側が凹状に反るがあるからである。
【0073】
さらに、絶縁層上に被着する抵抗発熱体5材料としては、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)等の金属単体を、蒸着法やメッキ法にて直接被着するか、あるいは前記金属単体や酸化レニウム(Re23)、ランタンマンガネート(LaMnO3)等の導電性の金属酸化物や上記金属材料を樹脂ペーストやガラスペーストに分散させたペーストを用意し、所定のパターン形状にスクリーン印刷法等にて印刷したあと焼付けして、前記導電材を樹脂やガラスから成るマトリックスで結合すれば良い。マトリックスとしてガラスを用いる場合、結晶化ガラス、非晶質ガラスのいずれでも良いが、熱サイクルによる抵抗値の変化を抑えるために結晶化ガラスを用いることが好ましい。
【0074】
ただし、抵抗発熱体5材料に銀(Ag)又は銅(Cu)を用いる場合、マイグレーションが発生するがあるため、このような場合には、抵抗発熱体5を覆うように絶縁層と同一の材質からなるコート層を40〜400μm程度の厚みで被覆しておけば良い。
【0075】
更に、抵抗発熱体5への給電方法については、抵抗発熱体5に金や銀、パラジウム、白金等の材質からなる給電部6が形成され、該給電部6に給電端子11を接触させることにより、導通が確保されている。給電端子11と給電部6とは、導通が確保できる方法で有れば、はんだ付け、ロー付け等の手法を用いてもよいが、有底の金属ケース19に設置した給電端子11を板状セラミックス体2の表面に形成した給電部6にバネ(不図示)で押圧することにより接続を確保し給電することが好ましい。これは、1〜7mmの厚みの板状セラミックス体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、給電端子11をバネで押圧して電気的接続を確保することにより、板状セラミックス体2とその有底の金属ケース19の間の温度差による熱応力を緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。
【0076】
また、板状セラミックス体2の温度は、板状セラミックス体2にその先端が埋め込まれた熱電対等の測温素子27により測定する。測温素子27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対を使用することが好ましい。この熱電対の先端部は、板状セラミックス体2に孔が形成され、この中に設置された固定部材により孔の内壁面に押圧固定することが測温の信頼性を向上させるために好ましい。同様に素線の熱電対やPt等の測温抵抗体を埋設して測温を行うことも可能である。
【0077】
また、板状セラミック体2の他方の主面3に抵抗発熱体5のみを備えたウェハ支持部材1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。
【0078】
【実施例】
(実施例 1)
まず、窒化アルミニウム粉末に対し、重量換算で1.0質量%の酸化イットリウムを添加し、さらにイソプロピルアルコールとウレタンボールを用いてボールミルにより48時間混練することにより窒化アルミニウムのスラリーを製作した。
【0079】
次に、窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥した。
【0080】
次いで、得られた窒化アルミニウム粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニムのスリップを作製し、ドクターブレード法にて窒化アルミニムのグリーンシートを複数枚製作した。
【0081】
そして、得られた窒化アルミニムのグリーンシートを複数枚積層熱圧着にて積層体を形成した。
【0082】
しかる後、積層体を非酸化性ガス気流中にて500℃の温度で5時間脱脂を施した後、非酸化性雰囲気にて1900℃の温度で5時間の焼成を行い各種の熱伝導率を有する板状セラミックス体を製作した。
【0083】
そして、窒化アルミニウム焼結体に研削加工を施し、板厚3mm、直径315mm〜345mmの円盤状をした板状セラミックス体2を複数枚製作し、更に中心から60mmの同心円上に均等に3箇所貫通孔を形成した。貫通口径は、4mmとした。
【0084】
次いで板状セラミックス体2の上に抵抗発熱体5を被着するため、導電材としてAu粉末とPd粉末と、前記同様の組成からなるバインダーを添加したガラスペーストを混練して作製した導電体ペーストをスクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施したあと、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体5を形成した。抵抗発熱体5のパターン配置は、中心部から放射状に円と円環状に分割し、中心部に円形の1つにパターンを形成し、その外側の円環状の部分に2つにパターンを形成し、更にその外側に4つのパターン、最外周に8つのパターンの計15個のパターン構成とした。そして、最外周の8つのパターンの外接円Cの直径を310mmとして、板状セラミックスの直径を変えて作製した。しかるのち抵抗発熱体5に給電部6をロウ付けし固着させることにより、板状セラミックス体2を製作した。
【0085】
また、有底の金属ケースの底面の厚みは2.0mmのアルミニウムと側壁部を構成する厚み1.0mmのアルミニウムからなり、底面に、ガス噴射口、熱電対、導通端子を所定の位置に取り付けた。また、底面から板状セラミックス体までの距離は20mmとした。
【0086】
その後、前記有底の金属ケースの開口部に、板状セラミックス体を重ね、その外周部にボルトを貫通させ、板状セラミックス体と有底の金属ケースが直接当たらないように、リング状の接触部材を介在させ、接触部材側より弾性体を介在させてナットを螺着することにより弾性的に固定することによりウェハ支持部材とした。
【0087】
また、板状セラミックス体の周辺部下面を支持する支持構造と、板状セラミックス体の外周面を支持する支持構造との2つの構造でウェハ支持部材を作製した。尚、支持構造では、板状セラミックス体の直径と金属ケースの外である直径を同じとした。
【0088】
尚、接触部材17の断面は円形状で、リング状とした。円形状の断面の大きさは、直径1mmとした。また、接触部材の材質はSUS304、炭素鋼を用いた。作製した各種のウェハ支持部材を試料No.1〜11とした。
【0089】
作製したウェハ支持部材の評価は、測温抵抗体が29箇所に埋設された直径300mmの測温用ウェハを用いて行った。夫々のウェハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また、30℃から200℃に5分で昇温し5分間保持した後、30分間冷却する温度サイクルを1000サイクル繰り返した後、室温から200℃に設定し10分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。
【0090】
それぞれの結果は表1に示す通りである。
【0091】
【表1】

Figure 0003909266
【0092】
表1の試料No.1は、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が85%と小さくウェハの面内温度差は0.5℃と大きく、特に応答時間が63秒と大きく好ましくなかった。
【0093】
試料No.11は板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が99.5%と大きくウェハの面内温度差は2.18℃と大きく、応答時間も72秒と大きく好ましくなかった。
【0094】
これらに対し、試料No.2〜10はウェハの面内の温度差が0.5℃未満と小さく、しかも応答時間も40秒未満と小さく優れていることから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率は、90〜99%が優れたウェハ支持部材であることが分る。
【0095】
更に、板状セラミックス体の外周部下面で金属ケースと接触部材を介して接続した支持構造では、試料No.3〜5に示すように板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が92〜95%で、ウェハの面内温度差が0.40℃以下で且つ応答時間が35秒以下と優れている。試料No.4,5は面内温度差が0.35℃以下で応答時間も34秒以下と小さいことから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が93〜95%であることがさらに好ましいことが分る。
【0096】
一方、板状セラミックス体の外周部側面で金属ケースと接触部材を介して接続した支持構造では、試料No.6〜9に示すように板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が95%〜98%で、ウェハの面内温度差が0.44℃以下で且つ応答時間は34秒以下と優れていた。試料No.7,8の面内温度差はどちらも0.40℃で応答時間が31秒と小さいことから、板状セラミックス体の直径に対する抵抗発熱体の外接円の比率が96%〜97%であることがさらに好ましいことが分る。
【0097】
(実施例 2)
実施例1と同様の工程で板状セラミックス体を作製した。そして、板状セラミックス体の主面に実施例1と同様の工程で抵抗発熱体を印刷した。抵抗発熱体のパターンは実施例1と同様の構成として、抵抗発熱体として最外周の8つのパターンに接する外接円の一部に円弧状パターンのない空白域Pの間隔Sと、前記抵抗発熱体に接する外接円の直径を310mmとして板状セラミックス体の直径を変えたウェハ支持部材を作製した。
【0098】
また、板状セラミックス体に上記接触部材を介してアルミニウム製の有底の金属ケースを取り付けウェハ支持部材を作製した。
【0099】
そして、実施例1と同様に評価した。その結果を表2に示す。
【0100】
【表2】
Figure 0003909266
【0101】
板状セラミックス体の直径と抵抗発熱体の外接円の直径との差Lが、空白域の間隔Sより大きい試料No.21、25、27は、ウェハの温度差はそれぞれ0.47、0.46、0.46℃で応答時間は38、36、34秒とやや大きかった。
【0102】
これらに対し、試料No.22、23,24、26、28の空白域の間隔Sは差Lより小さく、ウェハの温度差は0.29℃以下で、しかも応答時間は29秒以下と優れた特性を示すことが判明した。
【0103】
(実施例 3)
実施例2の試料No.23と同様の構成で、抵抗発熱体の外周部の円弧状パターンの線幅とこれに繋がる連結パターンの線幅を変えたウェハ支持部材を作製し実施例2と同様の評価を行った。その結果を表3に示す。
【0104】
【表3】
Figure 0003909266
【0105】
連結パターンの線幅が円弧状パターンの線幅と同等或いは小さい試料No.32,33、35、36のウェハの温度差は0.28℃以下と小さく、しかも応答時間が28秒以下と優れている事が判明した。
【0106】
更に、連結パターンの線幅が円弧状のパターンの線幅より小さい試料No.33、36のウェハの温度差は0.18℃、0.19℃と小さく、しかも応答時間が21秒以下と極めて優れている事が判明した。
【0107】
これらに対して、試料No.30、31、34はウェハの温度差が0.29℃以下で応答時間も31〜38秒と大きく劣っていた。
【0108】
従って、ウェハ支持部材において、前記円弧状パターンの線幅は、前記円弧状パターンと繋がる前記連結パターンの線幅と、同等或いは小さいことによりウェハの温度差が小さく応答時間の小さい優れたウェハ支持部材を提供できることが判明した。
【0109】
(実施例 4)
実施例1と同様に板状セラミックス体を作製した。
【0110】
ただし、ペーストの印刷厚みは20μmとし、また、抵抗発熱体を囲む外接円に対し、抵抗発熱体の占める面積の比率を異ならせたものを用意した。
【0111】
そして、実施例1と同様に評価した。その結果を表4に示す。
【0112】
【表4】
Figure 0003909266
【0113】
この結果、試料No.40のように、抵抗発熱体を囲む外接円に対し、抵抗発熱体の占める面積の比率が5%を下回る試料は、ウハの面内の温度差が0.39℃とやや大きかった。また、試料No.49のように、抵抗発熱体を囲む外接円に対し、抵抗発熱体の占める面積の比率が50%を越えると、ウハの一部に温度の高いホットエリが現れ、ウハの面内温度差が0.41℃と大きかった。
【0114】
これに対し、試料No.41〜48に示すように、抵抗発熱体の外接円に対して、抵抗発熱体の占める面積の比率を5〜50%とした試料は、ウハの面内温度差0.29℃以下と小さくすることができ、優れていた。
【0115】
また、試料No.42〜46のように、抵抗発熱体の外接円に対して、抵抗発熱体の占める面積の比率を10〜30%とすることで、ウハの面内の温度差を0.23℃以内とすることができ、さらには試料No.43〜45のように、抵抗発熱体の外接円に対して、抵抗発熱体の占める面積の比率を15〜25%とすることでウハの面内の温度差を0.16℃以内にまで低減することができ、特に優れていた。
(実施例 5)実施例1と同様に板状セラミック体を作製し、抵抗発熱体となるペーストとして種種の金属とガラス成分や金属酸化物を混合しペースト状に作製したのちスクリーン印刷しウハ支持部材を作製した。
【0116】
作製したウハ支持部材にウハを載せ抵抗発熱体に通電しそして、実施例1と同様に評価した。その結果を表5に示す。
【0117】
【表5】
Figure 0003909266
【0118】
試料No.51〜59は、焼結した抵抗発熱体の熱膨張係数と板状セラミック体との熱膨張係数の差が3×10−6/℃以下と小さいことからウハの表面の温度差が0.4℃以下と小さく、好ましいことがわかった。
【0119】
しかし、試料No.50,59は抵抗発熱体の熱膨張係数が3×10-6/℃をえて大きくウェハの温度差も0.48℃、0.47℃と大きかった。
【0120】
【発明の効果】
以上のように、本発明によれば、窒化アルミニウムを主成分とする焼結体からなる板状セラミックス体の一方の主面にAu、Ag、Cu、Pd、PtおよびRhの少なくとも一種の金属粒子とガラスと金属酸化物とからなる抵抗発熱体を備え、他方の主面にウェハ加熱面を備えたウェハ支持部材であって、板状セラミックス体の外周部に位置する前記抵抗発熱体は同心円状の円弧状パターンを有し、前記抵抗発熱体に電力を供給する給電部と、該給電部を囲む金属ケースとからなり、該金属ケースの開口部の外周に接触部材を介して前記板状セラミックス体の他方の主面の周辺部を接続してあり、前記板状セラミックス体の外周部に位置する前記抵抗発熱体は同心円状の円弧状パターンを有し、前記抵抗発熱体の外接円の直径前記板状セラミックス体の直径の92〜95%とすることによりウェハ面内の温度差が小さく温度応答特性の優れたウェハ支持部材が得られる。
【0121】
更に、前記ウェハ支持部材において、前記外接円と接する円弧状パターンと、該円弧状パターンと連続して繋がった連結パターンとを備え、前記外接円の一部に前記円弧状のパターンのない空白域の間隔が、前記板状セラミックス体と前記外接円の直径との差より小さくすることでウェハの均熱性の高いウェハ支持部材が得られる。
【図面の簡単な説明】
【図1】本発明のウェハ支持部材の一例を示す断面図である。
【図2】本発明の他のウェハ支持部材の一例を示す断面図である。
【図3】本発明のウェハ支持部材における抵抗発熱体の形状を示す概略図である。
【図4】本発明のウェハ支持部材における他の抵抗発熱体の形状を示す概略図である。
【図5】本発明のウェハ支持部材における他の抵抗発熱体の形状を示す概略図である。
【図6】従来のウェハ支持部材の一例を示す断面図である。
【図7】従来のウェハ支持部材における抵抗発熱体の形状を示す概略図である。
【符号の説明】
1、71:ウェハ支持部材
2、72:板状セラミックス体
3、73:載置面
5、75:抵抗発熱体
6:給電部
8:支持ピン
10:ガイド部材
11、77:給電端子
13:外周面
16:ボルト
17:接触部材
18:弾性体
19、79:金属ケース
20:ナット
21:底面
23:孔
24:ガス噴射口
25:ウェハリフトピン
26:貫通孔
27:測温素子
28:従来のガイド部材
W:半導体ウェハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer heating apparatus mainly used for heating a wafer. For example, a thin film is formed on a wafer such as a semiconductor wafer, a liquid crystal device or a circuit board, or a resist solution applied on the wafer. The present invention relates to a wafer support member suitable for forming a resist film by dry baking.
[0002]
[Prior art]
A wafer support member for heating a semiconductor wafer (hereinafter abbreviated as a wafer) is used in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a manufacturing process of a semiconductor manufacturing apparatus.
[0003]
The conventional semiconductor manufacturing apparatus has a batch type that heats a plurality of wafers at once and a sheet type that heats one wafer at a time. The single wafer type has excellent temperature controllability, so wiring of semiconductor elements is possible. Wafer support members have been widely used in accordance with demands for miniaturization of wafers and improved accuracy of wafer heat treatment temperature.
[0004]
As such a wafer support member, for example, Japanese Patent Application Laid-Open Nos. 2001-203156 and 2001-313249 propose a wafer support member as shown in FIG.
[0005]
The wafer support member 71 includes a plate-shaped ceramic body 72 and a metal case 79 as main components, and nitride ceramics or carbide is formed in an opening of a bottomed metal case 79 made of a metal such as aluminum. A plate-shaped ceramic body 72 made of ceramics is fixed with a bolt 80 via a heat insulating connecting member 74 made of a resin, and the upper surface thereof is used as a mounting surface 73 on which the wafer W is placed, and the lower surface of the plate-shaped ceramic body 72 is placed on the lower surface. For example, a concentric resistance heating element 75 as shown in FIG. 7 is provided.
[0006]
Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom 79 a of the metal case 79. 78 to be electrically connected.
[0007]
By the way, in such a wafer support member 71, it is important to make the temperature distribution of the wafer uniform in order to form a homogeneous film on the entire surface of the wafer W and to make the heating reaction state of the resist film uniform. It is. Therefore, until now, in order to reduce the temperature difference in the surface of the wafer, the resistance distribution of the resistance heating element 75 is adjusted, or the temperature of the resistance heating element 75 is divided and controlled. Further, in the wafer support member described in Japanese Patent Application Laid-Open No. 2002-76102 and Japanese Patent No. 2527836 having a structure that easily generates heat, proposals have been made to increase the heat generation area around the wafer W.
[0008]
However, both have the problem that a very complicated and delicate structure and control are required, and a wafer support member that can heat the temperature distribution more uniformly with a simple structure has been demanded.
[0009]
[Problems to be solved by the invention]
In recent years, the size of wafers has been increased to improve production efficiency, but the semiconductor elements themselves have also diversified. Manufacturing with large-sized wafers does not necessarily lead to improvement in production efficiency. Therefore, an apparatus that can cope with the wafer size and heat treatment conditions is desired.
[0010]
Furthermore, in the chemically amplified resist that has begun to be used with the miniaturization of the wiring of the semiconductor element, not only the uniformity of the temperature of the wafer but also from the moment when the wafer is placed on the heat treatment apparatus until the heat treatment is finished. The transient temperature history is also extremely important, and it is desired that the wafer temperature be stabilized uniformly within about 60 seconds immediately after the wafer is placed.
[0011]
However, in the apparatus introduced in Japanese Patent Application Laid-Open No. 2002-76102, the semiconductor wafer is directly or at a certain distance from the surface inside the surface region corresponding to the region where the resistance heating element of the plate-like ceramic body is formed. Although a wafer support member is shown in which a region to be mounted is present, the temperature difference of the wafer is as large as 0.5 to 1 ° C., and the temperature is stable due to the influence of the low temperature region on the outer periphery of the plate-like ceramic body. There is a possibility that the response time until the time is increased.
[0012]
Further, in the wafer support member of FIG. 6 described in Japanese Patent Application Laid-Open No. 2001-313249, a metal case 79 is formed around the plate-like ceramic body 72 with a locking ring 81, a bolt 80 and a heat insulating connection member 74 made of fiber-containing resin. However, it is difficult to maintain the positional accuracy because the resin-made connecting member 74 is deformed by a thermal cycle and the plate-like ceramic body 72 is inclined or displaced, and the wafer W is heated for a long period of time. There is a concern that the in-plane temperature difference of the wafer becomes large. Further, since heat flows from the locking ring 81 in contact with the plate-like ceramic body 72 to the bolt 80 and escapes to the metal case 79, the temperature of the peripheral portion of the plate-like ceramic body varies, and the wafer W placed on the plate-like ceramic body 72. The in-plane temperature difference may be as large as 0.5 ° C.
[0013]
Furthermore, there is a possibility that the time for heating the wafer W uniformly, increasing the temperature of the wafer W rapidly, or decreasing the temperature rapidly increases.
[0014]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors Nitro Resistance heating consisting of at least one kind of metal particles of Au, Ag, Cu, Pd, Pt and Rh, glass and metal oxide on one main surface of a plate-like ceramic body made of a sintered body containing aluminum fluoride as a main component A wafer support member having a wafer heating surface on the other main surface, the power supply unit supplying power to the resistance heating element, and a metal case surrounding the power supply unit, the metal case The peripheral part of the other main surface of the plate-like ceramic body is connected to the outer periphery of the opening of the plate-like ceramic body, and the resistance heating element located on the outer periphery of the plate-like ceramic body is a concentric circle An arc-shaped pattern is provided, and the diameter of the circumscribed circle of the resistance heating element is 92 to 95% of the diameter of the plate-like ceramic body.
[0015]
The resistance heating element includes an arc-shaped pattern in contact with the circumscribed circle and a connection pattern continuously connected to the arc-shaped pattern, and a blank area without the arc-shaped pattern is part of the circumscribed circle. It exists and the space | interval of this blank area is made smaller than the difference of the diameter of the said plate-shaped ceramic body, and the diameter of the said circumscribed circle.
[0016]
Furthermore, the line width of the arc-shaped pattern is equal to or smaller than the line width of the connection pattern connected to the arc-shaped pattern. Further, the thickness of the plate-shaped ceramic body is 1 to 7 mm, the thickness of the resistance heating element is 5 to 70 μm, and the ratio of the area of the resistance heating element to the area of the circumscribed circle of the resistance heating element is 5 to 50 %.
[0017]
The difference in thermal expansion coefficient between the resistance heating element and the plate-like ceramic body is 3.0 × 10. -6 / ° C. or less is preferable because it can reduce the in-plane temperature difference of the wafer.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0019]
FIG. 1 shows the present invention. of In sectional drawing which shows one example of the wafer support member 1, while making one main surface of the plate-shaped ceramic body 2 which consists of ceramics which have silicon carbide or aluminum nitride as a main component into the mounting surface 3 which mounts the wafer W, A resistance heating element 5 is formed on the other main surface, and a power supply unit 6 electrically connected to the resistance heating element 5 is provided. A power supply terminal 11 is connected to the power supply unit 6. A metal case 19 surrounding these power feeding portions 6 is fixed to the peripheral portion of the other main surface of the plate-like ceramic body 2 via a connecting member 17.
[0020]
Further, the wafer lift pins 25 can move the wafer W up and down through the holes penetrating the plate-like ceramic body 2 to place or drop the wafer W on the mounting surface 3. Then, the power supply terminal 11 is connected to the power supply unit 6 and electric power is supplied from the outside, and the temperature W of the plate ceramic body 2 can be heated by the temperature measuring element 27 to heat the wafer W.
[0021]
The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variations due to contact of the wafer W or the like. Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.
[0022]
FIG. 2 shows the present invention. of It is sectional drawing which shows the other Example of a wafer support member, and unlike FIG. 1, it fixes to the metal case via the connection member 17 on the outer peripheral surface 13 of a plate-shaped ceramic body.
[0023]
FIG. 3 shows an example of the pattern shape of the resistance heating element 5, and the peripheral portion of the resistance heating element 5 is composed of concentric arc-shaped patterns 5 a and connection patterns 5 b continuously connected to these. The resistance heating element 5 located on the outer peripheral portion of the body 2 preferably has a concentric arc-shaped pattern 5a, and any pattern shape can be used as long as the mounting surface 3 can be heated uniformly. In order to improve the thermal uniformity, the resistance heating element 5 is divided into a total of six patterns, four at the peripheral part and two at the central part. Moreover, the line width and density of the pattern may be adjusted to improve the heat uniformity by providing a distribution of the calorific value density.
[0024]
In the wafer support member 1 of the present invention, the diameter DC of the circumscribed circle C of the resistance heating element 5 is 9 of the diameter D of the plate-like ceramic body 2 on one main surface of the plate-like ceramic body 2. 2 ~ 9 5 %.
[0025]
When the diameter DC of the circumscribed circle C of the resistance heating element 5 is smaller than 90% of the diameter D of the plate-like ceramic body 2, the time for rapidly raising or lowering the temperature of the wafer increases, and the temperature response characteristic of the wafer W increases. Inferior. Further, the diameter D of the plate-shaped ceramic body 2 is increased, and the size of the wafer W that can be uniformly heated is smaller than the diameter D of the plate-shaped ceramic body 2, and the wafer heating efficiency with respect to the electric power for heating the wafer W is improved. Deteriorate. Furthermore, since the plate-like ceramic body 2 becomes large, the installation area of the wafer manufacturing apparatus becomes large, which is not preferable because the operating rate with respect to the installation area of the semiconductor manufacturing apparatus that needs to perform the maximum production with the minimum installation area is lowered.
[0026]
When the diameter DC of the circumscribed circle C of the resistance heating element 5 is larger than 99% of the diameter D of the plate-like ceramic body 2, the distance between the contact member 17 and the outer periphery of the resistance heating element 5 is small, and heat is generated from the outer periphery of the resistance heating element 5. Flows unevenly to the contact member 17, and in particular, heat flows from a portion where the arc-shaped pattern 5 a on the outer peripheral portion does not exist, and the arc-shaped pattern 5 a on the outer peripheral portion is bent toward the center of the plate-like ceramic body 2. As a result, the temperature of the portion P where the arc-shaped pattern 5a is missing is lowered along the circumscribed circle C surrounding the resistance heating element 5, and the in-plane temperature difference of the wafer W is increased.
[0027]
More preferably, the diameter DC of the circumscribed circle C of the resistance heating element 5 is 92 to 97% of the diameter D of the plate-like ceramic body 2.
[0028]
In particular, in the case of the wafer support member 1 in FIG. 1 in which the outer shapes of the plate-like ceramic body 2 and the metal case 19 are substantially equal and the metal case 19 supports the plate-like ceramic body 2 from below, the temperature difference in the plane of the wafer W is increased. In order to make it smaller, the diameter DC of the circumscribed circle C of the resistance heating element 5 is 92 to 95%, more preferably 93 to 95% of the diameter D of the plate-like ceramic body 2.
[0029]
On the other hand, in the case of the wafer support member of FIG. 2 in which the metal case 19 is connected so as to cover the outer peripheral surface 13 of the plate-like ceramic body 2, the diameter DC of the circumscribed circle C of the resistance heating element 5 is that of the plate-like ceramic body 2. The diameter D is preferably 95 to 98%, more preferably 96 to 97%.
[0030]
The wafer support member 1 of the present invention has been described with an example in which the metal case 19 is connected to the lower surface of the peripheral portion of the plate-like ceramic body 2 or the metal case is connected to the outer peripheral surface 13 of the plate-like ceramic body 2. Of course, the wafer supporting member 1 connected to the metal case 19 at the same time on both the lower surface and the outer peripheral surface is also included.
[0031]
Further, the wafer support member 1 of the present invention includes an arc-shaped pattern 5a in contact with the circumscribed circle C of the resistance heating element 5 and a connection pattern 5b continuously connected to the arc-shaped pattern. There is a blank area P without the arc-shaped pattern in the part, and the interval S between the blank areas P is the difference between the diameter D of the plate-like ceramic body and the diameter DC of the circumscribed circle C (hereinafter abbreviated as L). Smaller).
[0032]
If the distance S is larger than L, the heat of the blank area P flows to the peripheral part of the plate-shaped ceramic body, and the temperature of the blank area P may be lowered. However, if the interval S is smaller than L, the temperature of the blank area P is unlikely to decrease, and the temperature in the peripheral portion of the wafer W placed on the mounting surface 3 of the plate-like ceramic body 2 does not decrease, but the temperature within the wafer W surface. This is preferable because the difference is reduced.
[0033]
In order not to lower the temperature of the blank area P, it is necessary to raise the temperature of the blank area. If the resistance of the connection pattern 5b for heating the blank area is equal or increased to increase the heat generation amount, The possibility that the temperature is lowered is reduced, and the in-plane temperature of the wafer W is preferably uniform. When the resistance heating element 5 created by a printing method or the like is planar, the resistance of the connection pattern 5b can be increased by making the line width Ws of the connection pattern 5b smaller than the line width Wp of the arc-shaped pattern 5a. The in-plane temperature of the wafer W can be made uniform by raising the temperature of the pattern 5b above the temperature of the arc-shaped pattern 5a.
[0034]
The plate-like ceramic body 2 has a thickness of 1 to 7 mm, the resistance heating element 5 has a thickness of 5 to 70 μm, and occupies the circumscribed circle C with respect to the area of the circumscribed circle C surrounding the resistance heating element. The area ratio of the resistance heating element 5 is preferably 5 to 50%.
[0035]
That is, if the ratio of the area of the resistance heating element 5 to the area of the circumscribed circle C surrounding the resistance heating element 5 is less than 5%, the opposing interval S1 between the opposing areas in the opposing area of the resistance heating element 5 is as follows. Since it becomes too large, the surface temperature of the mounting surface 3 corresponding to the interval S1 without the resistance heating element 5 becomes smaller than other portions, and it is difficult to make the temperature of the mounting surface 3 uniform.
[0036]
On the contrary, when the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 exceeds 50%, it is between the plate-like ceramic body 2 and the resistance heating element 5. Of thermal expansion of 3.0 × 10 -6 Even when approximated to / ° C. or less, the thermal stress acting between the two is too large, and the plate-like ceramic body 2 is made of a ceramic sintered body that is difficult to deform, but the thickness t of the plate-like ceramic body 2 is When the resistance heating element 5 is heated because it is as thin as 1 mm to 7 mm, the plate-like ceramic body 2 is warped so that the mounting surface 3 side is concave, and as a result, the temperature of the central portion of the wafer W is higher than the peripheral edge. And temperature variation increases fear There is.
[0037]
Preferably, the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 10% to 30%, more preferably 15% to 25%. Is preferred.
[0038]
More specifically, the resistance heating element 5 is relative to the outer periphery. For Versus For Region For It is preferable that the space | interval S1 of an area | region is 0.5 mm or more and is 3 times or less of the plate | board thickness of the said plate-shaped ceramic body 2. FIG. Above pair For When the region spacing S1 is 0.5 mm or less, the resistance heating element 5 is paired when the resistance heating element 5 is printed and formed. For There is a possibility that a whisker-like protrusion is generated in the region and the portion is short-circuited. In addition, the above For The region spacing S1 is three times the thickness of the plate-like ceramic body 2. Super Eru For This is because a cool zone is generated on the surface of the wafer W corresponding to the region S1 and the in-plane temperature difference of the wafer W may be increased.
[0039]
Furthermore, in order to efficiently exhibit such an effect, the thickness of the resistance heating element 5 is preferably set to 5 to 70 μm.
[0040]
If the thickness of the resistance heating element 5 is less than 5 μm, it is difficult to print the resistance heating element 5 uniformly by screen printing, and the resistance heating element 5 has a thickness of 70 μm. Super In other words, even if the ratio of the area occupied by the resistance heating element 5 to the circumscribed circle P1 is 50% or less, the thickness of the resistance heating element 5 is large and the rigidity of the resistance heating element 5 is increased. 2 There is a possibility that the plate-like ceramic body 2 is deformed due to the influence of expansion and contraction of the resistance heating element 5 due to the temperature change. Further, it is difficult to print with a uniform thickness by screen printing, and the temperature difference on the surface of the wafer W may increase. A preferable thickness of the resistance heating element 5 is 10 to 30 μm.
[0041]
Next, another detailed configuration and manufacturing method will be described.
[0042]
The present invention of The thickness t of the plate-like ceramic body 2 of the wafer support member is preferably 1 to 7 mm, and is preferably composed of the plate-like ceramic body 2 having a Young's modulus at 100 to 200 ° C. of 200 to 450 MPa.
[0043]
Silicon carbide, alumina, silicon nitride, sialon, and aluminum nitride can be used as the material of the plate-like ceramic body 2 having a Young's modulus at 100 to 200 ° C. of 200 to 450 MPa. m · K) or more, and further has a high thermal conductivity of 100 W / (m · K) or more, and is resistant to corrosive gases such as fluorine and chlorine. La It is suitable as a material for the plate-like ceramic body 2 because of its excellent zuma properties.
[0044]
The thickness of the plate-like ceramic body 2 is more preferably 2 to 5 mm. When the thickness of the plate-like ceramic body 2 is less than 2 mm, the strength of the plate-like ceramic body 2 is lost, and the gas injection port 24 is heated during heating by the heat generation of the resistance heating body 5. Or This is because when the cooling air is blown, the plate-like ceramic body 2 may not be able to withstand the thermal stress during cooling and cracks may occur in the plate-like ceramic body 2. Further, the thickness of the plate-like ceramic body 2 is 5 mm. Super In other words, since the heat capacity of the plate-like ceramic body 2 is increased, there is a possibility that the time until the temperature during heating and cooling becomes stable becomes longer.
[0045]
The bottomed metal case 19 has a side wall portion 22 and a bottom surface 21, and the plate-like ceramic body 2 is installed so as to cover the opening of the bottomed metal case 19. Further, the bottomed metal case 19 is provided with a hole 23 for discharging a cooling gas, and a power supply terminal for conducting to a power supply portion 6 for supplying power to the resistance heating element 5 of the plate-like ceramic body 2. 11. A gas injection port 24 for cooling the plate-like ceramic body 2 and a temperature measuring element 27 for measuring the temperature of the plate-like ceramic body 2 are provided.
[0046]
The depth of the bottomed metal case 19 is 10 to 50 mm, and the bottom surface 21 is preferably installed at a distance of 10 to 50 mm from the plate-like ceramic body 2. More preferably, it is 20-30 mm. This is because heat equalization of the mounting surface 3 is facilitated by radiant heat between the plate-like ceramic body 2 and the bottomed metal case 19, and at the same time, there is a heat insulation effect from the outside, so the temperature of the mounting surface 3 is constant. This is because the time until the temperature becomes uniform is shortened.
[0047]
The plate-like ceramic body 2 has a bottomed metal case 19. of A bolt 16 is passed through the outer periphery of the opening, and a ring-shaped contact member 17 is interposed so that the plate-like ceramic body 2 and the bottomed metal case 19 do not directly contact each other, and an elastic body is provided from the bottomed metal case 19 side. The nut 20 is screwed through the 18 and is elastically fixed. Thereby, even if the bottomed metal case 19 is deformed when the temperature of the plate-like ceramic body 2 fluctuates, the elastic body 18 absorbs this, thereby suppressing the warp of the plate-like ceramic body 2, It is possible to prevent temperature variations due to warpage of the plate-shaped ceramic body 2 from occurring on the wafer surface.
[0048]
The cross-section of the ring-shaped contact member 17 may be either polygonal or circular. However, when the plate-shaped ceramic body 2 and the contact member 17 are in contact with each other in a plane, the contact portion of the plate-shaped ceramic body 2 and the contact member 17 is in contact. If the width is 0.1 mm to 13 mm, the amount of heat of the plate-like ceramic body 2 is reduced to the bottomed metal case 19 via the contact member 17. Toga it can. And the temperature difference in the surface of the wafer W is small, and the wafer W can be heated uniformly. More preferably, it is 0.1-8 mm. If the width of the contact portion of the contact member 17 is 0.1 mm or less, the contact portion may be deformed when the contact is fixed to the plate-like ceramic body 2, and the contact member may be damaged. Further, the width of the contact portion of the contact member 17 is 13 mm. Super In this case, the heat of the plate-like ceramic body 2 flows to the contact member, the temperature of the peripheral portion of the plate-like ceramic body 2 is lowered, and it becomes difficult to uniformly heat the wafer W. Preferably, the contact member 17 and the plate-like ceramic body 2 When The width of the contact portion is 0.1 mm to 8 mm, more preferably 0.1 to 2 mm.
[0049]
Further, the thermal conductivity of the contact member 17 is preferably smaller than the thermal conductivity of the plate-like ceramic body 2. If the thermal conductivity of the contact member 17 is smaller than the thermal conductivity of the plate-like ceramic body 2, the temperature distribution in the wafer W surface placed on the plate-like ceramic body 2 can be heated uniformly, and the plate-like ceramic body 2. When the temperature is raised or lowered, the amount of heat transferred to the contact member 17 is small, and there is little thermal interference with the bottomed metal case 19, so that it is easy to change the temperature quickly.
[0050]
In the wafer support member 1 in which the thermal conductivity of the contact member 17 is smaller than 10% of the thermal conductivity of the plate-like ceramic body 2, it is difficult for the heat of the plate-like ceramic body 2 to flow into the bottomed metal case 19. The heat from 2 to the bottomed metal case 19 flows due to heat transfer by atmospheric gas (air in this case) or radiation heat transfer, and the effect is small.
[0051]
When the thermal conductivity of the contact member 17 is higher than the thermal conductivity of the plate-like ceramic body 2, the heat around the plate-like ceramic body 2 flows to the bottomed metal case 19 via the contact member 17 and is present. While heating the bottom metal case 19, the temperature of the peripheral part of the plate-shaped ceramic body 2 falls, and the temperature difference in the wafer W surface becomes large, which is not preferable. In addition, since the bottomed metal case 19 is heated, even if it is attempted to cool the plate-like ceramic body 2 by injecting air from the gas injection port 24, the cooling time is large because the temperature of the bottomed metal case 19 is high. Or when it is heated to a certain temperature, there is a possibility that the time until the temperature reaches a certain temperature is increased.
[0052]
On the other hand, as a material constituting the contact member 17, the Young's modulus of the contact member is preferably 1 GPa or more, and more preferably 10 GPa or more in order to hold a small contact portion. By setting such a Young's modulus, the width of the contact portion is as small as 0.1 mm to 8 mm, and the plate-like ceramic body 2 is fixed to the bottomed metal case 19 with the bolt 16 via the contact member 17, The contact member 17 is not deformed, and the plate-shaped ceramic body 2 can be held with high accuracy without being displaced or changing in parallelism.
In addition, the precision which cannot be obtained with the contact member which consists of resin which added resin and glass fiber to the fluorine-type contact member can be achieved.
[0053]
As the material of the contact member 17, metals such as carbon steel made of iron and carbon and special steel added with nickel, manganese, and chromium are preferable because of their large Young's modulus. Further, as the material having a low thermal conductivity, so-called kovar of stainless steel or Fe—Ni—Co alloy is preferable, and the material of the contact member 17 is selected so as to be smaller than the thermal conductivity of the plate-like ceramic body 2. Is preferred.
[0054]
Furthermore, since the contact portion between the contact member 17 and the plate-like ceramic body 2 is small, and even if the contact portion is small, the contact portion is not liable to be lost and particles can be generated. The cross section of the contact member 17 cut at a plane perpendicular to the body 2 is preferably circular rather than polygonal. When a circular wire having a cross section diameter of 1 mm or less is used as the contact member 17, the plate-like ceramic body 2 and the bottomed metal case 19 are used. It is possible to raise and lower the temperature of the wafer W evenly and quickly without changing the position of the wafer W.
[0055]
Next, the manufacturing method and configuration of the wafer support member 1 when the wafer support member 1 is used for forming a resist film will be described.
[0056]
If silicon carbide is used as the main component of the plate-like ceramic body 2, it does not react with moisture in the atmosphere and does not generate gas, so even if it is used for attaching the resist film on the wafer W, the resist film Fine wirings can be formed at high density without adversely affecting the tissue. At this time, it is necessary that the sintering aid does not contain nitrides that may react with water to form ammonia or amines.
[0057]
In the silicon carbide sintered body forming the plate-like ceramic body 2, boron (B) and carbon (C) are added as sintering aids to the main component silicon carbide, or alumina (Al 2 O Three ) Yttria (Y 2 O Three It is obtained by adding a metal oxide such as), mixing well, processing into a flat plate, and firing at 1900-2100 ° C. Silicon carbide may be either mainly α-type or β-type.
[0058]
When a silicon carbide sintered body is used as the plate-like ceramic body 2, glass or resin is used as an insulating layer for maintaining insulation between the plate-like ceramic body 2 having semiconductivity and the resistance heating element 5. In the case of using glass, if the thickness is less than 100 μm, the withstand voltage is less than 1.5 kV and the insulation cannot be maintained, and conversely the thickness is 400 μm. Super In other words, since the difference in thermal expansion from the silicon carbide sintered body forming the plate-like ceramic body 2 becomes too large, cracks are generated and the insulating layer does not function. Therefore, when glass is used as the insulating layer, the thickness of the insulating layer 4 is preferably formed in the range of 100 to 400 μm, and desirably in the range of 200 μm to 350 μm.
[0059]
Furthermore, the main surface opposite to the mounting surface 3 of the plate-shaped ceramic body 2 has a flatness of 20 μm or less and a surface roughness of the center line average roughness from the viewpoint of improving the adhesion with the insulating layer 4 made of glass or resin. The thickness (Ra) is preferably polished to 0.1 μm to 0.5 μm.
[0060]
On the other hand, when the plate-like ceramic body 2 is formed of a sintered body containing aluminum nitride as a main component, Y is used as a sintering aid for the main component aluminum nitride. 2 O Three And Yb 2 O Three It is obtained by adding a rare earth element oxide such as CaO and an alkaline earth metal oxide such as CaO as necessary and mixing them well, processing into a flat plate shape, and then firing at 1900 to 2100 ° C. in nitrogen gas. In order to improve the adhesion of the resistance heating element 5 to the plate-like ceramic body 2, an insulating layer made of glass may be formed. However, when sufficient glass is added in the resistance heating element 5 and sufficient adhesion strength can be obtained by this, it can be omitted.
[0061]
The glass forming this insulating layer may be crystalline or amorphous, and has a heat-resistant temperature of 200 ° C. or higher and a thermal expansion coefficient in the temperature range of 0 ° C. to 200 ° C. -5 to +5 x 10 for the thermal expansion coefficient of the ceramics -7 It is preferable to select and use one in the range of / ° C. That is, if a glass whose thermal expansion coefficient is out of the above range is used, the difference in thermal expansion from the ceramic forming the plate-like ceramic body 2 becomes too large, so that defects such as cracks and delamination occur during cooling after baking the glass. It is because it is easy to occur.
[0062]
In addition, as a means for depositing an insulating layer made of glass on the plate-like ceramic body 2, an appropriate amount of the glass paste is dropped on the center of the plate-like ceramic body 2, and is spread and applied uniformly by a spin coating method. Alternatively, the glass paste may be baked at a temperature of 600 ° C. or higher after being uniformly applied by a screen printing method, a dipping method, a spray coating method, or the like. When glass is used as the insulating layer, the surface of the plate-like ceramic body 2 made of a silicon carbide sintered body or an aluminum nitride sintered body is heated to a temperature of about 850 to 1300 ° C. to deposit the insulating layer. By subjecting to an oxidation treatment, adhesion to an insulating layer made of glass can be enhanced.
[0063]
FIG. 4 illustrates the present invention. In wafer support member The other example of the pattern shape of the resistance heating element 5 is shown. The resistance heating element 5 shows an example in which the resistance heating element 5 is divided into a total of five patterns, four at the periphery and one at the center.
[0064]
FIG. 5 shows another example in which the resistance heating element 5 has a single pattern shape.
[0065]
As shown in FIG. 7, in the resistance heating element pattern in which a portion where the resistance heating elements 25 are closely spaced and a rough portion appear alternately in the radial direction from the center of the plate-like ceramic body 22, it corresponds to the rough portion. This is not preferable because the surface temperature of the wafer W is small, the temperature of the wafer W corresponding to the dense portion is large, and it is difficult to uniformly heat the entire surface of the wafer W.
[0066]
The resistance heating element 5 is obtained by printing and baking an electrode paste containing glass frit or metal oxide on conductive metal particles on the plate-like ceramic body 2 by a printing method. As the metal particles, Au, Ag, Cu, Pd, Pt and It is preferable to use at least one kind of metal of Rh, and the glass frit is made of an oxide containing B, Si, Zn, and is smaller than the thermal expansion coefficient of the plate-like ceramic body 2 by 4.5 × 10. -6 It is preferable to use low-expansion glass at / ° C. or lower, and it is preferable to use at least one selected from silicon oxide, boron oxide, alumina, and titania as the metal oxide.
[0067]
Here, as metal particles forming the resistance heating element 5, Au, Ag, Cu, Pd, Pt and The reason why at least one metal of Rh is used is that the electric resistance is small.
[0068]
The glass frit forming the resistance heating element 5 is made of an oxide containing B, Si, and Zn, and the thermal expansion coefficient of the metal particles constituting the resistance heating element 5 is larger than the thermal expansion coefficient of the plate-like ceramic body 2. In order to make the thermal expansion coefficient of the resistance heating element 5 close to the thermal expansion coefficient of the plate-like ceramic body 2, 4.5 × 10 smaller than the thermal expansion coefficient of the plate-like ceramic body 2. -6 This is because it is preferable to use a low expansion glass having a temperature of / ° C. or lower.
[0069]
In addition, as the metal oxide forming the resistance heating element 5, using at least one selected from silicon oxide, boron oxide, alumina, and titania has excellent adhesion to the metal particles in the resistance heating element 5, In addition, the thermal expansion coefficient is close to the thermal expansion coefficient of the plate-like ceramic body 2 and the adhesiveness with the plate-like ceramic body 2 is also excellent.
[0070]
However, if the content of the metal oxide exceeds 80% with respect to the resistance heating element 5, the adhesion with the plate-like ceramic body 2 is increased, but the resistance value of the resistance heating element 5 is not preferable. Therefore, the content of the metal oxide is preferably 60% or less.
[0071]
The resistance heating element 5 made of conductive metal particles and glass frit or metal oxide has a thermal expansion difference of 3.0 × 10 5 from the plate-like ceramic body 2. -6 It is preferable to use one that is / ° C or lower.
[0072]
That is, the difference in thermal expansion between the resistance heating element 5 and the plate-like ceramic body 2 is 0.1 × 10. -6 / ° C. is difficult in production, and conversely, the difference in thermal expansion between the resistance heating element 5 and the plate-like ceramic body 2 is 3.0 × 10. -6 When the temperature exceeds / ° C., when the resistance heating element 5 is heated, the mounting surface 3 side warps in a concave shape due to thermal stress acting between the plate-like ceramic body 2. fear Because there is.
[0073]
Further, as the resistance heating element 5 material deposited on the insulating layer, a simple metal such as gold (Au), silver (Ag), copper (Cu), palladium (Pd) or the like is directly applied by a vapor deposition method or a plating method. The metal alone or rhenium oxide (Re 2 O Three ), Lanthanum manganate (LaMnO) Three ) And other conductive metal oxides or a paste in which the above metal material is dispersed in a resin paste or glass paste, printed in a predetermined pattern shape by screen printing or the like, and baked to obtain the conductive material. What is necessary is just to combine with the matrix which consists of resin or glass. When glass is used as the matrix, either crystallized glass or amorphous glass may be used, but crystallized glass is preferably used in order to suppress a change in resistance value due to thermal cycling.
[0074]
However, when silver (Ag) or copper (Cu) is used for the resistance heating element 5 material, migration occurs. fear Therefore, in such a case, a coat layer made of the same material as the insulating layer may be coated with a thickness of about 40 to 400 μm so as to cover the resistance heating element 5.
[0075]
Further, regarding a method of feeding power to the resistance heating element 5, a feeding part 6 made of a material such as gold, silver, palladium, or platinum is formed on the resistance heating element 5, and a feeding terminal 11 is brought into contact with the feeding part 6. , Conduction is ensured. As long as the power supply terminal 11 and the power supply section 6 can secure continuity, a technique such as soldering or brazing may be used. However, the power supply terminal 11 installed on the bottomed metal case 19 is plate-shaped. It is preferable to secure the connection and supply power by pressing a power supply portion 6 formed on the surface of the ceramic body 2 with a spring (not shown). This is because when the terminal portion made of metal is embedded in the plate-like ceramic body 2 having a thickness of 1 to 7 mm, the thermal uniformity is deteriorated due to the heat capacity of the terminal portion. Therefore, by pressing the power supply terminal 11 with a spring to ensure electrical connection, the thermal stress due to the temperature difference between the plate-like ceramic body 2 and the bottomed metal case 19 is alleviated, and the electricity is highly reliable. Continuity can be maintained. Further, an elastic conductor may be inserted as an intermediate layer in order to prevent the contact from becoming a point contact. This intermediate layer is effective by simply inserting a foil-like sheet. And it is preferable that the diameter by the side of the electric power feeding part 6 of the electric power feeding terminal 11 shall be 1.5-5 mm.
[0076]
The temperature of the plate-like ceramic body 2 is measured by a temperature measuring element 27 such as a thermocouple in which the tip is embedded in the plate-like ceramic body 2. As the temperature measuring element 27, it is preferable to use a sheath-type thermocouple having an outer diameter of 0.8 mm or less from the viewpoint of its responsiveness and workability of holding. In order to improve the reliability of temperature measurement, it is preferable that the tip of the thermocouple has a hole formed in the plate-like ceramic body 2 and is fixed to the inner wall surface of the hole by a fixing member installed therein. Similarly, it is also possible to perform temperature measurement by embedding a temperature measuring resistor such as a thermocouple of a wire or Pt.
[0077]
Further, although the wafer support member 1 having only the resistance heating element 5 on the other main surface 3 of the plate-like ceramic body 2 has been shown, the present invention provides an electrostatic adsorption between the main surface 3 and the resistance heating element 5. Needless to say, the electrode may be embedded with an electrode for plasma generation or plasma generation.
[0078]
【Example】
(Example 1)
First, 1.0% by mass of yttrium oxide in terms of weight was added to the aluminum nitride powder, and further kneaded for 48 hours with a ball mill using isopropyl alcohol and urethane balls to produce an aluminum nitride slurry.
[0079]
Next, the aluminum nitride slurry was passed through 200 mesh to remove urethane balls and ball mill wall debris, and then dried at 120 ° C. for 24 hours in an explosion-proof dryer.
[0080]
Next, the obtained aluminum nitride powder was mixed with an acrylic binder and a solvent to produce an aluminum nitride slip, and a plurality of aluminum nitride green sheets were produced by a doctor blade method.
[0081]
A laminate was formed by laminating a plurality of obtained aluminum nitride green sheets.
[0082]
Thereafter, the laminate is degreased at a temperature of 500 ° C. for 5 hours in a non-oxidizing gas stream, and then fired at a temperature of 1900 ° C. for 5 hours in a non-oxidizing atmosphere to obtain various thermal conductivities. A plate-like ceramic body having the same was produced.
[0083]
Then, the aluminum nitride sintered body is ground to produce a plurality of disk-shaped plate-like ceramic bodies 2 having a plate thickness of 3 mm and a diameter of 315 mm to 345 mm, and further penetrates three places evenly on a concentric circle of 60 mm from the center. A hole was formed. The through-hole diameter was 4 mm.
[0084]
Next, in order to deposit the resistance heating element 5 on the plate-like ceramic body 2, a conductor paste produced by kneading a glass paste to which Au powder, Pd powder and a binder having the same composition as described above are added as a conductive material. Is printed in a predetermined pattern shape by a screen printing method, heated to 150 ° C. to dry the organic solvent, further degreased at 550 ° C. for 30 minutes, and then baked at a temperature of 700 to 900 ° C. Thus, the resistance heating element 5 having a thickness of 50 μm was formed. The pattern of the resistance heating element 5 is divided into a circle and an annular shape radially from the central portion, a pattern is formed in one circular shape in the central portion, and a pattern is formed in two in the outer annular portion. Furthermore, a total of 15 patterns were formed with 4 patterns on the outer side and 8 patterns on the outermost periphery. And the diameter of circumscribed circle C of eight patterns of the outermost periphery was made into 310 mm, and it produced by changing the diameter of plate-shaped ceramics. After that, the plate-like ceramic body 2 was manufactured by brazing and fixing the feeding portion 6 to the resistance heating element 5.
[0085]
The bottom of the bottomed metal case is made of 2.0mm of aluminum and 1.0mm of aluminum constituting the side wall, and the gas injection port, thermocouple, and conduction terminal are attached to the bottom of the case. It was. The distance from the bottom surface to the plate-like ceramic body was 20 mm.
[0086]
After that, a plate-shaped ceramic body is overlaid on the opening of the bottomed metal case, and a bolt is passed through the outer periphery thereof, so that the plate-shaped ceramic body and the bottomed metal case do not directly contact each other. A wafer support member was obtained by interposing a member and elastically fixing the member by screwing a nut through an elastic body from the contact member side.
[0087]
Also, a support structure for supporting the lower surface of the peripheral part of the plate-like ceramic body A And a support structure that supports the outer peripheral surface of the plate-like ceramic body B The wafer support member was fabricated with the two structures. Support structure A Then, the diameter of the plate ceramic body and the outside of the metal case Diameter The diameter is the same.
[0088]
The contact member 17 has a circular cross section and a ring shape. The size of the circular cross section was 1 mm in diameter. The material of the contact member was SUS304 or carbon steel. The produced various wafer support members were designated as sample Nos. 1-11.
[0089]
Evaluation of the produced wafer support member was performed using a temperature measuring wafer having a diameter of 300 mm in which temperature measuring resistors were embedded in 29 locations. A power supply is attached to each wafer support member, the wafer W is heated from 25 ° C. to 200 ° C. in 5 minutes, the temperature of the wafer W is set to 200 ° C., and then the average temperature of the wafer W is 200 ° C. ± 0.5 ° C. The time until it became constant in the range of was measured as the response time. Further, after the temperature cycle of 30 ° C. to 200 ° C. in 5 minutes and holding for 5 minutes and then cooling for 30 minutes is repeated 1000 cycles, the temperature is set from room temperature to 200 ° C. and the maximum value of the wafer temperature after 10 minutes The difference between the minimum values was measured as the temperature difference of the wafer W.
[0090]
Each result is as shown in Table 1.
[0091]
[Table 1]
Figure 0003909266
[0092]
Sample No. in Table 1 No. 1 was not preferable because the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body was as small as 85%, the in-plane temperature difference of the wafer was as large as 0.5 ° C., and the response time was particularly large as 63 seconds.
[0093]
In Sample No. 11, the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body was 99.5%, the in-plane temperature difference of the wafer was as large as 2.18 ° C., and the response time was as large as 72 seconds. It was.
[0094]
On the other hand, sample Nos. 2 to 10 are excellent in resistance to the diameter of the plate-like ceramic body because the temperature difference in the wafer surface is as small as less than 0.5 ° C. and the response time is also as small as less than 40 seconds. It can be seen that 90 to 99% of the circumscribed circle of the heating element is an excellent wafer support member.
[0095]
Further, a support structure connected to the metal case on the lower surface of the outer periphery of the plate-like ceramic body via a contact member A Then, as shown in Sample Nos. 3 to 5, the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body is 92 to 95%, the in-plane temperature difference of the wafer is 0.40 ° C. or less, and the response time Is excellent at 35 seconds or less. Sample Nos. 4 and 5 have an in-plane temperature difference of 0.35 ° C. or less and a response time of 34 seconds or less, so the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body is 93 to 95%. It can be seen that it is even more preferable.
[0096]
On the other hand, a support structure connected to the metal case and the contact member on the outer peripheral side surface of the plate-like ceramic body B Then, as shown in Sample Nos. 6 to 9, the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body is 95% to 98%, the in-plane temperature difference of the wafer is 0.44 ° C. or less, and the response The time was excellent at 34 seconds or less. Since the in-plane temperature difference of sample Nos. 7 and 8 is both 0.40 ° C. and the response time is as small as 31 seconds, the ratio of the circumscribed circle of the resistance heating element to the diameter of the plate-like ceramic body is 96% to 97%. It can be seen that it is more preferable.
[0097]
(Example 2)
A plate-like ceramic body was produced in the same process as in Example 1. Then, a resistance heating element was printed on the main surface of the plate-like ceramic body in the same process as in Example 1. The pattern of the resistance heating element has the same configuration as that of the first embodiment, and the resistance heating element has an interval S between the blank areas P having no arc-shaped pattern in a part of a circumscribed circle in contact with the eight outermost patterns as the resistance heating element. A wafer supporting member was produced in which the diameter of the circumscribed circle in contact with the substrate was 310 mm and the diameter of the plate-like ceramic body was changed.
[0098]
In addition, a bottomed metal case made of aluminum was attached to the plate-like ceramic body via the contact member to produce a wafer support member.
[0099]
And it evaluated similarly to Example 1. FIG. The results are shown in Table 2.
[0100]
[Table 2]
Figure 0003909266
[0101]
Sample Nos. 21, 25, and 27 in which the difference L between the diameter of the plate-like ceramic body and the diameter of the circumscribed circle of the resistance heating element is larger than the space S between the blank areas have a wafer temperature difference of 0.47,. The response time was slightly large at 46, 0.46 ° C., 38, 36, 34 seconds.
[0102]
In contrast, the blank space interval S of sample Nos. 22, 23, 24, 26, and 28 was smaller than the difference L, the wafer temperature difference was 0.29 ° C. or less, and the response time was 29 seconds or less. It was found to exhibit characteristics.
[0103]
(Example 3)
A wafer support member having the same configuration as that of Sample No. 23 of Example 2 with the line width of the arc-shaped pattern on the outer peripheral portion of the resistance heating element and the line width of the connection pattern connected thereto being produced is the same as in Example 2. Was evaluated. The results are shown in Table 3.
[0104]
[Table 3]
Figure 0003909266
[0105]
The wafers of sample Nos. 32, 33, 35, and 36, whose line width of the connection pattern is equal to or smaller than that of the arc-shaped pattern, are as small as 0.28 ° C. or less and excellent response time is 28 seconds or less. It turns out that there is.
[0106]
Further, the temperature difference between the wafers of Sample Nos. 33 and 36, where the line width of the connection pattern is smaller than the line width of the arc-shaped pattern, is as small as 0.18 ° C. and 0.19 ° C., and the response time is extremely 21 seconds or less. It turned out to be excellent.
[0107]
In contrast, Sample Nos. 30, 31, and 34 had a wafer temperature difference of 0.29 ° C. or less and a response time of 31 to 38 seconds.
[0108]
Therefore, in the wafer support member, the line width of the arc-shaped pattern is equal to or smaller than the line width of the connection pattern connected to the arc-shaped pattern, so that an excellent wafer support member with a small wafer temperature difference and a small response time. It was found that can provide.
[0109]
(Example 4)
A plate-like ceramic body was produced in the same manner as in Example 1.
[0110]
However, the paste was printed at a thickness of 20 μm, and the ratio of the area occupied by the resistance heating element to the circumscribed circle surrounding the resistance heating element was prepared.
[0111]
And it evaluated similarly to Example 1. FIG. The results are shown in Table 4.
[0112]
[Table 4]
Figure 0003909266
[0113]
As a result, like the sample No. 40, the sample in which the ratio of the area occupied by the resistance heating element to the circumscribed circle surrounding the resistance heating element is less than 5% is Ye The in-plane temperature difference was slightly large at 0.39 ° C. Further, as in sample No. 49, when the ratio of the area occupied by the resistance heating element to the circumscribed circle surrounding the resistance heating element exceeds 50%, Ye A hot hot eri in part of the A Appears, Ye The in-plane temperature difference of C was as large as 0.41 ° C.
[0114]
On the other hand, as shown in sample Nos. 41 to 48, a sample in which the ratio of the area occupied by the resistance heating element to the circumscribed circle of the resistance heating element is 5 to 50% is Ye In-plane temperature difference The It could be as small as 0.29 ° C. or less and was excellent.
[0115]
Sample No. As in 42 to 46, the ratio of the area occupied by the resistance heating element to the circumscribed circle of the resistance heating element is 10 to 30%. Ye The in-plane temperature difference can be within 0.23 ° C. As in 43 to 45, the ratio of the area occupied by the resistance heating element to the circumscribed circle of the resistance heating element is set to 15 to 25%. Ye The in-plane temperature difference can be reduced to within 0.16 ° C., which is particularly excellent.
(Example 5) A plate-shaped ceramic body was prepared in the same manner as in Example 1, and various types of metal and glass components or metal oxides were mixed as a paste to be a resistance heating element, and then formed into a paste form, followed by screen printing. Ye C. A support member was produced.
[0116]
Produced c Ye C Ye Put the C on the resistance heating element , And it evaluated similarly to Example 1. FIG. The results are shown in Table 5.
[0117]
[Table 5]
Figure 0003909266
[0118]
In Sample Nos. 51 to 59, the difference between the thermal expansion coefficient of the sintered resistance heating element and the thermal expansion coefficient of the plate-like ceramic body is 3 × 10. -6 / C Ye It was found that the temperature difference on the surface of C was as small as 0.4 ° C. or less, which was preferable.
[0119]
However, sample no. 50 and 59 have a thermal expansion coefficient of 3 for the resistance heating element. × 10-6 / ℃ Super Of course, the temperature difference between the wafers was as large as 0.48 ° C. and 0.47 ° C.
[0120]
【The invention's effect】
As described above, according to the present invention, Nitro Resistance heating consisting of at least one metal particle of Au, Ag, Cu, Pd, Pt, and Rh, glass and metal oxide on one main surface of a plate-like ceramic body made of a sintered body containing aluminum fluoride as a main component A wafer supporting member having a wafer heating surface on the other main surface, wherein the resistance heating element located on an outer peripheral portion of the plate-like ceramic body has a concentric circular arc pattern, and the resistance heating A power supply unit that supplies power to the body and a metal case surrounding the power supply unit, and a peripheral part of the other main surface of the plate-shaped ceramic body is connected to the outer periphery of the opening of the metal case via a contact member The resistance heating element located on the outer periphery of the plate-shaped ceramic body has a concentric circular arc pattern, and the diameter of the circumscribed circle of the resistance heating element The By setting the plate-like ceramic body to 92 to 95% of the diameter, a wafer support member having a small temperature difference in the wafer surface and excellent temperature response characteristics can be obtained.
[0121]
The wafer support member further includes an arc-shaped pattern that is in contact with the circumscribed circle, and a connection pattern that is continuously connected to the arc-shaped pattern, and a blank area that does not have the arc-shaped pattern in a part of the circumscribed circle. Is smaller than the difference between the plate-like ceramic body and the diameter of the circumscribed circle, a wafer support member having high heat uniformity of the wafer can be obtained.
[Brief description of the drawings]
FIG. 1 shows a wafer of the present invention. Support member It is sectional drawing which shows an example.
FIG. 2 shows another wafer of the present invention. Support member It is sectional drawing which shows an example.
FIG. 3 of the present invention In wafer support member It is the schematic which shows the shape of a resistance heating element.
FIG. 4 of the present invention In wafer support member It is the schematic which shows the shape of another resistance heating element.
FIG. 5 shows the present invention. In wafer support member It is the schematic which shows the shape of another resistance heating element.
FIG. 6 shows a conventional wafer. Support member It is sectional drawing which shows an example.
[Fig. 7] Conventional In wafer support member It is the schematic which shows the shape of a resistance heating element.
[Explanation of symbols]
1, 71: Wafer support member
2, 72: Plate-shaped ceramic body
3, 73: Placement surface
5, 75: Resistance heating element
6: Feeder
8: Support pin
10: Guide member
11, 77: Feeding terminal
13: Outer peripheral surface
16: Bolt
17: Contact member
18: Elastic body
19, 79: Metal case
20: Nut
21: Bottom
23: Hole
24: Gas injection port
25: Wafer lift pin
26: Through hole
27: Temperature measuring element
28: Conventional guide member
W: Semiconductor wafer

Claims (5)

化アルミニウムを主成分とする焼結体からなる板状セラミックス体の一方の主面にAu、Ag、Cu、Pd、PtおよびRhの少なくとも一種の金属粒子とガラスと金属酸化物とからなる抵抗発熱体を備え、他方の主面にウェハ加熱面を備えたウェハ支持部材であって、前記抵抗発熱体に電力を供給する給電部と、該給電部を囲む金属ケースとを有し、該金属ケースの開口部の外周に接触部材を介して前記板状セラミックス体の他方の主面の周辺部を接続してあり、前記板状セラミックス体の外周部に位置する前記抵抗発熱体は同心円状の円弧状パターンを有し、前記抵抗発熱体の外接円の直径が前記板状セラミックス体の直径の92〜95%であることを特徴とするウェハ支持部材。Au on one main surface of the nitrided aluminum formed of a sintered body composed mainly of plate-shaped ceramic body, Ag, consisting Cu, Pd, and at least one metal particles and glass and metal oxides of Pt and Rh resistance A wafer support member including a heating element and having a wafer heating surface on the other main surface, the power supply unit supplying power to the resistance heating element, and a metal case surrounding the power supply unit, A peripheral part of the other main surface of the plate-like ceramic body is connected to the outer periphery of the opening of the case via a contact member, and the resistance heating element located on the outer periphery of the plate-like ceramic body is concentric A wafer support member having an arc-shaped pattern, wherein a diameter of a circumscribed circle of the resistance heating element is 92 to 95% of a diameter of the plate-like ceramic body. 前記抵抗発熱体は、前記外接円に接する円弧状パターンと、該円弧状パターンに連続して繋がった連結パターンとを備え、前記外接円の一部に前記円弧状パターンのない空白域が存在し、この空白域の間隔が、前記板状セラミックス体の直径と前記外接円の直径との差より小さいことを特徴とする請求項1記載のウェハ支持部材。  The resistance heating element includes an arc-shaped pattern in contact with the circumscribed circle and a connection pattern continuously connected to the arc-shaped pattern, and a blank area without the arc-shaped pattern exists in a part of the circumscribed circle. 2. The wafer support member according to claim 1, wherein a space between the blank areas is smaller than a difference between a diameter of the plate-like ceramic body and a diameter of the circumscribed circle. 前記円弧状パターンの線幅は、前記円弧状パターンに繋がる前記連結パターンの線幅と、同等或いは小さいことを特徴とする請求項2に記載のウェハ支持部材。  The wafer support member according to claim 2, wherein a line width of the arc-shaped pattern is equal to or smaller than a line width of the connection pattern connected to the arc-shaped pattern. 前記板状セラミックス体の厚みが1〜7mmで、前記抵抗発熱体の厚みが5〜70μmであるとともに、前記抵抗発熱体の外接円の面積に対する抵抗発熱体の面積の比率が5〜50%であることを特徴とする請求項1〜3のいずれかに記載のウェハ支持部材。  The thickness of the plate-shaped ceramic body is 1 to 7 mm, the thickness of the resistance heating element is 5 to 70 μm, and the ratio of the area of the resistance heating element to the area of the circumscribed circle of the resistance heating element is 5 to 50%. The wafer support member according to claim 1, wherein the wafer support member is provided. 上記抵抗発熱体と、上記板状セラミック体との熱膨張係数の差が3.0×10−6/℃以下であることを特徴とする請求項1〜4のいずれかに記載のウェハ支持部材。5. The wafer support member according to claim 1, wherein a difference in coefficient of thermal expansion between the resistance heating element and the plate-like ceramic body is 3.0 × 10 −6 / ° C. or less. .
JP2002152891A 2002-05-27 2002-05-27 Wafer support member Expired - Fee Related JP3909266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152891A JP3909266B2 (en) 2002-05-27 2002-05-27 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152891A JP3909266B2 (en) 2002-05-27 2002-05-27 Wafer support member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006335579A Division JP4789790B2 (en) 2006-12-13 2006-12-13 Wafer support member

Publications (2)

Publication Number Publication Date
JP2003347177A JP2003347177A (en) 2003-12-05
JP3909266B2 true JP3909266B2 (en) 2007-04-25

Family

ID=29770114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152891A Expired - Fee Related JP3909266B2 (en) 2002-05-27 2002-05-27 Wafer support member

Country Status (1)

Country Link
JP (1) JP3909266B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071916B2 (en) 2004-06-28 2011-12-06 Kyocera Corporation Wafer heating apparatus and semiconductor manufacturing apparatus
JP2006127883A (en) * 2004-10-28 2006-05-18 Kyocera Corp Heater and wafer heating device
JP2006332410A (en) * 2005-05-27 2006-12-07 Kyocera Corp Device for heating wafer and device for manufacturing semiconductor using it
KR20240101507A (en) * 2022-12-19 2024-07-02 엔지케이 인슐레이터 엘티디 Materials for semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP2003347177A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US7011874B2 (en) Ceramic substrate for semiconductor production and inspection devices
JP2006127883A (en) Heater and wafer heating device
KR20020092967A (en) Ceramic substrate and its production method
JP4658913B2 (en) Wafer support member
JP3904986B2 (en) Wafer support member
JP4845389B2 (en) Heater and wafer heating device
JP3981300B2 (en) Wafer support member
JP3929879B2 (en) Wafer support member
JP4146707B2 (en) Wafer heating device
JP3909266B2 (en) Wafer support member
JP4931360B2 (en) Wafer heating device
JP2002198297A (en) Wafer heating equipment
JP3805318B2 (en) Wafer heating device
JP4789790B2 (en) Wafer support member
JP4646502B2 (en) Wafer support member
JP3906026B2 (en) Wafer heating device
JP3563728B2 (en) Wafer heating device
JP4975146B2 (en) Wafer heating device
JP3924513B2 (en) Wafer support member
JP3894871B2 (en) Wafer support member
JP4463035B2 (en) Wafer support member and semiconductor manufacturing apparatus using the same
JP4189243B2 (en) Wafer support member
JP3921433B2 (en) Wafer heating device
JP3559548B2 (en) Wafer heating device
JP3971756B2 (en) Wafer heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3909266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees