JP3908947B2 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP3908947B2
JP3908947B2 JP2001390901A JP2001390901A JP3908947B2 JP 3908947 B2 JP3908947 B2 JP 3908947B2 JP 2001390901 A JP2001390901 A JP 2001390901A JP 2001390901 A JP2001390901 A JP 2001390901A JP 3908947 B2 JP3908947 B2 JP 3908947B2
Authority
JP
Japan
Prior art keywords
winding
transformer
circuit
excitation
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390901A
Other languages
Japanese (ja)
Other versions
JP2003197442A (en
Inventor
豊一 光庵
利雄 清水
東誉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001390901A priority Critical patent/JP3908947B2/en
Publication of JP2003197442A publication Critical patent/JP2003197442A/en
Application granted granted Critical
Publication of JP3908947B2 publication Critical patent/JP3908947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は電力系統に設置される変圧器に関するものである。
【0002】
【従来の技術】
電力系統に設置される変圧器は、鉄心と鉄心に巻回された一次巻線と二次巻線とで構成され、変圧器の漏れインピーダンスは、設置される電力系統の系統安定度にあまり影響を与えず、短絡時の短絡電流があまり大きくならない漏れインピーダンス値が製作仕様として指定され、その指定値になるように製作される。
変圧器の漏れインピーダンスは、その値が大きくなるにともない、電圧変動率が大きくなって系統の安定度に影響を及ぼし、逆に漏れインピーダンスが小さいと系統短絡時の短絡電流が大きくなり、変圧器及びそれに直列に接続された機器に対し機械的または熱的に過大な負担を与えることとなり、電圧変動率と短絡電流の双方が適正となる値が指定される。
【0003】
図4は従来の外鉄形変圧器の巻線部分の断面図である。1は珪素鋼板が閉磁路を形成するように積層された鉄心、2は一次巻線、3a、3bは一次巻線2の両側に分割配置された二次巻線である。変圧器において、すべての磁束が一次巻線と二次巻線の双方に鎖交すると漏れインピーダンスがなくなるが、実際には一次巻線あるいは二次巻線に鎖交する磁束が一次巻線と二次巻線との間を通過する漏れ磁束があり、漏れインピーダンスは一次巻線と二次巻線の巻回数と一次巻線と二次巻線との間の漏れ磁路の磁気抵抗により決まるものであり、漏れ磁路の磁気抵抗は、漏れ磁路の寸法及び透磁率により決まり、実際の電力系統に使用される変圧器においては、接続される電力系統の短絡容量に対応して適正な漏れインピーダンスになるように設計されている。
【0004】
【発明が解決しようとする課題】
以上のように、電力系統に使用される変圧器において、正常運転時の漏れインピーダンスが小さいと、電力系統の電圧変動率が小さくなり、電力系統の系統安定度が増すことになるが、短絡時に短絡電流が大きくなる。漏れインピーダンスを大きくすると、短絡電流を小さく抑えることができるが、電圧変動率が大きくなる。電力系統に使用される変圧器の漏れインピーダンスは、接続された電力系統の電圧変動率が許容できる値であり、系統短絡時の短絡電流が系統の短絡容量に対応した適正値になるように製作されているが、変圧器の定常運転時には、電圧変動率が小さく、短絡時の短絡電流も小さくなる変圧器が製作できるとするならば、変圧器の小型軽量化にもつながる。しかし、現状の変圧器では、漏れ磁路の寸法および透磁率を変化させることができないので、通常運転時の電圧変動率を低く抑え、短絡時の短絡電流が小さくなる変圧器を製作することはできないという問題点があった。
【0005】
この発明は上記上記問題点を解決するためになされたものであり、正常運転時の電圧変動率を低く抑え、短絡時の短絡電流を小さくなる変圧器を実現することを目的とする。
【0006】
【課題を解決するための手段】
この発明の請求項1に係る変圧器は、一次巻線と二次巻線との間に励磁巻線が巻回された磁性体を配置し、変圧器の定常運転状態では磁性体を漏れ磁束が抑制されるように励磁し、短絡事故時に励磁回路を開放するように制御する構成としたものである。
【0007】
この発明の請求項2に係る変圧器は、請求項1の構成の磁性体を偶数のユニットに分割し、それぞれの磁性体ユニットの励磁方向が交互に逆方向になるように配置し、励磁電源は直流電源とし、定常運転時には磁性体が磁気飽和状態に励磁し、短絡事故時に励磁回路を開放するように制御する構成としたものである。
【0008】
この発明の請求項3に係る変圧器は、請求項1の構成の励磁電源は交流電源とし、定常運転時には一次巻線と二次巻線により発生する漏れ磁束を低減する方向に励磁し、短絡事故時に励磁回路を開放するように制御する構成としたものである。
【0009】
この発明の請求項4に係る変圧器は、請求項1〜請求項3のいずれかの構成の励磁電源は、変圧器の自己の巻線から供給される構成したものである。
【0010】
この発明の請求項5に係る変圧器は、一次巻線と二次巻線との間に誘導巻線が巻回された磁性体を配置し、誘導巻線は、誘導電流を抑制する電流抑制リアクトル及び回路を開閉するスイッチを直列に接続した閉回路を形成し、定常運転状態では、上記誘導巻線の誘導電圧により漏れ磁束を抑制する電流を流し、短絡事故時には上記閉回路を開放するように制御する構成としたものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1の変圧器の巻線部断面図である。図1において、鉄心1、一次巻線2、二次巻線3a、3bは、従来の構成の図1と同一である。11は一次巻線2と二次巻線3aまたは3bとの間に配置され、その部分の漏れ磁束の磁路となる磁性体であり偶数ユニットに分割して直列に配置している。12は磁性体11の各ユニットにそれぞれ巻回された励磁コイル、15は励磁変圧器15a、整流器15bおよび遮断器15cからなるた直流励磁電源である。磁性体11のユニットにはそれぞれ励磁コイル12が巻回され、直列状態に配置し、励磁方向が交互に逆方向になるように配置している。
【0012】
このように構成された変圧器において、通常運転状態では、磁性体11を磁気飽和する状態に励磁し、短絡事故が発生したときに磁性体11を励磁している励磁回路を開放するように制御する。
【0013】
磁性体11の各ユニットの磁化方向を同一方向に磁化すると、磁性体11の端部から変圧器の鉄心1に向かって磁束が発生し、この磁束は、変圧器の鉄心1を通り、磁性体11の逆方向の端部に入る磁路を形成し、変圧器の電圧変動率が大きくなる問題点があるので、磁性体11は偶数個のユニットに分割し、各ユニットの磁化方向が交互に逆方向になるように接続することにより、磁性体11部分の両端部は同一磁極となり、変圧器の鉄心1に入り込む磁束が相殺される。
【0014】
励磁電源15に供給する電源は、別系統から供給してもよいが、短絡時には励磁は行わないので自己の巻線から供給しても支障なく、自己の巻線から供給すれば回路の構成が簡単になる。
【0015】
このように一次巻線2と二次巻線3aおよび3bとの間に磁性体11を配置し、定常運転時に磁性体11が磁気飽和状態になるように励磁していると、磁性体11の透磁率は小さく、変圧器の漏れインピーダンスが小さくなり、電圧変動率を小さく抑制することができ、短絡事故時には磁性体11の励磁回路を開放すると、磁性体11の透磁率が大きくなり、漏れインピーダンスが大きくなって短絡電流が抑制され、定常運転時の電圧変動率は小さく、短絡事故時の短絡電流が小さくなる変圧器が構成できる。
【0016】
実施の形態2.
実施の形態1では、磁性体を直流で励磁する構成としたが、実施の形態2は、励磁巻線に漏れ磁束を減磁する方向に交流により励磁する構成である。その構成を図2に示す。図において、鉄心1、一次巻線2、二次巻線3a、3b及び磁性体11は実施の形態1の図1と同一である。22は磁性体11に巻回された励磁巻線、25は交流の励磁電源であり、励磁変圧器25aと遮断器25cで構成されている。
【0017】
この構成は、変圧器の定常運転時には、一次巻線2と二次巻線3aまたは3bの間の漏れ磁束が低減される方向に漏れ磁束の方向とは逆方向の磁束を発生するように励磁し、短絡事故時には、磁性体11の励磁回路を開放するように制御する。
【0018】
磁性体11を漏れ磁束が低減されるように励磁すると、定常運転状態では、一次巻線2と二次巻線3aまたは3bとの間の漏れインピーダンスが小さくなり、短絡事故時に励磁回路を開放することにより漏れインピーダンスが大きくなって短絡電流が小さくなる変圧器が構成できる。
【0019】
実施の形態3.
実施の形態3は、一次巻線と二次巻線の間に誘導巻線を巻回した磁性体を配置し、誘導巻線に誘起する誘導電圧により漏れ磁束を抑制する構成としたものである。その構成図を図3に示す。図において、鉄心1、一次巻線2、二次巻線3a、3b磁性体11は実施の形態1と同一である。32は磁性体11に巻回された誘導巻線、35は誘導巻線32に接続された、運転時の誘導電流を制御する電流抑制リアクトル32aと遮断器35cを直列に接続した電流抑制回路である。
【0020】
この構成において定常運転時には、漏れ磁束により誘導巻線32に誘起される誘導電圧により、電流抑制リアクトル35aにより適正値電流値に調整して漏れ磁束とは逆方向の磁束を発生させて適正な漏れインピーダンスに調整する。短絡事故時に電流抑制回路を開放するように制御することにより、定常運転時には漏れインピーダンスが大きく、短絡事故時には短絡電流が小さな変圧器が構成できる。
【0021】
【発明の効果】
この発明の請求項1に係る変圧器は、一次巻線と二次巻線との間に励磁巻線が巻回された磁性体を配置し、変圧器の定常運転状態では磁性体を漏れ磁束が抑制されるように励磁し、短絡事故時に励磁回路を開放する構成としたので、定常運転時には漏れインピーダンスが小さくなって電圧変動率が小さく抑制され、短絡事故時には漏れインピーダンスが大きくなって短絡電流が小さく抑えられた変圧器が構成でき、変圧器は小型軽量化が実現できる。
【0022】
この発明の請求項2に係る変圧器は、請求項1の構成の磁性体は、偶数のユニットに分割してそれぞれの磁性体ユニットの励磁方向が交互に逆方向になるように配置し、励磁電源は直流電源とし、定常運転時には磁性体を磁気飽和状態に励磁し、短絡事故時に励磁回路を開放するように制御する構成としたので、定常運転時には漏れインピーダンスが小さく、漏れインピーダンスが大きくなって短絡電流が小さく抑えられ、励磁電流の調整により漏れインピーダンスの調整範囲が大きな変圧器が得られる。
【0023】
この発明の請求項3に係る変圧器は、請求項1の構成の励磁電源は交流電源とし、定常運転時には一次巻線と二次巻線により発生する漏れ磁束を低減する方向に励磁し、短絡事故時に励磁回路を開放するように制御する構成としたので、変圧器の漏れインピーダンスの調整が容易な変圧器が構成できる。
【0024】
この発明の請求項4に係る変圧器は、請求項1〜請求項3のいずれかの構成の励磁電源は、変圧器の自己の巻線から供給される構成したので、励磁回路が容易に構成することができる。
【0025】
この発明の請求項5に係る変圧器は、一次巻線と二次巻線との間に誘導巻線が巻回された磁性体を配置し、磁性体の誘導巻線は、誘導電流を抑制する電流抑制リアクトル及び回路を開閉する遮断器を直列に接続した閉回路を形成し、定常運転状態では、誘導巻線の誘導電圧により漏れ磁束を抑制する電流を流し、短絡事故時には上記閉回路を開放するように制御する構成としたので、漏れインピーダンスの調整が容易であり、制御回路も簡単な構成となる。
【図面の簡単な説明】
【図1】 実施の形態1の変圧器の巻線部分の断面図である。
【図2】 実施の形態2の変圧器の巻線部分の断面図である。
【図3】 実施の形態3の変圧器の巻線部分の断面図である。
【図4】 従来の変圧器の巻線部分の断面である。
【符号の説明】
1 鉄心、2 一次コイル、3a,3b 二次コイル、11 磁性体、
12 励磁巻線、15 励磁電源、22 励磁巻線、25 励磁電源、
32 誘導巻線、35 電流抑制回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transformer installed in a power system.
[0002]
[Prior art]
The transformer installed in the power system is composed of an iron core and a primary winding and a secondary winding wound around the iron core, and the leakage impedance of the transformer has little effect on the system stability of the installed power system. The leakage impedance value that does not increase the short-circuit current at the time of short-circuiting is specified as a manufacturing specification, and is manufactured to the specified value.
As the value of the transformer's leakage impedance increases, the voltage fluctuation rate increases and affects the stability of the system. Conversely, if the leakage impedance is small, the short-circuit current when the system is short-circuited increases. In addition, an excessive load is mechanically or thermally applied to the devices connected in series to the device, and a value that makes both the voltage fluctuation rate and the short-circuit current appropriate is designated.
[0003]
FIG. 4 is a sectional view of a winding portion of a conventional outer iron type transformer. 1 is an iron core in which silicon steel plates are laminated so as to form a closed magnetic circuit, 2 is a primary winding, 3a and 3b are secondary windings divided on both sides of the primary winding 2. In a transformer, when all the magnetic flux is linked to both the primary and secondary windings, the leakage impedance disappears, but in reality, the magnetic flux linked to the primary winding or secondary winding is lost to the primary and secondary windings. There is a leakage magnetic flux that passes between the secondary windings, and the leakage impedance is determined by the number of turns of the primary and secondary windings and the magnetic resistance of the leakage magnetic path between the primary and secondary windings. The magnetic resistance of the leakage magnetic path is determined by the size and permeability of the leakage magnetic path. In a transformer used in an actual power system, an appropriate leakage corresponding to the short-circuit capacity of the connected power system is required. Designed to be impedance.
[0004]
[Problems to be solved by the invention]
As described above, in the transformer used in the power system, if the leakage impedance during normal operation is small, the voltage fluctuation rate of the power system decreases and the system stability of the power system increases. Short circuit current increases. When the leakage impedance is increased, the short-circuit current can be reduced, but the voltage fluctuation rate increases. The leakage impedance of the transformer used in the power system is such that the voltage fluctuation rate of the connected power system is acceptable, and the short-circuit current when the system is short-circuited is an appropriate value corresponding to the short-circuit capacity of the system. However, if a transformer with a small voltage fluctuation rate and a short-circuit current at the time of a short circuit can be manufactured during steady-state operation of the transformer, the transformer can be reduced in size and weight. However, since current transformers cannot change the size and permeability of the leakage magnetic path, it is not possible to produce a transformer that suppresses the voltage fluctuation rate during normal operation and reduces the short-circuit current during a short circuit. There was a problem that it was not possible.
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to realize a transformer that suppresses the voltage fluctuation rate during normal operation and reduces the short-circuit current during a short circuit.
[0006]
[Means for Solving the Problems]
In the transformer according to claim 1 of the present invention, a magnetic body in which an excitation winding is wound is disposed between the primary winding and the secondary winding, and the magnetic body leaks magnetic flux in a steady operation state of the transformer. Excitation is suppressed so as to be suppressed, and the excitation circuit is controlled to be opened in the event of a short circuit accident.
[0007]
According to a second aspect of the present invention, the magnetic body having the structure of the first aspect is divided into even-numbered units, arranged so that the excitation directions of the magnetic body units are alternately reversed, and the excitation power source Is a direct current power supply, and is configured to control so that the magnetic material is excited to a magnetic saturation state during steady operation and the excitation circuit is opened in the event of a short circuit accident.
[0008]
In the transformer according to claim 3 of the present invention, the excitation power supply having the configuration of claim 1 is an AC power supply, and in steady operation, the transformer is excited in a direction to reduce leakage magnetic flux generated by the primary winding and the secondary winding, and short-circuited. In this configuration, the excitation circuit is controlled to be opened in the event of an accident.
[0009]
The transformer according to claim 4 of the present invention is configured such that the excitation power source of any one of claims 1 to 3 is supplied from its own winding.
[0010]
In the transformer according to claim 5 of the present invention, a magnetic body in which an induction winding is wound is disposed between the primary winding and the secondary winding, and the induction winding suppresses the induced current. A closed circuit is formed in which a reactor and a switch for opening and closing the circuit are connected in series. In a steady operation state, a current that suppresses leakage flux is caused by the induced voltage of the induction winding, and the closed circuit is opened in the event of a short circuit accident It is set as the structure controlled to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a winding portion of the transformer according to the first embodiment. In FIG. 1, an iron core 1, a primary winding 2, and secondary windings 3a and 3b are the same as those in FIG. Reference numeral 11 denotes a magnetic body that is disposed between the primary winding 2 and the secondary winding 3a or 3b and serves as a magnetic path for the leakage magnetic flux of the portion, and is divided into even-numbered units and arranged in series. Reference numeral 12 denotes an exciting coil wound around each unit of the magnetic body 11, and reference numeral 15 denotes a DC exciting power source comprising an exciting transformer 15a, a rectifier 15b and a circuit breaker 15c. Excitation coils 12 are wound around the units of the magnetic body 11 and arranged in series, and are arranged so that the excitation directions are alternately reversed.
[0012]
In the transformer configured as described above, in a normal operation state, the magnetic body 11 is excited so as to be magnetically saturated, and the excitation circuit that excites the magnetic body 11 is opened when a short circuit accident occurs. To do.
[0013]
When the magnetization direction of each unit of the magnetic body 11 is magnetized in the same direction, a magnetic flux is generated from the end of the magnetic body 11 toward the iron core 1 of the transformer, and this magnetic flux passes through the iron core 1 of the transformer and is magnetic. The magnetic body 11 is divided into an even number of units, and the magnetization direction of each unit is alternated. By connecting in the opposite direction, both end portions of the magnetic body 11 become the same magnetic pole, and the magnetic flux entering the iron core 1 of the transformer is canceled.
[0014]
The power supplied to the excitation power supply 15 may be supplied from another system, but since excitation is not performed in the case of a short circuit, there is no problem even if it is supplied from its own winding. It will be easy.
[0015]
Thus, when the magnetic body 11 is arranged between the primary winding 2 and the secondary windings 3a and 3b and the magnetic body 11 is excited so as to be in a magnetic saturation state during steady operation, the magnetic body 11 The permeability is small, the leakage impedance of the transformer is reduced, the voltage fluctuation rate can be suppressed, and the magnetic body 11 is increased in permeability when the excitation circuit of the magnetic body 11 is opened at the time of a short-circuit accident. As a result, the short circuit current is suppressed, the voltage fluctuation rate during steady operation is small, and the short circuit current during a short circuit accident is small.
[0016]
Embodiment 2. FIG.
In the first embodiment, the magnetic material is excited by direct current, but in the second embodiment, the exciting winding is excited by alternating current in the direction of demagnetizing the leakage magnetic flux. The configuration is shown in FIG. In the figure, the iron core 1, the primary winding 2, the secondary windings 3a and 3b, and the magnetic body 11 are the same as those in FIG. Reference numeral 22 denotes an excitation winding wound around the magnetic body 11, and reference numeral 25 denotes an AC excitation power source, which includes an excitation transformer 25a and a circuit breaker 25c.
[0017]
This configuration is excited so that a magnetic flux in a direction opposite to the direction of the leakage magnetic flux is generated in a direction in which the leakage magnetic flux between the primary winding 2 and the secondary winding 3a or 3b is reduced during the steady operation of the transformer. In the event of a short circuit accident, control is performed so that the excitation circuit of the magnetic body 11 is opened.
[0018]
When the magnetic body 11 is excited so that the leakage magnetic flux is reduced, in a steady operation state, the leakage impedance between the primary winding 2 and the secondary winding 3a or 3b becomes small, and the excitation circuit is opened in the event of a short circuit accident. Thus, a transformer can be configured in which the leakage impedance is increased and the short-circuit current is reduced.
[0019]
Embodiment 3 FIG.
In the third embodiment, a magnetic body in which an induction winding is wound is disposed between a primary winding and a secondary winding, and leakage flux is suppressed by an induced voltage induced in the induction winding. . The configuration diagram is shown in FIG. In the figure, the iron core 1, the primary winding 2, the secondary windings 3a and 3b, and the magnetic body 11 are the same as those in the first embodiment. 32 is an induction winding wound around the magnetic body 11, and 35 is a current suppression circuit connected to the induction winding 32, in which a current suppression reactor 32a for controlling the induced current during operation and a circuit breaker 35c are connected in series. is there.
[0020]
In this configuration, at the time of steady operation, the current suppression reactor 35a adjusts the current value to an appropriate value by the induced voltage induced in the induction winding 32 by the leaked magnetic flux, and generates a magnetic flux in the direction opposite to the leaked magnetic flux. Adjust to impedance. By controlling so that the current suppression circuit is opened in the event of a short circuit accident, a transformer having a large leakage impedance during steady operation and a small short circuit current during a short circuit accident can be configured.
[0021]
【The invention's effect】
In the transformer according to claim 1 of the present invention, a magnetic body in which an excitation winding is wound is disposed between the primary winding and the secondary winding, and the magnetic body leaks magnetic flux in a steady operation state of the transformer. Since the excitation circuit is opened in the event of a short circuit accident, the leakage impedance is reduced during steady operation and the voltage fluctuation rate is reduced, and the leakage impedance is increased during a short circuit accident, resulting in a short circuit current. Can be configured, and the transformer can be reduced in size and weight.
[0022]
According to a second aspect of the present invention, the magnetic body having the structure according to the first aspect is divided into an even number of units and arranged so that the excitation directions of the magnetic body units are alternately reversed. The power supply is a DC power supply, and the magnetic material is excited to a magnetic saturation state during steady operation, and the excitation circuit is controlled to open in the event of a short circuit, so the leakage impedance is small and the leakage impedance is large during steady operation. A short-circuit current can be kept small, and a transformer with a large adjustment range of the leakage impedance can be obtained by adjusting the excitation current.
[0023]
In the transformer according to claim 3 of the present invention, the excitation power supply having the configuration of claim 1 is an AC power supply, and in steady operation, the transformer is excited in a direction to reduce leakage magnetic flux generated by the primary winding and the secondary winding, and short-circuited. Since the configuration is such that the excitation circuit is opened in the event of an accident, a transformer in which the leakage impedance of the transformer can be easily adjusted can be configured.
[0024]
Since the transformer according to claim 4 of the present invention is configured such that the excitation power supply of any one of claims 1 to 3 is supplied from its own winding, the excitation circuit can be easily configured. can do.
[0025]
In the transformer according to claim 5 of the present invention, a magnetic body in which an induction winding is wound is disposed between the primary winding and the secondary winding, and the induction winding of the magnetic body suppresses the induction current. A closed circuit in which a current suppressing reactor and a circuit breaker that opens and closes the circuit are connected in series is formed, and in a steady operation state, a current that suppresses the leakage magnetic flux is caused by the induced voltage of the induction winding. Since the control is performed so as to open, the leakage impedance can be easily adjusted, and the control circuit can also be configured simply.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a winding portion of a transformer according to a first embodiment.
FIG. 2 is a cross-sectional view of a winding portion of a transformer according to a second embodiment.
FIG. 3 is a cross-sectional view of a winding portion of a transformer according to a third embodiment.
FIG. 4 is a cross section of a winding portion of a conventional transformer.
[Explanation of symbols]
1 iron core, 2 primary coil, 3a, 3b secondary coil, 11 magnetic body,
12 excitation winding, 15 excitation power supply, 22 excitation winding, 25 excitation power supply,
32 induction winding, 35 current suppression circuit.

Claims (5)

鉄心と、該鉄心に巻回された一次巻線及び二次巻線とで構成された変圧器において、上記一次巻線と二次巻線との間に励磁巻線が巻回された磁性体を配置し、該磁性体を励磁する励磁電源を備え、変圧器の定常運転状態においては上記磁性体を漏れ磁束が抑制されるように励磁し、短絡事故時に上記励磁電源回路を開放するように制御することを特徴とする変圧器。In a transformer composed of an iron core and a primary winding and a secondary winding wound around the iron core, a magnetic body in which an excitation winding is wound between the primary winding and the secondary winding. And an excitation power source for exciting the magnetic body, and in a steady operation state of the transformer, the magnetic body is excited so that leakage flux is suppressed, and the excitation power circuit is opened in the event of a short circuit accident. A transformer characterized by controlling. 磁性体は、偶数のユニットに分割してそれぞれの磁性体ユニットの励磁方向が交互に逆方向になるように配置し、励磁電源は直流電源とし、定常運転時には磁気飽和状態に励磁し、短絡事故時に励磁電源回路を開放するように制御することを特徴とする請求項1記載の変圧器。The magnetic material is divided into even-numbered units and arranged so that the excitation directions of each magnetic material unit are alternately reversed. The excitation power supply is a DC power supply. 2. The transformer according to claim 1, wherein the excitation power supply circuit is sometimes controlled to be opened. 励磁電源は交流電源とし、定常運転時には一次巻線と二次巻線により発生する漏れ磁束を低減する方向に励磁し、短絡事故時には励磁電源回路を開放するように制御することを特徴とする請求項1記載の変圧器。The excitation power supply is an AC power supply, and is controlled to excite leakage flux generated by the primary and secondary windings during steady operation and to open the excitation power supply circuit in the event of a short circuit accident. Item 1. The transformer according to item 1. 励磁電源は、変圧器の自己の巻線から供給される構成としたことを特徴とする請求項1乃至請求項3のいずれかに記載の変圧器。The transformer according to any one of claims 1 to 3, wherein the excitation power is supplied from its own winding. 鉄心と、該鉄心に巻回された一次巻線及び二次巻線とで構成された変圧器において、上記一次巻線と二次巻線との間に誘導巻線が巻回された磁性体を配置し、上記誘導巻線は、誘導電流を抑制する電流抑制リアクトル及び回路を開閉する遮断器を直列に接続した閉回路を形成し、定常運転時には、上記誘導巻線の誘導電圧により漏れ磁束を抑制する電流を流し、短絡事故時には上記閉回路を開放するように制御することを特徴とする変圧器。A magnetic body in which an induction winding is wound between the primary winding and the secondary winding in a transformer composed of an iron core and a primary winding and a secondary winding wound around the iron core. The induction winding forms a closed circuit in which a current suppression reactor that suppresses the induced current and a circuit breaker that opens and closes the circuit are connected in series. During steady operation, the induction magnetic flux leaks due to the induction voltage of the induction winding. A transformer that controls the current to flow so that the closed circuit is opened in the event of a short circuit accident.
JP2001390901A 2001-12-25 2001-12-25 Transformer Expired - Fee Related JP3908947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390901A JP3908947B2 (en) 2001-12-25 2001-12-25 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390901A JP3908947B2 (en) 2001-12-25 2001-12-25 Transformer

Publications (2)

Publication Number Publication Date
JP2003197442A JP2003197442A (en) 2003-07-11
JP3908947B2 true JP3908947B2 (en) 2007-04-25

Family

ID=27598647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390901A Expired - Fee Related JP3908947B2 (en) 2001-12-25 2001-12-25 Transformer

Country Status (1)

Country Link
JP (1) JP3908947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611089B (en) * 2012-03-29 2014-07-02 浙江大学 Coupled mode solid-state current limiter of single-phase multi-winding transducer

Also Published As

Publication number Publication date
JP2003197442A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
US2305153A (en) Adjustable transformer with high reactance
KR20070074059A (en) Magnetic core and inductor, transformer comprising the same
JP2007123596A (en) Dc reactor and inverter device
US20160148747A1 (en) Transformer
JP3908947B2 (en) Transformer
JPH09266121A (en) Non-contact type power supply
JP5520613B2 (en) Magnetic flux control type variable transformer
JP3922121B2 (en) DC reactor
JP4343448B2 (en) Transformer manufacturing method
JP5004260B2 (en) Outer iron type power transformer and power converter using the same
JPH11219832A (en) Choke coil for noise filter
JP2006286667A (en) Inductance component
JP4590110B2 (en) Coil device with current detection function
JP3777424B2 (en) Current limiter
JP3030612B2 (en) Power saving device
JP3574955B2 (en) Transformer winding core
JP2001238349A (en) Current limiter
JP2008235782A (en) Non-contact power transmission device
JP3789333B2 (en) Electromagnetic equipment
JPH08126198A (en) Phase adjuster
JP4300494B2 (en) High frequency power transformer and power conversion device using the same
JPS6036606B2 (en) switching regulator
KR20180097940A (en) high frequency transformer for securing controlled leakage inductance
JP4197327B2 (en) Inductance parts
JP2005102378A (en) Inductive power receiving circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees