JP3777424B2 - Current limiter - Google Patents

Current limiter Download PDF

Info

Publication number
JP3777424B2
JP3777424B2 JP2002343217A JP2002343217A JP3777424B2 JP 3777424 B2 JP3777424 B2 JP 3777424B2 JP 2002343217 A JP2002343217 A JP 2002343217A JP 2002343217 A JP2002343217 A JP 2002343217A JP 3777424 B2 JP3777424 B2 JP 3777424B2
Authority
JP
Japan
Prior art keywords
movable body
current limiting
magnetic path
current
limiting function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002343217A
Other languages
Japanese (ja)
Other versions
JP2004180415A (en
Inventor
潤次 近藤
格 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002343217A priority Critical patent/JP3777424B2/en
Publication of JP2004180415A publication Critical patent/JP2004180415A/en
Application granted granted Critical
Publication of JP3777424B2 publication Critical patent/JP3777424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、系統の事故時の過電流を抑制する限流器に関する。
【0002】
【従来の技術】
これまで、アーク・抵抗を利用した方式、自己消去能力のあるGTOのような半導体素子を利用した方式、ダイオードブリッジと直流リアクトルを用いた方式、超電導の常電導転移現象を利用した方式、LC共振を利用した方式等、種々の限流器が提案・開発されている。
【0003】
【特許文献1】
特開2000−13993号公報
【特許文献2】
特開2002−262450号公報
【0004】
【発明が解決しようとする課題】
しかしながら、限流器が限流動作を行う際、その限流能力が高いほど限流器の両端子間には高い電圧が印加されるため、電流を零にできる方式の場合は、その両端電圧は線路電圧と等しくなり、この高電圧に耐える限流器は大容量にする必要があり、寸法が大きく、高価になってしまう。また、これを送配電設備として別途設置するには、それを設置する空間を確保しなければならず、設置箇所が制限されるという問題もある。
【0005】
さらに、超電導の常電導転移現象を利用した方式は、常電導転移後に再び超電導導体に復帰するのに時間がかかる上、その復帰時間を制御するのが難しいという問題がある。その上、クライオスタットの設置を要するなど、設備としても規模が大きくなってしまう。
【0006】
また、電力系統では、各線路の送電容量に応じて適した電圧階級があり、電力エネルギーの発生から消費の流れの中で、変圧器により数回変圧されるため、線路中に複数台の変圧器が必須であるが、これらの変圧器に対して、上記のような従来の限流装置を設けることは困難である。
【0007】
そして、現状の送電系統では事故時過電流を遮断器の定格遮断電流以下に抑えつつ、系統の安定度を確保しているが、今後の系統規模の拡大に伴い、系統の連系点などでは事故時過電流が定格遮断電流を上回る状況が考えられる。また、配電系統においては、今後の電気事業自由化の進展に伴い連系される分散電源が増加していくと予想されるが、ある容量以上の回転機系の分散電源が連系された場合、故障電流が配電用遮断器の遮断容量を上回ることが危惧されている。
【0008】
そこで、本発明は、簡単で経済的な故障電流抑制用の限流器であって、変圧器への応用も簡単な限流器の提供を目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、給電系統に接続された一次巻線と送電系統に接続された二次巻線を経由する閉じた閉磁路を形成し得る任意形状のヨークと、上記一次巻線と上記二次巻線の間に漏れ磁路を生ぜしめるように、上記ヨークの2点間を磁気的に結合させる任意形状の磁性材料よりなる磁路形成部を備えた可動体と、上記可動体の磁路形成部によって漏れ磁路が形成されない第1位置と、上記可動体の磁路形成部によって漏れ磁路が形成され得る第2位置とに、上記可動体を移動させる可動体移動手段と、予め定めた限流機能作動条件が達成されたことを検出する限流機能作動条件検出手段と、を備え、上記限流機能作動条件検出手段が限流機能作動条件の達成を検出することに基づいて、上記可動体移動手段が可動体を第1位置から第2位置に移動させるようにしたことを特徴とする。
【0010】
【発明の実施の形態】
次に、添付図面に基づいて、本発明に係る限流器の実施形態を説明する。
【0011】
図1は、本発明に係る限流器の一実施形態を示す構造図である。図中、1は一次巻線、2は二次巻線、11は固定鉄心で、上記一次巻線1と二次巻線2を経由する閉じた閉磁路を形成し得る任意形状のヨークとして機能する。
【0012】
可動体15の詳細は、図2に示すように、可動鉄片12と支持材13からなる棒状体である。可動鉄片12は、一次巻線1と二次巻線2との間に漏れ磁路を生ぜしめるように、固定鉄心11の2点間を磁気的に結合させる任意形状の磁性材料よりなる磁路形成部として機能する。なお、この可動鉄片12と上記固定鉄心11とは強磁性材料である電磁鋼板を積層して形成される。また、支持材13は非磁性材料よりなる。
【0013】
上記のように構成した可動体15は、固定鉄心11に設けた第1突部11aと第2突部11bとの間に可動鉄片12が位置する状態と、第1突部11aと第2突部11bとの間に支持材13が位置する状態とに変換可能な方向(図2中における矢印14の方向)にスライド移動可能である。
【0014】
上記のように構成された限流器は、一次巻線1と二次巻線2を同じ巻線比にすれば、送配電系統の適所に挿入して使える限流器として機能するが、一次巻線1と二次巻線2の巻線比を変えて構成すれば、限流機能付き変圧器として利用できる。図3および図4は、変圧器として使用した例を示すもので、限流機能が作動していない通常通電状態(固定鉄心11に設けた第1突部11aと第2突部11bとの間に支持材13が位置する状態)を示した図である。また、図4は、限流機能が作動した限流状態(固定鉄心11に設けた第1突部11aと第2突部11bとの間に可動鉄片12が位置する状態)を示した図である。なお、図3と図4において、21は交流電源、22は負荷である。
【0015】
図5と図6は、図1の限流器を横から見た側面図であり、図5は通常通電状態(固定鉄心11に設けた第1突部11aと第2突部11bとの間に支持材13が位置する状態)を示し、図6は限流状態(固定鉄心11に設けた第1突部11aと第2突部11bとの間に可動鉄片12が位置する状態)を示した図である。
【0016】
また、図5と図6には、予め定めた限流機能作動条件が達成されたことを検出する限流機能作動条件検出手段として機能する過電流検出器31や、可動体15を移動させる可動体移動手段としての駆動機構(例えば、電磁リレー32、励磁電源33、電磁石ソレノイド34、引張ばね35等より構成)も示してある。
【0017】
通常通電時には、電磁リレー32をオンさせる。これにより、励磁電源33より給電された電磁石ソレノイド34は励磁され、発生する電磁力が引張ばね35の縮もうとする力に抗して可動体15を図5の位置(可動体15の支持材13が第1突部11aと第2突部11bとの間に来る位置)まで引っ張り、静止させるので、通常通電時においては、可動鉄片12によって漏れ磁路が形成されない第1位置に可動体15が移動されることとなる。
【0018】
上記のように可動体15が第1位置にあるとき、第1突部11aと第2突部11bとの間には非磁性材料よりなる支持材13があるため、この間の磁気抵抗が大きくなって、第1突部11aと第2突部11bとの間の磁束φgはφ1やφ2と比べると小さくなり、第1突部11aと第2突部11bとを経る磁路は形成されないものと看做せることから、通常通電時には漏れ磁路が形成されないのである。また、この通常通電時における限流器は、φgが充分に小さく、φ1≒φ2であれば、漏れリアクタンスが小さく電圧変動率の小さい通常のトランスとして機能する。
【0019】
なお、強磁性体の比透磁率を無限大、非磁性材の比透磁率を1と近似し、鉄心の断面積をS、真空の透磁率をμ0とすると、この磁気抵抗Rnは、第1突部11aと第2突部11bとの間のギャップ長gを用いて、「Rn=g/μ0S」と表せる。一次巻線の巻数をn1とすると、一次側から見た漏れリアクタンスLnは「Ln=n1 2/Rn」となる。
【0020】
また、漏れリアクタンスをさらに小さくしたい場合は、非磁性支持材13に銅やアルミニウムといった良導体を用い、その中を流れる渦電流でφgを打ち消す方法や、回路に直列にコンデンサを挿入して漏れリアクタンス分を補償する方法、あるいは、巻線に負荷時タップ切換機構を設けて、電圧変動分を補償する方法もある。
【0021】
続いて、図4のように二次側で短絡または地絡事故が生じ、線路電流I1またはI2が限流開始電流値を超えた場合(限流機能作動条件が達成された場合)、これを限流機能作動条件検出手段としての過電流検出器31で検出し、該過電流検出器31の検出出力により電磁リレー32をオフさせる。これにより、電磁石ソレノイド34は消磁され、引張ばね35の縮もうとする力により、可動体15は速やかに図6の位置に移動するので、第1突部11aと可動鉄片12と第2突部11bを経る磁路(漏れ磁路)が形成される。すなわち、限流機能作動時においては、可動鉄片12によって漏れ磁路が形成され得る第2位置に可動体15が移動されることとなる。
【0022】
この時、固定鉄心11における第1突部11aと第2突部11bと可動鉄片12の接する面に僅かなギャップが生じる(可動体15の移動に伴う摺動抵抗を発生させないため、僅かなギャップが必要となる)ものの、この僅かなギャップの長さをpとすると、限流時の可動体15を通る磁路の磁気抵抗Rfは、Rf=p/μ0Sと表すことができ、p≪gであることからRf≪Rnとなる。
【0023】
上記のようにして漏れ磁路を形成した時、一次側から見た漏れリアクタンスLfはLf=n1 2/Rfとなる。二次側事故時は、二次巻線の両端電圧がほぼ零のため、φ2≒0となり、φ1≒φgとなる。このとき一次電流I1は、一次電圧をV1、その角周波数をωとすると、I1=V1/(ωLf)となる。pを小さくしRfが小さくなれば、Lfが大きくなりI1を抑制できる。すなわち、二次側で事故が生じた際に、可動体15を移動させることで、故障電流を限流できる。
【0024】
事故が解消され、送電を再開する際は、再び電磁リレー32をオンにして電磁石ソレノイド34を励磁すれば、発生した電磁力により可動体15を図5の位置まで引っ張る。斯くして、再び変圧器の漏れリアクタンスは小さくなり、送電が開始される。
【0025】
図7は、可動鉄片の移動により限流できることを実証する装置を作製し、試験を行った時の波形図である。一次巻線と二次巻線の巻線比は2:1で、二次巻線を短絡し、時刻0秒で電磁石ソレノイドの電流Isolを遮断した。図7を見て分かるように、電磁石ソレノイドの電流Isolを遮断して3サイクル半から4サイクル分の時間を経た後に、可動鉄片の移動が完了し、一次電流I1と二次電流I2が限流された。
【0026】
なお、図7より分かるように、本実施形態に係る限流器を適用した変圧器で限流機能が作動した後も、二次側の電流を完全に遮断することはできないが、危険回避には十分なレベルに抑制することが可能である。しかも、可動部分に高電圧およびアークが発生しないので、電極の消耗を抑制できるという利点もある。
【0027】
また、事故の検出から限流動作が完了するまでの時間(実質的には、電磁石ソレノイド34の電流Isolを遮断してから一次電流I1と二次電流I2が限流されるまでの時間)を更に短くするには、引張ばね35をさらに縮む力の強いものに変えるなど、駆動機構の改良を行えば良い。無論、電磁石ソレノイドと引張バネではない他の可動体駆動機構を採用して、より高速な可動体移動を実現するようにしても良い。なお、可動体移動手段としてどのような機構を採用するかは、任意設計事項の範囲であり、より移動速度が速く小型・軽量・安価なものが望ましい。
【0028】
また、上記実施形態においては、固定鉄心11に第1突部11aと第2突部11bとを設けて、この間に一つの可動体を位置させることで漏れ磁路を形成するものとしたが、漏れ磁路の形成手法も、これに限定されるものではなく、可動体の磁路形成部が第2位置にある限流作動時における漏れ磁路の磁気抵抗が低く、可動体の磁路形成部が第1位置にある通常通電時における漏れ磁路形成部位間の磁気抵抗が高くなるようにできれば良い。
【0029】
【発明の効果】
以上説明したように、請求項1に係る限流器によれば、限流機能作動条件が達成されたことを限流機能作動条件検出手段が検出すると、可動体移動手段が可動体を第1位置から第2位置に移動させることで、漏れ磁路が形成され得る状態となり、第1巻線と第2巻線との磁気結合が切り換えられ、短絡等による故障電流を速やかに抑制することができる。しかも、超電導材の常電導転移現象を利用しないので、限流開始電流値や、通常通電状態への復帰時間が制御し易いという利点もある。
【0030】
また、請求項1に係る限流器は、第1巻線と第2巻線との巻線比を変えることで、限流機能付き変圧器としても利用できる。その場合、可動体移動手段を設ける必要から、普通の変圧器に比べると、寸法が大きく、高価になるが、大容量限流器を変圧器とは別途に設ける場合に比べれば、設置に要する空間を小さくできるし、安価に提供できる。しかも、変圧器の巻線は元々その線路電圧に耐えるよう設計されているので、既存の変圧器に本発明を適用する場合は、その巻線を使用できるという利点もある。
【図面の簡単な説明】
【図1】本発明に係る限流器の一実施形態を示す概略構造図である。
【図2】図1における可動体の外観を示す斜視図である。
【図3】限流器を変圧器に適用した例であり、通常通電状態を表した説明図である。
【図4】限流器を変圧器に適用した例であり、限流状態を表した説明図である。
【図5】通常通電状態にある限流器の側面図である。
【図6】限流状態にある限流器の側面図である。
【図7】限流動作の実証試験における、一次電圧V1、二次電圧V2、一次電流I1、二次電流I2、電磁石ソレノイドの電流Isolの波形を表す図である。
【符号の説明】
1 一次巻線
2 二次巻線
11 固定鉄心
12 可動鉄片
13 非磁性支持材
14 可動体の可動方向を示す矢印
15 可動体
21 交流電源
22 負荷
31 過電流検出器
32 電磁リレー
33 励磁電源
34 電磁石ソレノイド
35 引張ばね
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current limiter that suppresses overcurrent in the event of a system fault.
[0002]
[Prior art]
Up to now, a method using arc / resistance, a method using a semiconductor element such as a GTO having self-erasing capability, a method using a diode bridge and a DC reactor, a method using a normal conduction transition phenomenon of superconductivity, LC resonance Various fault current limiters, such as a system that uses, have been proposed and developed.
[0003]
[Patent Document 1]
JP 2000-13993 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-262450 [0004]
[Problems to be solved by the invention]
However, when the current limiter performs a current limiting operation, the higher the current limiting capability, the higher the voltage is applied between both terminals of the current limiter. Is equal to the line voltage, and a current limiter that can withstand this high voltage needs to have a large capacity, which is large in size and expensive. Moreover, in order to install this separately as a power transmission / distribution facility, a space for installing it must be secured, and there is a problem that the installation location is limited.
[0005]
Furthermore, the method using the normal conduction transition phenomenon of superconductivity has a problem that it takes time to return to the superconducting conductor again after the normal conduction transition and it is difficult to control the return time. In addition, the scale of the equipment becomes large, such as the need to install a cryostat.
[0006]
In addition, in the power system, there is a voltage class suitable for the transmission capacity of each line, and since it is transformed several times by the transformer in the flow of consumption from the generation of power energy, multiple transformers in the line However, it is difficult to provide the conventional current limiting device as described above for these transformers.
[0007]
And in the current transmission system, the overcurrent at the time of the accident is kept below the rated breaking current of the circuit breaker and the stability of the system is secured, but with the future expansion of the system scale, It is possible that the overcurrent at the time of accident exceeds the rated breaking current. In addition, in the distribution system, it is expected that the number of distributed power sources linked to the electric power business will be increased. It is feared that the fault current exceeds the breaking capacity of the power distribution breaker.
[0008]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a current limiting device for suppressing a fault current that is simple and economical and can be easily applied to a transformer.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a yoke having an arbitrary shape capable of forming a closed closed magnetic circuit via a primary winding connected to a power feeding system and a secondary winding connected to a power transmission system, A movable body provided with a magnetic path forming portion made of a magnetic material having an arbitrary shape that magnetically couples two points of the yoke so as to generate a leakage magnetic path between the primary winding and the secondary winding. And moving the movable body to a first position where a leakage magnetic path is not formed by the magnetic path forming portion of the movable body and a second position where a leakage magnetic path can be formed by the magnetic path forming portion of the movable body. A movable body moving means and a current limiting function operating condition detecting means for detecting that a predetermined current limiting function operating condition has been achieved, wherein the current limiting function operating condition detecting means achieves the current limiting function operating condition. The movable body moving means moves the movable body on the basis of Characterized in that from the first position to be moved to the second position.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a current limiting device according to the present invention will be described based on the attached drawings.
[0011]
FIG. 1 is a structural diagram showing an embodiment of a current limiting device according to the present invention. In the figure, 1 is a primary winding, 2 is a secondary winding, 11 is a fixed iron core, and functions as a yoke of an arbitrary shape that can form a closed closed magnetic circuit via the primary winding 1 and secondary winding 2. To do.
[0012]
As shown in FIG. 2, the details of the movable body 15 are a rod-shaped body including a movable iron piece 12 and a support material 13. The movable iron piece 12 is a magnetic path made of a magnetic material having an arbitrary shape that magnetically couples two points of the fixed iron core 11 so as to generate a leakage magnetic path between the primary winding 1 and the secondary winding 2. It functions as a forming part. The movable iron piece 12 and the fixed iron core 11 are formed by laminating electromagnetic steel plates that are ferromagnetic materials. The support member 13 is made of a nonmagnetic material.
[0013]
The movable body 15 configured as described above includes a state in which the movable iron piece 12 is positioned between the first protrusion 11a and the second protrusion 11b provided on the fixed iron core 11, and the first protrusion 11a and the second protrusion. The support member 13 can be slidably moved in a direction (a direction indicated by an arrow 14 in FIG. 2) that can be converted into a state in which the support member 13 is positioned between the portion 11b.
[0014]
The current limiter configured as described above functions as a current limiter that can be used by inserting it at an appropriate place in the transmission and distribution system if the primary winding 1 and the secondary winding 2 have the same winding ratio. If the winding ratio between the winding 1 and the secondary winding 2 is changed, it can be used as a transformer with a current limiting function. 3 and 4 show an example of use as a transformer, in a normal energized state in which the current limiting function is not activated (between the first protrusion 11a and the second protrusion 11b provided on the fixed core 11). Is a diagram showing a state in which the support member 13 is positioned. FIG. 4 is a view showing a current limiting state in which the current limiting function is activated (a state in which the movable iron piece 12 is positioned between the first protrusion 11a and the second protrusion 11b provided on the fixed iron core 11). is there. In FIGS. 3 and 4, 21 is an AC power source, and 22 is a load.
[0015]
5 and 6 are side views of the current limiting device of FIG. 1 as viewed from the side, and FIG. 5 is a normal energized state (between the first protrusion 11a and the second protrusion 11b provided on the fixed iron core 11). 6 shows a state in which the support member 13 is located), and FIG. 6 shows a current limiting state (a state in which the movable iron piece 12 is located between the first protrusion 11a and the second protrusion 11b provided on the fixed core 11). It is a figure.
[0016]
5 and 6 show an overcurrent detector 31 that functions as a current limiting function operating condition detection means for detecting that a predetermined current limiting function operating condition has been achieved, and a movable that moves the movable body 15. A driving mechanism (for example, an electromagnetic relay 32, an excitation power source 33, an electromagnet solenoid 34, a tension spring 35, etc.) as a body moving means is also shown.
[0017]
During normal energization, the electromagnetic relay 32 is turned on. Thereby, the electromagnet solenoid 34 fed by the excitation power source 33 is excited, and the generated electromagnetic force is moved against the force of the tension spring 35 to contract the movable body 15 in the position shown in FIG. 13 is pulled to a position between the first protrusion 11a and the second protrusion 11b) and is stationary, so that the movable body 15 is in the first position where the leakage magnetic path is not formed by the movable iron piece 12 during normal energization. Will be moved.
[0018]
When the movable body 15 is in the first position as described above, the support member 13 made of a nonmagnetic material is present between the first protrusion 11a and the second protrusion 11b, so that the magnetic resistance therebetween increases. Te, the magnetic flux phi g between the first projection 11a and the second protrusion 11b decreases when compared to phi 1 and phi 2, the magnetic path passing through the first projection 11a and the second projection 11b is formed Since it can be regarded as not being performed, a leakage magnetic path is not formed during normal energization. Further, the current limiter during normal energization functions as a normal transformer having a small leakage reactance and a small voltage fluctuation rate when φ g is sufficiently small and φ 1 ≈φ 2 .
[0019]
When the relative permeability of the ferromagnetic material is infinite, the relative permeability of the non-magnetic material is approximated as 1, the cross-sectional area of the iron core is S, and the vacuum permeability is μ 0 , the magnetoresistance R n is By using the gap length g between the first protrusion 11a and the second protrusion 11b, it can be expressed as “R n = g / μ 0 S”. When the number of turns of the primary winding is n 1 , the leakage reactance L n viewed from the primary side is “L n = n 1 2 / R n ”.
[0020]
In order to further reduce the leakage reactance, a good conductor such as copper or aluminum is used for the nonmagnetic support member 13 and a method of canceling φ g by an eddy current flowing through the non-magnetic support material 13 or a leakage reactance by inserting a capacitor in series with the circuit. There is also a method for compensating for the minute or a method for compensating for the voltage fluctuation by providing a load tap switching mechanism in the winding.
[0021]
Subsequently, as shown in FIG. 4, when a short circuit or a ground fault occurs on the secondary side and the line current I 1 or I 2 exceeds the current limiting start current value (when the current limiting function operating condition is achieved), This is detected by an overcurrent detector 31 as current limiting function operating condition detection means, and the electromagnetic relay 32 is turned off by the detection output of the overcurrent detector 31. As a result, the electromagnet solenoid 34 is demagnetized, and the movable body 15 quickly moves to the position shown in FIG. 6 due to the force of the tension spring 35 to contract, so the first protrusion 11a, the movable iron piece 12, and the second protrusion. A magnetic path (leakage magnetic path) passing through 11b is formed. That is, when the current limiting function is operated, the movable body 15 is moved to the second position where the leakage magnetic path can be formed by the movable iron piece 12.
[0022]
At this time, a slight gap is generated on the surface of the fixed iron core 11 where the first protrusion 11a, the second protrusion 11b, and the movable iron piece 12 are in contact with each other. However, if the length of this slight gap is p, the magnetic resistance R f of the magnetic path passing through the movable body 15 at the time of current limiting can be expressed as R f = p / μ 0 S. Since p << g, R f << R n .
[0023]
When the leakage magnetic path is formed as described above, the leakage reactance L f viewed from the primary side is L f = n 1 2 / R f . At the time of the secondary side accident, the voltage across the secondary winding is almost zero, so φ 2 ≈0 and φ 1 ≈φ g . The primary current I 1 at this time, the primary voltage V 1, when the angular frequency and omega, the I 1 = V 1 / (ωL f). If p is reduced and R f is reduced, L f is increased and I 1 can be suppressed. That is, when an accident occurs on the secondary side, the fault current can be limited by moving the movable body 15.
[0024]
When the accident is resolved and power transmission is resumed, if the electromagnetic relay 32 is turned on again and the electromagnet solenoid 34 is excited, the movable body 15 is pulled to the position of FIG. 5 by the generated electromagnetic force. Thus, the leakage reactance of the transformer is reduced again and power transmission is started.
[0025]
FIG. 7 is a waveform diagram when a device for demonstrating that the current can be limited by the movement of the movable iron piece is manufactured and tested. The winding ratio of the primary winding and the secondary winding was 2: 1, the secondary winding was short-circuited, and the current I sol of the electromagnetic solenoid was cut off at time 0 second. As can be seen from FIG. 7, after the electromagnetic solenoid current I sol is cut off and after a period of three and a half cycles to four cycles, the movement of the movable iron piece is completed, and the primary current I 1 and the secondary current I 2 are completed. Was limited.
[0026]
As can be seen from FIG. 7, even after the current limiting function is activated in the transformer to which the current limiting device according to the present embodiment is applied, the secondary current cannot be completely cut off, but it is possible to avoid danger. Can be suppressed to a sufficient level. In addition, since high voltage and arc are not generated in the movable part, there is an advantage that consumption of the electrode can be suppressed.
[0027]
Also, the time from the detection of the accident to the completion of the current limiting operation (substantially the time from when the current I sol of the electromagnet solenoid 34 is cut off until the primary current I 1 and the secondary current I 2 are limited. In order to further shorten the length of the drive mechanism, the drive mechanism may be improved, for example, by changing the tension spring 35 to one having a stronger force of contraction. Of course, other movable body drive mechanisms that are not electromagnet solenoids and tension springs may be employed to realize faster movement of the movable body. It should be noted that what kind of mechanism is adopted as the movable body moving means is within a range of arbitrary design matters, and it is desirable that the moving speed is faster, and that it is smaller, lighter and less expensive.
[0028]
Moreover, in the said embodiment, although the 1st protrusion part 11a and the 2nd protrusion part 11b were provided in the fixed iron core 11, and the one movable body was located in between, the leakage magnetic path shall be formed, The method of forming the leakage magnetic path is not limited to this, and the magnetic resistance of the leakage magnetic path is low during current limiting operation when the magnetic path forming portion of the movable body is at the second position, and the magnetic path formation of the movable body is performed. What is necessary is just to be able to make high the magnetic resistance between the leakage magnetic path formation site | parts at the time of normal electricity supply which has a part in a 1st position.
[0029]
【The invention's effect】
As described above, according to the current limiter according to the first aspect, when the current limiting function operating condition detecting means detects that the current limiting function operating condition is achieved, the movable body moving means moves the movable body to the first position. By moving from the position to the second position, a leakage magnetic path can be formed, the magnetic coupling between the first winding and the second winding is switched, and a fault current due to a short circuit or the like can be quickly suppressed. it can. In addition, since the normal conducting transition phenomenon of the superconducting material is not used, there is an advantage that the current limiting start current value and the return time to the normal energized state can be easily controlled.
[0030]
In addition, the current limiter according to claim 1 can be used as a transformer with a current limiting function by changing a winding ratio between the first winding and the second winding. In that case, since it is necessary to provide a movable body moving means, the size is large and expensive compared to an ordinary transformer, but it is required for installation as compared with the case where a large capacity current limiter is provided separately from the transformer. Space can be reduced and can be provided at low cost. Moreover, since the transformer winding is originally designed to withstand the line voltage, there is an advantage that the winding can be used when the present invention is applied to an existing transformer.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram showing an embodiment of a current limiting device according to the present invention.
2 is a perspective view showing an appearance of a movable body in FIG. 1. FIG.
FIG. 3 is an explanatory diagram showing a normal energization state, which is an example in which a current limiter is applied to a transformer.
FIG. 4 is an example in which a current limiting device is applied to a transformer, and is an explanatory diagram showing a current limiting state.
FIG. 5 is a side view of the current limiter in a normal energized state.
FIG. 6 is a side view of the current limiter in a current limiting state.
FIG. 7 is a diagram showing waveforms of a primary voltage V 1 , a secondary voltage V 2 , a primary current I 1 , a secondary current I 2 , and an electromagnetic solenoid current I sol in a current-limiting operation verification test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary winding 2 Secondary winding 11 Fixed iron core 12 Movable iron piece 13 Nonmagnetic support material 14 The arrow 15 which shows the movable direction of a movable body 15 Movable body 21 AC power supply 22 Load 31 Overcurrent detector 32 Electromagnetic relay 33 Excitation power supply 34 Electromagnet Solenoid 35 tension spring

Claims (1)

給電系統に接続された一次巻線と送電系統に接続された二次巻線を経由する閉じた閉磁路を形成し得る任意形状のヨークと、
上記一次巻線と上記二次巻線の間に漏れ磁路を生ぜしめるように、上記ヨークの2点間を磁気的に結合させる任意形状の磁性材料よりなる磁路形成部を備えた可動体と、
上記可動体の磁路形成部によって漏れ磁路が形成されない第1位置と、上記可動体の磁路形成部によって漏れ磁路が形成され得る第2位置とに、上記可動体を移動させる可動体移動手段と、
予め定めた限流機能作動条件が達成されたことを検出する限流機能作動条件検出手段と、
を備え、
上記限流機能作動条件検出手段が限流機能作動条件の達成を検出することに基づいて、上記可動体移動手段が可動体を第1位置から第2位置に移動させるようにしたことを特徴とする限流器。
An arbitrarily shaped yoke capable of forming a closed closed magnetic circuit via a primary winding connected to the power feeding system and a secondary winding connected to the power transmission system;
A movable body provided with a magnetic path forming portion made of a magnetic material having an arbitrary shape that magnetically couples two points of the yoke so as to generate a leakage magnetic path between the primary winding and the secondary winding. When,
A movable body that moves the movable body between a first position where a leakage magnetic path is not formed by the magnetic path forming portion of the movable body and a second position where a leakage magnetic path can be formed by the magnetic path forming portion of the movable body. Transportation means;
A current limiting function operating condition detecting means for detecting that a predetermined current limiting function operating condition is achieved;
With
The movable body moving means moves the movable body from the first position to the second position based on the fact that the current limiting function operation condition detecting means detects the achievement of the current limiting function operation condition. Current limiting device.
JP2002343217A 2002-11-27 2002-11-27 Current limiter Expired - Lifetime JP3777424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343217A JP3777424B2 (en) 2002-11-27 2002-11-27 Current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343217A JP3777424B2 (en) 2002-11-27 2002-11-27 Current limiter

Publications (2)

Publication Number Publication Date
JP2004180415A JP2004180415A (en) 2004-06-24
JP3777424B2 true JP3777424B2 (en) 2006-05-24

Family

ID=32705038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343217A Expired - Lifetime JP3777424B2 (en) 2002-11-27 2002-11-27 Current limiter

Country Status (1)

Country Link
JP (1) JP3777424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781397B1 (en) 2013-12-10 2017-09-25 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Power system and fault current limiter with interleaved windings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440675C (en) * 2004-07-28 2008-12-03 北京云电英纳超导电缆有限公司 Quick current limiting type superconductive short circuit fault
KR20090026900A (en) * 2007-09-11 2009-03-16 연세대학교 산학협력단 Instant current limiter using a magnet switching for dc circuit breaker
JP2010278273A (en) * 2009-05-29 2010-12-09 Hitachi Engineering & Services Co Ltd Variable voltage type transformer
CN114884040A (en) * 2022-06-07 2022-08-09 中国南方电网有限责任公司超高压输电公司广州局 Fault current limiter and optimization method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781397B1 (en) 2013-12-10 2017-09-25 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Power system and fault current limiter with interleaved windings

Also Published As

Publication number Publication date
JP2004180415A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
KR100511583B1 (en) Control of inductive power transfer pickups
US20080156775A1 (en) Circuit breaker and opening and closing method thereof
CN103650089B (en) Electromagnetic operating device and employ the opening and closing device of this device
KR101328587B1 (en) Permanent magnet actuator
JP2007123596A (en) Dc reactor and inverter device
JP2001237118A (en) Electromagnet and switch operating mechanism using it
JP3777424B2 (en) Current limiter
JP2010017016A (en) Magnetic-saturation type current limiter
JP2002033034A (en) Switchgear and system switching device using it
CN112420318A (en) Magnetizing and demagnetizing device for small circular ring type magnetic system and use method thereof
CN102257581A (en) Electromagnetic actuator with dual control circuits
US6906605B2 (en) Electromagnet system for a switch
KR101050354B1 (en) Circuit breaker
Tseng et al. Bidirectional impedance-type transformer inrush current limiter
KR900000430B1 (en) Electromagnetic actuator
JP5671616B2 (en) core
Mohan An overview on amorphous core transformers
CN104854665A (en) Scalable, highly dynamic electromagnetic linear drive with limited travel and low transverse forces
KR101017131B1 (en) Fault current limiter
JP2001238349A (en) Current limiter
CN114846632A (en) Superconducting switch
Houska et al. Partial saturation in permanent magnet inductors
CN100364027C (en) Electromagnetic drive for switching devices
KR101540954B1 (en) Superconducting Field Magnet Coil for Electrical Generator
JP2003009386A (en) Current limiter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Ref document number: 3777424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term