JP2006286667A - Inductance component - Google Patents

Inductance component Download PDF

Info

Publication number
JP2006286667A
JP2006286667A JP2005100382A JP2005100382A JP2006286667A JP 2006286667 A JP2006286667 A JP 2006286667A JP 2005100382 A JP2005100382 A JP 2005100382A JP 2005100382 A JP2005100382 A JP 2005100382A JP 2006286667 A JP2006286667 A JP 2006286667A
Authority
JP
Japan
Prior art keywords
core
cores
magnetic
magnetic flux
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100382A
Other languages
Japanese (ja)
Other versions
JP4193942B2 (en
Inventor
Kazuya Itagaki
一也 板垣
Hiromitsu Abe
廣光 阿部
Natsuki Asari
七津樹 浅利
Kazumi Shindo
一見 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005100382A priority Critical patent/JP4193942B2/en
Publication of JP2006286667A publication Critical patent/JP2006286667A/en
Application granted granted Critical
Publication of JP4193942B2 publication Critical patent/JP4193942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inductance component having a permanent magnet for preventing magnetic flux saturation in which the characteristics can be sustained with no risk of demagnetization. <P>SOLUTION: A plurality of ferrite cores 1 and 2 are combined by forming magnetic gaps 3 and 4 between the cores 1 and 2. At least one core 1, 2 is applied with a coil 5, 6 and combined with permanent magnets 7 and 8. The permanent magnets 7 and 8 constitute a closed magnetic circuit, respectively, for the corresponding core 1, 2. The permanent magnets 7, 8 supply the corresponding core 1, 2, respectively, with magnetic flux Φ2, Φ3 reversely to magnetic flux Φ1 being induced by a DC current flowing through the coil 5, 6 applied to the core 1, 2 being combined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スイッチング電源等においてインダクタやトランスとして用いられ、コアに巻回したコイルに交流電流が重畳した直流電流が流されるインダクタンス部品に関する。   The present invention relates to an inductance component that is used as an inductor or a transformer in a switching power supply or the like, and in which a direct current in which an alternating current is superimposed is applied to a coil wound around a core.

スイッチング電源等のチョークコイルやトランスにおいては、機能上、各コイルには直流電流に交流電流が重畳して流される。従ってこれらのチョークコイルやトランスを構成するコアは、高い磁気飽和特性を持つことが求められる。   In a choke coil and a transformer such as a switching power supply, an AC current is superimposed on a DC current in each coil in terms of function. Therefore, the cores constituting these choke coils and transformers are required to have high magnetic saturation characteristics.

近年においては、スイッチング電源などの電子部品の小型化が求められ、これに伴い、部品の小型化が可能な高周波化が図られている。高周波化されると、従来の金属製コアではコアロスが大となるため使用が困難となり、コアロスの小さい、固有抵抗の高いフェライトコアを用いることが好ましくなる。しかしながら、フェライトコアは飽和磁束密度が小さい。このため、例えば特許文献1には、E型コアの中足のギャップ形成部分に。コイルに流れる直流電流によって生じる磁束と逆方向の磁束を供給する永久磁石を設けることが提案されている。   In recent years, electronic components such as switching power supplies have been required to be miniaturized, and accordingly, higher frequencies that can reduce the size of components have been achieved. When the frequency is increased, the conventional metal core has a large core loss, making it difficult to use, and it is preferable to use a ferrite core having a small core loss and a high specific resistance. However, the ferrite core has a low saturation magnetic flux density. For this reason, for example, in Patent Document 1, in the gap forming portion of the middle leg of the E-type core. It has been proposed to provide a permanent magnet that supplies a magnetic flux in a direction opposite to the magnetic flux generated by the direct current flowing through the coil.

特開2002−231540号公報JP 2002-231540 A

しかしながら、特許文献1に開示されているように、コイルによって生じる磁束の通路に永久磁石を設けると、長期使用により永久磁石が除々に減磁され、このため、チョークコイルの場合にはノイズ除去機能が低下し、トランスの場合には変圧機能が低下するという問題点がある。   However, as disclosed in Patent Document 1, if a permanent magnet is provided in the path of the magnetic flux generated by the coil, the permanent magnet is gradually demagnetized due to long-term use. In the case of a transformer, there is a problem that the transformation function is lowered.

本発明は、上記問題点に鑑み、磁束飽和を防止するための永久磁石を有するインダクタンス部品において、永久磁石が減磁されるおそれがなく、特性が維持できる構成のものを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an inductance component having a permanent magnet for preventing magnetic flux saturation so that the permanent magnet is not demagnetized and can maintain its characteristics. To do.

本発明のインダクタンス部品は、交流電流が重畳した直流電流を流すコイルを巻回するコアを有するインダクタンス部品であって、
複数のフェライトコアを、コア間に磁気ギャップを形成して組み合わせ、
少なくとも1つのコアにコイルを巻回し、
前記コイルを巻回したコアに、そのコアに巻回されるコイルに流れる直流電流によって生じる磁束と逆方向の磁束を供給する永久磁石を、そのコアとの間で閉磁路を形成するように組み合わせた
ことを特徴とする。
The inductance component of the present invention is an inductance component having a core for winding a coil for passing a DC current on which an AC current is superimposed,
Combine multiple ferrite cores by forming a magnetic gap between the cores,
Winding a coil around at least one core,
Combined with a core around which the coil is wound, a permanent magnet that supplies a magnetic flux in a direction opposite to the magnetic flux generated by the direct current flowing through the coil wound around the core so as to form a closed magnetic circuit with the core. It is characterized by that.

また、本発明のインダクタンス部品は、交流電流が重畳した直流電流を流すコイルを巻回するコアを有するインダクタンス部品であって、
2つのフェライトコアを、コア間に磁気ギャップを形成して組み合わせ、
前記2つのコアに同方向の磁束を発生させる直流電流を流すコイルをそれぞれ巻回し、
前記2つのコアに、それぞれ、その各コアに巻回されるコイルに流れる直流電流によって生じる磁束と逆方向の磁束を供給する永久磁石を、その各永久磁石と対応するコアとの間で閉磁路を形成するように組み合わせた
ことを特徴とする。
Further, the inductance component of the present invention is an inductance component having a core for winding a coil for passing a direct current on which an alternating current is superimposed,
Combine two ferrite cores by forming a magnetic gap between the cores,
Winding a coil for passing a direct current to generate magnetic flux in the same direction in the two cores,
Permanent magnets that supply magnetic flux in the direction opposite to the magnetic flux generated by the direct current flowing in the coils wound around the respective cores to the two cores are closed between the permanent magnets and the corresponding cores. It is characterized by combining to form.

また、本発明のインダクタンス部品は、前記コアがU型コアでなり、前記永久磁石が、U型コアの対向する2つの磁脚の内周面間に設けられている
ことを特徴とする。
Moreover, the inductance component of the present invention is characterized in that the core is a U-shaped core, and the permanent magnet is provided between the inner peripheral surfaces of two opposing magnetic legs of the U-shaped core.

また、本発明のインダクタンス部品は、
前記永久磁石がフェライト磁石でなる
ことを特徴とする。
The inductance component of the present invention is
The permanent magnet is a ferrite magnet.

本発明によれば、磁気ギャップ間のコアに対し、コアに巻回したコイルに流れる直流電流により生じる磁束と逆方向の磁束を発生させる永久磁石を、その永久磁石が閉磁路を構成するように組み合わせたので、コイルに流れる直流電流により生じる磁束が永久磁石から供給される磁束分だけ相殺され、磁気飽和が抑制される。本発明のインダクタンス部品は、永久磁石がコアの磁路ではなく、コアのバイパスに設けたものであり、しかも永久磁石はコイルに流れる磁束の向きに対して逆方向に着磁されているので、コイルに流れる直流電流により生じる磁束はこの永久磁石を流れず、実質的に永久磁石の減磁が生じない。   According to the present invention, a permanent magnet that generates a magnetic flux in a direction opposite to a magnetic flux generated by a direct current flowing in a coil wound around a core with respect to a core between magnetic gaps is configured so that the permanent magnet constitutes a closed magnetic circuit. Since they are combined, the magnetic flux generated by the direct current flowing through the coil is canceled by the amount of magnetic flux supplied from the permanent magnet, and magnetic saturation is suppressed. In the inductance component of the present invention, the permanent magnet is not provided in the magnetic path of the core but in the bypass of the core, and the permanent magnet is magnetized in the opposite direction to the direction of the magnetic flux flowing through the coil. Magnetic flux generated by a direct current flowing through the coil does not flow through the permanent magnet, and substantially no demagnetization of the permanent magnet occurs.

また、本発明は、永久磁石とこれを組み合わせるコアとの間で閉磁路を構成するため、コイルに流れる直流電流により生じる磁束に対する永久磁石の磁束による相殺効果が大きく、設計が容易となる。   In addition, since the present invention forms a closed magnetic circuit between the permanent magnet and the core combining the permanent magnet, the effect of canceling the magnetic flux of the permanent magnet with respect to the magnetic flux generated by the direct current flowing through the coil is large, and the design is easy.

また、本発明のインダクタンス部品は、2つのコアを有して、その各コアに対して、それぞれ永久磁石を設け、各コイルに流れる直流電流はコアに対して同方向の磁束を発生させ、各永久磁石は、各コイルに流れる直流電流によって生じる磁束に対して逆方向の磁束を発生させるように構成したものであり、一方のコイルで発生する磁束は、他方のコイルが巻かれたコアに組み合わされる永久磁石に対しては着磁方向の磁束を発生させるものであるから、その永久磁石に対しては着磁方向に作用し、さらなる減磁抑制効果が得られる。   In addition, the inductance component of the present invention has two cores, a permanent magnet is provided for each of the cores, and a direct current flowing in each coil generates a magnetic flux in the same direction with respect to the cores. The permanent magnet is configured to generate a magnetic flux in the opposite direction to the magnetic flux generated by the direct current flowing through each coil. The magnetic flux generated in one coil is combined with the core around which the other coil is wound. Since the permanent magnet generates a magnetic flux in the magnetization direction, it acts on the permanent magnet in the magnetization direction, and a further demagnetization suppressing effect is obtained.

また、本発明のインダクタンス部品は、U型コアの磁脚の内周面間に永久磁石を設けたので、インダクタンス部品のサイズを大きくすることなく実現できる。   In addition, the inductance component of the present invention can be realized without increasing the size of the inductance component because the permanent magnet is provided between the inner peripheral surfaces of the magnetic legs of the U-shaped core.

また、本発明は、コアのみならず、永久磁石もフェライトにより構成したので、コアロスが少なく、渦電流の発生が少なく、高周波化に適したインダクタンス部品が実現できる。   In the present invention, since not only the core but also the permanent magnet is made of ferrite, the core loss is small, the generation of eddy current is small, and an inductance component suitable for high frequency can be realized.

図1は本発明のインダクタンス部品の一実施の形態を示す図である。このインダクタンス部品はスイッチング電源のチョークコイルを構成するものである。1、2は磁気ギャップ3、4を介して組み合わされるU型コアである。これらのコア1、2はMn−Zn系あるいはNi−Zn系フェライトからなる。磁気ギャップ3、4は樹脂シートなどの非磁性体の接着または不図示の金具でコア間の間隔を調整することによって形成される間隙からなる。   FIG. 1 is a diagram showing an embodiment of an inductance component of the present invention. This inductance component constitutes a choke coil for a switching power supply. Reference numerals 1 and 2 denote U-shaped cores which are combined through magnetic gaps 3 and 4. These cores 1 and 2 are made of Mn—Zn or Ni—Zn ferrite. The magnetic gaps 3 and 4 are gaps formed by bonding a non-magnetic material such as a resin sheet or adjusting the interval between the cores with a metal fitting (not shown).

5、6はそれぞれ前記コア1、2に巻回されるコイルであり、各コイル5、6は交流電流が重畳した直流電流が流されるものである。これらのコイル5、6に流れる直流電流によって生じる磁束Φ1はコア1、2に同方向に周回して通る。   Reference numerals 5 and 6 denote coils wound around the cores 1 and 2, respectively. Each of the coils 5 and 6 receives a direct current in which an alternating current is superimposed. A magnetic flux Φ1 generated by a direct current flowing through these coils 5 and 6 passes around the cores 1 and 2 in the same direction.

7、8はそれぞれ前記コア1、2に組み合わされる永久磁石である。これらの永久磁石7、8は、それぞれコア1、2に対して閉磁路を構成するもので、各永久磁石7、8で発生する磁束Φ2、Φ3は、それぞれコイル5、6に流れる直流電流によって生じる磁束Φ1に対して、逆方向となり、磁束Φ1をそれぞれのコア1、2内で打ち消す方向に供給される。   7 and 8 are permanent magnets combined with the cores 1 and 2, respectively. These permanent magnets 7 and 8 constitute closed magnetic paths with respect to the cores 1 and 2, respectively. Magnetic fluxes Φ2 and Φ3 generated by the permanent magnets 7 and 8 are caused by direct currents flowing through the coils 5 and 6, respectively. The magnetic flux Φ1 is supplied in a direction opposite to the generated magnetic flux Φ1 and canceling out the magnetic flux Φ1 in each of the cores 1 and 2.

このように、コア1、2に巻回したコイル5、6に流れる直流電流により生じる磁束Φ1と逆方向の磁束Φ2、Φ3を発生させる永久磁石7、8を、その永久磁石7、8がそれぞれコア1、2との間で閉磁路を構成するように組み合わせることにより、コイル5、6に流れる直流電流により生じる磁束が永久磁石7、8から供給される磁束分だけうち消され、磁気飽和が防止され、大電流に対応できるインダクタンス部品が提供できる。また、永久磁石7、8とこれを組合わせるコア1、2との間で閉磁路を構成するため、コイル5、6に流れる直流電流により生じる磁束Φ1に対する永久磁石7、8の磁束Φ2、3による相殺効果が大きく、設計が容易となる。   As described above, the permanent magnets 7 and 8 that generate the magnetic fluxes Φ2 and Φ3 in the opposite direction to the magnetic flux Φ1 generated by the direct current flowing in the coils 5 and 6 wound around the cores 1 and 2, respectively, By combining the cores 1 and 2 so as to form a closed magnetic circuit, the magnetic flux generated by the direct current flowing through the coils 5 and 6 is erased by the amount of magnetic flux supplied from the permanent magnets 7 and 8, and magnetic saturation is reduced. Inductance components that can be prevented and can handle a large current can be provided. Further, in order to form a closed magnetic path between the permanent magnets 7 and 8 and the cores 1 and 2 that combine them, the magnetic fluxes Φ 2 and 3 of the permanent magnets 7 and 8 with respect to the magnetic flux Φ 1 generated by the direct current flowing through the coils 5 and 6. The effect of canceling is large, and the design becomes easy.

また、各永久磁石7(8)は、対応するコア1(2)に対しては閉磁路を構成し、これらのコア1(2)の相手側のコア2(1)に対しては磁気ギャップ3、4を介して組み合わされるので、永久磁石7(8)の相手側コア2(1)に加わる方向の磁束Φ4(Φ5)が磁気ギャップ3、4によって抑制される。したがって、永久磁石7、8から供給される磁束は、主として磁束Φ1を相殺する方向に作用する。なお、この磁気ギャップ3、4は0.5mm以上に設定することが好ましい。   Each permanent magnet 7 (8) forms a closed magnetic path with respect to the corresponding core 1 (2), and a magnetic gap with respect to the opposite core 2 (1) of these cores 1 (2). 3 and 4, the magnetic flux Φ 4 (Φ 5) in the direction applied to the counterpart core 2 (1) of the permanent magnet 7 (8) is suppressed by the magnetic gaps 3 and 4. Therefore, the magnetic flux supplied from the permanent magnets 7 and 8 mainly acts in a direction to cancel the magnetic flux Φ1. The magnetic gaps 3 and 4 are preferably set to 0.5 mm or more.

また、本発明においては、永久磁石7、8はコア1、2の磁路ではなく、コア1、2のバイパスに設けたものであり、しかも永久磁石7、8はコイル5、6に流れる磁束Φ1の向きに対して逆方向に着磁されているので、コイル5、6に流れる直流電流により生じる磁束Φ1はこの永久磁石7、8を流れず、実質的に永久磁石7、8の減磁が生じない。   In the present invention, the permanent magnets 7 and 8 are not provided in the magnetic paths of the cores 1 and 2 but are provided in the bypasses of the cores 1 and 2, and the permanent magnets 7 and 8 are magnetic fluxes flowing in the coils 5 and 6. Since it is magnetized in the direction opposite to the direction of Φ1, the magnetic flux Φ1 generated by the direct current flowing through the coils 5 and 6 does not flow through the permanent magnets 7 and 8, but substantially demagnetizes the permanent magnets 7 and 8. Does not occur.

また、2つのコア1、2に対してそれぞれ永久磁石7、8を設け、各コイル5、6に流れる直流電流はコア1、2に対して同方向の磁束を発生させ、各永久磁石7、8は、各コイル5、6に流れる直流電流によって生じる磁束Φ1に対して逆方向の磁束Φ2、Φ3を発生させるように構成したものであるが、一方のコイル5(6)で発生する磁束Φ1は、他方のコイル6(5)が巻かれたコア2(1)に組み合わされる永久磁石8(7)に対しては着磁方向の磁束を発生させるものであるから、その永久磁石8(7)に対しては着磁方向に作用し、さらなる減磁抑制効果が得られる。   Further, permanent magnets 7 and 8 are provided for the two cores 1 and 2, respectively, and direct currents flowing through the coils 5 and 6 generate magnetic fluxes in the same direction with respect to the cores 1 and 2, respectively. 8 is configured to generate magnetic fluxes Φ2 and Φ3 in opposite directions to the magnetic flux Φ1 generated by the direct current flowing in the coils 5 and 6, but the magnetic flux Φ1 generated in one coil 5 (6). Generates a magnetic flux in the magnetization direction for the permanent magnet 8 (7) combined with the core 2 (1) around which the other coil 6 (5) is wound. Therefore, the permanent magnet 8 (7 ) Acts in the magnetization direction, and a further demagnetization suppressing effect is obtained.

また、本発明を実施する場合、永久磁石7、8は、U型コア1、2の磁脚1a、1aおよび2a、2a間に閉磁路を構成するように設ければよく、必ずしも磁脚の内周面間に設ける必要はないが、本実施の形態のように、磁脚1、2の磁脚1a、1aおよび2a、2aの内周面間に永久磁石7、8を設けることにより、インダクタンス部品のサイズを大きくすることなく実現できる。   Further, when the present invention is carried out, the permanent magnets 7 and 8 may be provided so as to form a closed magnetic path between the magnetic legs 1a, 1a and 2a, 2a of the U-shaped cores 1 and 2, and the magnetic legs are not necessarily provided. Although it is not necessary to provide between inner peripheral surfaces, like this embodiment, by providing permanent magnets 7 and 8 between inner peripheral surfaces of magnetic legs 1a, 1a and 2a, 2a of magnetic legs 1, 2, This can be realized without increasing the size of the inductance component.

また、コア1、2のみならず、永久磁石7、8もフェライト磁石によって構成したので、例えば数十〜100kHz以上の高周波によってスイッチングするスイッチング電源に用いたとしても、コアロスの少ないインダクタンス部品が実現できる。   Moreover, since not only the cores 1 and 2 but also the permanent magnets 7 and 8 are composed of ferrite magnets, an inductance component with a small core loss can be realized even when used for a switching power supply that switches at a high frequency of several tens to 100 kHz, for example. .

次に本発明のインダクタンス部品における永久磁石7、8の配置などについて実験した結果について説明する。図2は一方のコア1にのみコイル5を巻回し、1個の永久磁石のみを、その位置と方向を変えて配置した場合の構成例である。図2の(丸1)は永久磁石7、8を設けない例(比較例)である。図2の(丸2)と(丸3)はコア1側にのみ永久磁石7を設けた例で、(丸2)の例はコイル5、6に流れる直流電流によって生じる磁束Φ1に対して永久磁石7で供給する磁束Φ2が同方向となる(加わる)ように配置した例(比較例)であり、(丸3)は逆方向になる(相殺する)ように配置した例(実施例)である。図2の(丸4)、(丸5)はコイル6を巻回していないコア2側にのみ永久磁石8を設けた例で、(丸4)の例はコイル5、6に流れる直流電流によって生じる磁束Φ1に対して永久磁石8で供給する磁束Φ3が加わるように配置した例(比較例)、(丸5)は相殺するように配置した例(比較例)である。   Next, the results of experiments on the arrangement of the permanent magnets 7 and 8 in the inductance component of the present invention will be described. FIG. 2 shows an example of a configuration in which the coil 5 is wound only around one core 1 and only one permanent magnet is arranged with its position and direction changed. 2 (circle 1) is an example in which the permanent magnets 7 and 8 are not provided (comparative example). 2 (circle 2) and (circle 3) are examples in which the permanent magnet 7 is provided only on the core 1 side, and the example of (circle 2) is permanent with respect to the magnetic flux Φ1 generated by the direct current flowing through the coils 5 and 6. This is an example (comparative example) arranged so that the magnetic flux Φ2 supplied by the magnet 7 is in the same direction (added), and (circle 3) is an example (example) arranged in the opposite direction (cancel). is there. 2 (circle 4) and (circle 5) are examples in which the permanent magnet 8 is provided only on the core 2 side where the coil 6 is not wound. The example of (circle 4) is based on the direct current flowing in the coils 5 and 6. The example (comparative example) arrange | positioned so that magnetic flux (phi) 3 supplied with the permanent magnet 8 may be added with respect to the magnetic flux (phi) 1 produced, (circle 5) is the example (comparative example) arrange | positioned so that it may cancel.

コア1、2には、各磁脚1a、2aの長手方向の幅aが73mm、磁脚1aと1a、2aと2aの対向方向の幅bが90.5mm、幅cが14mm、磁路の断面積が196mmのものを用いた。また、永久磁石7、8としては、残留自足密度Brが220mT、断面積が104mm、長さが磁脚1aと1a、2aと2aの間隔に等しい長さが46mmのものを用いた。また、磁気ギャップ3、4はゼロとし、コイル5の巻数を33ターンとした。そしてコイル5に1kHzの周波数で0.5mAの交流電流を、種々の直流電流に重畳させてインダクタンスを測定した。 The cores 1 and 2 have a width a in the longitudinal direction of the magnetic legs 1a and 2a of 73 mm, a width b in the opposing direction of the magnetic legs 1a and 1a, 2a and 2a, 90.5 mm, a width c of 14 mm, The one having a cross-sectional area of 196 mm 2 was used. Further, as the permanent magnets 7 and 8, those having a residual self-sustained density Br of 220 mT, a cross-sectional area of 104 mm 2 and a length equal to the interval between the magnetic legs 1a and 1a and 2a and 2a were 46 mm. The magnetic gaps 3 and 4 were zero, and the number of turns of the coil 5 was 33 turns. Inductance was measured by superimposing an alternating current of 0.5 mA on the coil 5 at a frequency of 1 kHz on various direct currents.

表1、図3は図2に示した(丸1)〜(丸5)の例のコイルに流す直流電流の変化に対するインダクタンス値の変化を示す。表1および図3の(丸1)、(丸2)、(丸3)の対比から分かるように、永久磁石7の無い場合(丸1)より、永久磁石7を、その発生磁束Φ2がコイル5に流れる直流電流によって生じる磁束Φ1を相殺する方向に供給される場合(丸3)の方が、直流電流の増加に伴う磁気飽和が抑制され、高いインダクタンス値Lが得られる。また、磁気飽和を生じると考えられる電流値に近くなると、両者のインダクタンス値は近くなる。   Tables 1 and 3 show changes in the inductance value with respect to changes in the direct current flowing through the coils of the examples (circle 1) to (circle 5) shown in FIG. As can be seen from the comparison of Table 1 and (Circle 1), (Circle 2), and (Circle 3) in FIG. 3, the permanent magnet 7 and the generated magnetic flux Φ2 are coiled from the case without the permanent magnet 7 (Circle 1). In the case where the magnetic flux Φ1 generated by the direct current flowing in the direction 5 is canceled (circle 3), magnetic saturation accompanying an increase in the direct current is suppressed, and a high inductance value L is obtained. Also, when the current value is considered to cause magnetic saturation, the inductance values of both become close.

また、永久磁石7の無い場合(丸1)より、永久磁石7を、その発生磁束Φ2がコイル5に流れる直流電流によって生じる磁束Φ1に加わる方向に供給される場合(丸2)の方が、直流電流の増加に伴い、磁気飽和が促進され、得られるインダクタンスLが低くなる。また、磁気飽和を生じると考えられる電流値付近に達すると、両者のインダクタンス値はほぼ同じになる。   In addition, when the permanent magnet 7 is supplied in a direction in which the generated magnetic flux Φ2 is applied to the magnetic flux Φ1 generated by the direct current flowing through the coil 5 (circle 2), compared with the case without the permanent magnet 7 (circle 1), As the direct current increases, magnetic saturation is promoted and the resulting inductance L decreases. Further, when the current value is considered to cause magnetic saturation, the inductance values of the two become substantially the same.

図2の(丸4)、(丸5)の場合、磁気ギャップ3、4がゼロであるため、コア1側にのみコイル5を巻回した場合、永久磁石8のコア1側に向かう磁束Φ5の影響が、コア2側に向かう磁束Φ3の影響より大きくなり、この磁束Φ5の方向がコイル5に流れる直流電流によって生じる磁束Φ1を相殺する方向である(丸4)の例の方が(丸5)の例よりインダクタンス値が高くなる。   In the case of (circle 4) and (circle 5) in FIG. 2, since the magnetic gaps 3 and 4 are zero, when the coil 5 is wound only on the core 1 side, the magnetic flux Φ5 toward the core 1 side of the permanent magnet 8 Is larger than the influence of the magnetic flux Φ3 toward the core 2, and the direction of the magnetic flux Φ5 is a direction that cancels out the magnetic flux Φ1 generated by the direct current flowing in the coil 5 (circle 4). The inductance value is higher than in the example of 5).

図4はコア1、2にそれぞれコイル5、6を巻回した例について示す。図4の(丸1)は、永久磁石7、8を設けない例(比較例)である。図4の(丸2)、(丸3)は、コア1側に永久磁石7を設けた例であり、そのうち(丸2)は、その発生磁束Φ2が、コア1側では、コイル5、6に流れる直流電流によって生じる磁束Φ1に加わる方向の例(比較例)であり、(丸3)は、コア1側では、コイル5、6に流れる直流電流によって生じる磁束Φ1を相殺する方向となる例(実施例)である。また、図4の(丸4)、(丸5)は、いずれも永久磁石7、8をそれぞれコア1、2側に設けた例であり、そのうち、(丸4)は、それぞれコア1、2側において、それぞれ永久磁石7、8で発生する磁束Φ2、Φ3が、コイル5、6に流れる直流電流によって生じる磁束Φ1に加わる例(比較例)であり、(丸5)は、相殺する例(実施例)である。   FIG. 4 shows an example in which coils 5 and 6 are wound around cores 1 and 2, respectively. 4 (circle 1) is an example in which the permanent magnets 7 and 8 are not provided (comparative example). 4 (circle 2) and (circle 3) are examples in which a permanent magnet 7 is provided on the core 1 side, and (circle 2) of which the generated magnetic flux Φ2 is on the core 1 side and the coils 5, 6 (Circle 3) is an example in which the magnetic flux Φ1 generated by the DC current flowing in the coils 5 and 6 is canceled on the core 1 side. (Example). Further, (circle 4) and (circle 5) in FIG. 4 are examples in which the permanent magnets 7 and 8 are provided on the cores 1 and 2, respectively, and (circle 4) represents the cores 1 and 2, respectively. On the side, magnetic fluxes Φ2 and Φ3 respectively generated by the permanent magnets 7 and 8 are added to the magnetic flux Φ1 generated by the direct current flowing in the coils 5 and 6 (comparative example), and (circle 5) is an example of canceling out ( Example).

なお、コア1、2と永久磁石7、8のサイズ、材質は図2の例と同じとし、コイル5、6の巻数はそれぞれ33、31とし、これらのコイル5、6を互いに直列に接続した。また、磁気ギャップ3、4の寸法をゼロ、0.5mm、2.0mmとした各場合について、コイル5、6に流れる直流電流を変化させた。交流電流の周波数、電流値は図2の場合と同様とした。   The sizes and materials of the cores 1 and 2 and the permanent magnets 7 and 8 are the same as in the example of FIG. 2, the number of turns of the coils 5 and 6 is 33 and 31, respectively, and these coils 5 and 6 are connected in series with each other. . Moreover, the direct current which flows into the coils 5 and 6 was changed about the case where the dimension of the magnetic gaps 3 and 4 was set to zero, 0.5 mm, and 2.0 mm. The frequency and current value of the alternating current were the same as in FIG.

表2と図5は図4の(丸1)〜(丸5)の例で磁気ギャップ3、4を0.5mmとした場合の直流電流の変化に対するインダクタンス値Lの変化を示す図である。表3と図6は図4の(丸1)〜(丸5)の例で磁気ギャップ3、4を2.0mmとした場合の直流電流の変化に対するインダクタンス値Lの変化を示す図である。   Table 2 and FIG. 5 are diagrams showing changes in the inductance value L with respect to changes in DC current when the magnetic gaps 3 and 4 are set to 0.5 mm in the examples of (circle 1) to (circle 5) in FIG. Table 3 and FIG. 6 are diagrams showing changes in the inductance value L with respect to changes in DC current when the magnetic gaps 3 and 4 are set to 2.0 mm in the examples of (circle 1) to (circle 5) in FIG.

表2、表3および図5、図6から分かるように、磁気ギャップ3、4の大小に拘わらず、コア1、2に永久磁石7、8を設け、これらの永久磁石7、8の磁束Φ2、Φ3の方向をそれぞれコイル5、6に流す直流電流により生じる磁束Φ1を相殺する方向に設定することにより、直流電流の増加による磁気飽和が抑制され、直流電流の増加に伴うインダクタンス値の低下が最も少なくなり、反対に永久磁石7、8を、それぞれコイル5、6に流す直流電流により生じる磁束Φ1に加わる方向に設定した場合には、直流電流の増加に伴うインダクタンス値の低下が最も大きくなる。   As can be seen from Tables 2 and 3 and FIGS. 5 and 6, the permanent magnets 7 and 8 are provided on the cores 1 and 2 regardless of the size of the magnetic gaps 3 and 4, and the magnetic flux Φ2 of these permanent magnets 7 and 8 is provided. , Φ3 direction is set to cancel the magnetic flux Φ1 generated by the direct current flowing in the coils 5 and 6, respectively, so that magnetic saturation due to the increase of the direct current is suppressed, and the inductance value decreases with the increase of the direct current. On the contrary, when the permanent magnets 7 and 8 are set in a direction to be applied to the magnetic flux Φ1 generated by the direct current flowing through the coils 5 and 6, respectively, the decrease in the inductance value accompanying the increase in the direct current becomes the largest. .

また、磁気ギャップ3、4の大小に拘わらず、一方のコア1に永久磁石7を設け、この永久磁石7の磁束Φ2の方向をコイル5に流す直流電流により生じる磁束Φ1を相殺する方向に設定することにより、直流電流の増加に伴うインダクタンス値の低下が、永久磁石7、8を設けない場合より少なくなり、反対に永久磁石7を、コイル5に流す直流電流により生じる磁束Φ1に加わる方向に設定することにより、直流電流の増加に伴うインダクタンス値の低下が、永久磁石7、8を設けない場合より大きくなる。したがって、永久磁石7、8を、それぞれコア1、2に組み合わせ、コイル5、6で生じる磁束Φ1を相殺するように永久磁石7、8の向きを設定することにより、コア1、2の磁気飽和を防止し、直流電流の大電流に対しても、インダクタンス値の変化が少ないものが得られることが分かる。   Regardless of the size of the magnetic gaps 3 and 4, the permanent magnet 7 is provided on one core 1, and the direction of the magnetic flux Φ2 of the permanent magnet 7 is set to cancel the magnetic flux Φ1 generated by the direct current flowing through the coil 5. As a result, the decrease in the inductance value due to the increase in the direct current is less than in the case where the permanent magnets 7 and 8 are not provided. On the contrary, the permanent magnet 7 is applied in the direction of the magnetic flux Φ1 generated by the direct current flowing through the coil 5. By setting, the decrease in the inductance value accompanying the increase in the direct current is greater than when the permanent magnets 7 and 8 are not provided. Therefore, by combining the permanent magnets 7 and 8 with the cores 1 and 2, respectively, and setting the direction of the permanent magnets 7 and 8 so as to cancel the magnetic flux Φ1 generated in the coils 5 and 6, the magnetic saturation of the cores 1 and 2 is achieved. It can be seen that a product with a small change in inductance value can be obtained even with a large direct current.

また、表2〜4、図5〜図7の対比から分かるように、磁気ギャップ3、4の増大に伴い、直流電流が小さいときのインダクタンス値が低くなるが、直流電流の増大に伴うインダクタンス値の変化が小さくなる。   Further, as can be seen from the comparison of Tables 2 to 4 and FIGS. 5 to 7, the inductance value when the DC current is small decreases as the magnetic gaps 3 and 4 increase. The change of becomes smaller.

図7は磁界強度の変化と磁気飽和の関係を調べるために、永久磁石7、8の数を1個とした場合と2個とした場合の直流電流の変化に伴うインダクタンス値の変化を示す。図7の(丸1)はコア1、2にそれぞれコイル5、6を巻回し、永久磁石7、8を設けない例(比較例)である。図7の(丸2)、(丸3)は、いずれも永久磁石7、8をそれぞれコア1、2側に設けた例であり、そのうち、(丸2)は、それぞれコア1、2側において、それぞれ永久磁石7、8で発生する磁束Φ2、Φ3が、コイル5に流れる直流電流によって生じる磁束Φ1に加わる例(比較例)であり、(丸3)は、相殺する例(実施例)である。図7の(丸4)(比較例)、(丸5)(実施例)はそれぞれ(丸2)、(丸3)の永久磁石7、8を2個設けた例である。   FIG. 7 shows a change in inductance value with a change in DC current when the number of permanent magnets 7 and 8 is one and two in order to investigate the relationship between the change in magnetic field strength and magnetic saturation. (Circle 1) of FIG. 7 is an example (comparative example) in which the coils 5 and 6 are wound around the cores 1 and 2, respectively, and the permanent magnets 7 and 8 are not provided. (Circle 2) and (Circle 3) in FIG. 7 are examples in which permanent magnets 7 and 8 are provided on the cores 1 and 2, respectively, and (Circle 2) is on the cores 1 and 2, respectively. The magnetic fluxes Φ2 and Φ3 generated by the permanent magnets 7 and 8, respectively, are added to the magnetic flux Φ1 generated by the direct current flowing in the coil 5 (comparative example), and (circle 3) is an example of canceling out (example). is there. 7 (circle 4) (comparative example) and (circle 5) (example) are examples in which two permanent magnets 7 and 8 of (circle 2) and (circle 3) are provided, respectively.

なお、コア1、2と永久磁石7、8のサイズ、材質、コイル5、6の巻数、接続は図4の場合と同じにした。また、磁気ギャップ3、4の寸法はゼロ、0.5mmの場合に付いて、コイル5、6に流れる直流電流を変化させ、交流電流の周波数、電流値は図2の場合と同様とした。   In addition, the size of the cores 1 and 2 and the permanent magnets 7 and 8, the material, the number of turns of the coils 5 and 6, and the connection were the same as those in FIG. Further, when the dimensions of the magnetic gaps 3 and 4 are zero and 0.5 mm, the direct current flowing through the coils 5 and 6 is changed, and the frequency and current value of the alternating current are the same as those in FIG.

表5と図8は図7の(丸1)〜(丸5)の例で磁気ギャップ3、4を0.5mmとした場合の直流電流の変化に対するインダクタンス値Lの変化を示す図である。   Table 5 and FIG. 8 are diagrams showing changes in the inductance value L with respect to changes in DC current when the magnetic gaps 3 and 4 are set to 0.5 mm in the examples of (circle 1) to (circle 5) in FIG.

表5および図8から分かるように、コア1、2に永久磁石7、8を2個に増加させると、その磁気飽和促進効果、磁気飽和防止効果がそれぞれ増大して、直流電流とインダクタンス値との相関関係に影響を与える。すなわち、直流電流の大電流に対処するには、磁界強度の強い磁石を用いればよいことが分かる。なお、図7の(丸1)、(丸2)、(丸3)の構成はそれぞれ図4の(丸4)、(丸5)の構成と同じであるが、測定値が異なるのは、磁気ギャップ3、4の設定誤差や測定誤差等に基づくものと思われる。   As can be seen from Table 5 and FIG. 8, when the number of the permanent magnets 7 and 8 is increased to two in the cores 1 and 2, the magnetic saturation promotion effect and the magnetic saturation prevention effect are increased, respectively, and the direct current and the inductance value Affects the correlation. That is, it can be seen that a magnet with a strong magnetic field strength may be used to cope with a large direct current. 7 (circle 1), (circle 2), and (circle 3) have the same configurations as (circle 4) and (circle 5) in FIG. 4, respectively, but the measured values are different. It seems to be based on setting errors and measurement errors of the magnetic gaps 3 and 4.

本発明は、2つのU型コアの組み合わせのみならず、U型コアとI型コア、あるいは2つのU型コアとI型コアの組み合わせ等、2以上の磁気ギャップを形成する複数のコアの組み合わせでなるインダクタやトランスに適用することができる。   The present invention is not only a combination of two U-type cores, but also a combination of a plurality of cores forming two or more magnetic gaps, such as a combination of a U-type core and an I-type core, or two U-type cores and an I-type core. It can be applied to inductors and transformers.

Figure 2006286667
Figure 2006286667

Figure 2006286667
Figure 2006286667

Figure 2006286667
Figure 2006286667

Figure 2006286667
Figure 2006286667

本発明によるインダクタンス部品の一実施の形態を示す図である。It is a figure which shows one Embodiment of the inductance component by this invention. U−Uコアの一方のコアに対してコイルを巻回し、永久磁石の位置と極性を種々に設定した構成を示す図である。It is a figure which shows the structure which wound the coil around one core of the U-U core and set various positions and polarities of the permanent magnet. 図2に示した各例において、磁気ギャップゼロの場合におけるコイルに流す直流電流の変化に対するインダクタンス値の変化を示す図である。In each example shown in FIG. 2, it is a figure which shows the change of the inductance value with respect to the change of the direct current sent through a coil in the case of a magnetic gap zero. U−Uコアの双方のコアに対してコイルを巻回し、永久磁石の数と位置と極性を種々に設定した構成を示す図である。It is a figure which shows the structure which wound the coil with respect to both the cores of UU core, and set the number of permanent magnets, the position, and the polarity variously. 図4に示した各例において、磁気ギャップが0.5mmの場合におけるコイルに流す直流電流の変化に対するインダクタンス値の変化を示す図である。In each example shown in FIG. 4, it is a figure which shows the change of the inductance value with respect to the change of the direct current sent through a coil in case a magnetic gap is 0.5 mm. 図4に示した各例において、磁気ギャップが2.0mmの場合におけるコイルに流す直流電流の変化に対するインダクタンス値の変化を示す図である。In each example shown in FIG. 4, it is a figure which shows the change of the inductance value with respect to the change of the direct current sent through a coil in case a magnetic gap is 2.0 mm. U−Uコアの双方のコアに対してコイルを巻回し、永久磁石の数と極性を種々に設定した構成を示す図である。It is a figure which shows the structure which wound the coil with respect to both the cores of UU core, and set the number and polarity of the permanent magnet variously. 図7に示した各例において、磁気ギャップが0.5mmの場合におけるコイルに流す直流電流の変化に対するインダクタンス値の変化を示す図である。In each example shown in FIG. 7, it is a figure which shows the change of the inductance value with respect to the change of the direct current sent through a coil in case a magnetic gap is 0.5 mm.

符号の説明Explanation of symbols

1、2:コア、1a、2a:磁脚、3、4:磁気ギャップ、5、6:コイル、7、8:永久磁石 1, 2: Core, 1a, 2a: Magnetic leg, 3, 4: Magnetic gap, 5, 6: Coil, 7, 8: Permanent magnet

Claims (4)

交流電流が重畳した直流電流を流すコイルを巻回するコアを有するインダクタンス部品であって、
複数のフェライトコアを、コア間に磁気ギャップを形成して組み合わせ、
少なくとも1つのコアにコイルを巻回し、
前記コイルを巻回したコアに、そのコアに巻回されるコイルに流れる直流電流によって生じる磁束と逆方向の磁束を供給する永久磁石を、そのコアとの間で閉磁路を形成するように組み合わせた
ことを特徴とするインダクタンス部品。
An inductance component having a core for winding a coil for passing a direct current on which an alternating current is superimposed,
Combine multiple ferrite cores by forming a magnetic gap between the cores,
Winding a coil around at least one core,
Combined with a core around which the coil is wound, a permanent magnet that supplies a magnetic flux in a direction opposite to the magnetic flux generated by the direct current flowing through the coil wound around the core so as to form a closed magnetic circuit with the core. Inductance component characterized by that.
交流電流が重畳した直流電流を流すコイルを巻回するコアを有するインダクタンス部品であって、
2つのフェライトコアを、コア間に磁気ギャップを形成して組み合わせ、
前記2つのコアに同方向の磁束を発生させる直流電流を流すコイルをそれぞれ巻回し、
前記2つのコアに、それぞれ、その各コアに巻回されるコイルに流れる直流電流によって生じる磁束と逆方向の磁束を供給する永久磁石を、その各永久磁石と対応するコアとの間で閉磁路を形成するように組み合わせた
ことを特徴とするインダクタンス部品。
An inductance component having a core for winding a coil for passing a direct current on which an alternating current is superimposed,
Combine two ferrite cores by forming a magnetic gap between the cores,
Winding a coil for passing a direct current to generate magnetic flux in the same direction in the two cores,
Permanent magnets that supply magnetic flux in the direction opposite to the magnetic flux generated by the direct current flowing in the coils wound around the respective cores to the two cores are closed between the permanent magnets and the corresponding cores. An inductance component characterized by being combined to form
請求項1または2に記載のインダクタンス部品であって、
前記コアがU型コアでなり、前記永久磁石が、U型コアの対向する2つの磁脚の内周面間に設けられている
ことを特徴とするインダクタンス部品。
The inductance component according to claim 1 or 2,
The inductance component, wherein the core is a U-shaped core, and the permanent magnet is provided between inner peripheral surfaces of two opposing magnetic legs of the U-shaped core.
請求項1から3までのいずれかに記載のインダクタンス部品であって、
前記永久磁石がフェライト磁石でなる
ことを特徴とするインダクタンス部品。
The inductance component according to any one of claims 1 to 3,
An inductance component, wherein the permanent magnet is a ferrite magnet.
JP2005100382A 2005-03-31 2005-03-31 Inductance parts Expired - Fee Related JP4193942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100382A JP4193942B2 (en) 2005-03-31 2005-03-31 Inductance parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100382A JP4193942B2 (en) 2005-03-31 2005-03-31 Inductance parts

Publications (2)

Publication Number Publication Date
JP2006286667A true JP2006286667A (en) 2006-10-19
JP4193942B2 JP4193942B2 (en) 2008-12-10

Family

ID=37408292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100382A Expired - Fee Related JP4193942B2 (en) 2005-03-31 2005-03-31 Inductance parts

Country Status (1)

Country Link
JP (1) JP4193942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141367A (en) * 2007-12-06 2009-06-25 Harris Corp Inductive device including permanent magnet, and associated method
WO2012088641A1 (en) * 2010-12-30 2012-07-05 General Electric Company Inductor, method for reducing core size and core loss of inductor, and photovoltaic power generation system using same
JP2021019003A (en) * 2019-07-17 2021-02-15 三菱電機株式会社 Reactor and power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575634B (en) * 2016-03-16 2017-05-17 江苏万邦节能科技股份有限公司 Adjustable electric reactor used for controlling electric energy quality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141367A (en) * 2007-12-06 2009-06-25 Harris Corp Inductive device including permanent magnet, and associated method
EP2068330A3 (en) * 2007-12-06 2011-12-07 Harris Corporation Inductive device including permanent magnet and associated methods
WO2012088641A1 (en) * 2010-12-30 2012-07-05 General Electric Company Inductor, method for reducing core size and core loss of inductor, and photovoltaic power generation system using same
JP2021019003A (en) * 2019-07-17 2021-02-15 三菱電機株式会社 Reactor and power conversion device

Also Published As

Publication number Publication date
JP4193942B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US8400250B2 (en) Composite transformer
JP7126210B2 (en) reactor, power circuit
KR20070074059A (en) Magnetic core and inductor, transformer comprising the same
CA2541211A1 (en) Multiple three-phase inductor with a common core
JP5824211B2 (en) Composite magnetic component and switching power supply using the same
US7161458B2 (en) Electromagnetic device having independent inductive components
KR20020020265A (en) Inductance component in which a permanent magnet for applying a magnetic bias is arranged outside an excitation coil
US9472329B2 (en) High leakage transformers with tape wound cores
JP2007123596A (en) Dc reactor and inverter device
JP2010016234A (en) Choke coil for interleave-controlled power factor correction circuit
US20200227187A1 (en) Storage Choke
JP2009059995A (en) Composite magnetic components
JP2014123639A (en) PFC choke coil for interleave
JP4193942B2 (en) Inductance parts
JP2007073903A (en) Cored coil
JP2016051873A (en) Core structure, choke coil for interleave and transformer
JP2015023158A (en) Reactor and dc voltage converter
JP7015657B2 (en) Current limiting coil for DC power supply
JP4193943B2 (en) Inductance parts
JPH0547572A (en) Common mode choke coil and switching power supply device
JP4197327B2 (en) Inductance parts
JP7451469B2 (en) coupled inductor
JP2003068535A (en) Inductance part
JP2008288441A (en) Coil
JPH03241719A (en) Ac reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees