JP2007073903A - Cored coil - Google Patents

Cored coil Download PDF

Info

Publication number
JP2007073903A
JP2007073903A JP2005262478A JP2005262478A JP2007073903A JP 2007073903 A JP2007073903 A JP 2007073903A JP 2005262478 A JP2005262478 A JP 2005262478A JP 2005262478 A JP2005262478 A JP 2005262478A JP 2007073903 A JP2007073903 A JP 2007073903A
Authority
JP
Japan
Prior art keywords
core
magnetic
coil
winding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005262478A
Other languages
Japanese (ja)
Inventor
Takeshi Harasawa
毅 原沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2005262478A priority Critical patent/JP2007073903A/en
Publication of JP2007073903A publication Critical patent/JP2007073903A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cored coil where inductance changes nonlinearly so as to be large in the case of small current and to be small in the case of large current without performing complicated coil processing of providing a gap in a magnetic path or forming a coil in two magnetic paths of different magnetic resistances. <P>SOLUTION: A toroidal coil 11 is composed of a core 12 and the coil 13 formed by winding a conductor around the core 12. The core 12 is a toroidal core constituted by connecting two annular core members 14 and 15. The respective core members 14 and 15 are formed of magnetic materials of different magnetic resistances. Material which has comparatively high magnetic permeability and which is easily saturated magnetically is used for the core member 14, and material which has low magnetic permeability and which is hardly saturated magnetically is used for the core member 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有芯コイルに係り、詳しくはスイッチング電源等に用いられるチョークコイルとして好適な有芯コイルに関する。   The present invention relates to a cored coil, and more particularly to a cored coil suitable as a choke coil used for a switching power supply or the like.

DC−DCコンバータ等のスイッチング制御方式の電源回路では、整流後の直流電流に含まれるリプル成分を減衰させて平滑化するためのチョークコイルが用いられる。リプル成分減衰のためにはインダクタンスが大きいことが必要である。しかし、インダクタンスを大きくするために、透磁率の高いコアを用いると、大電流時に磁気飽和を起こしてしまうため、コアの一部にギャップを設けたり、磁性粉末に絶縁処理を施して圧縮成形したりするといった手法でコアとして透磁率を低下させる手法が用いられている。   A switching control type power supply circuit such as a DC-DC converter uses a choke coil for attenuating and smoothing a ripple component included in a rectified direct current. In order to attenuate the ripple component, it is necessary that the inductance is large. However, if a core with high magnetic permeability is used to increase the inductance, magnetic saturation occurs at a large current.Therefore, a gap is provided in a part of the core, or the magnetic powder is subjected to compression treatment and subjected to compression molding. The technique of reducing the magnetic permeability as a core is used.

一方、電源回路側では、小電流(軽負荷)から大電流(重負荷)まで広いレンジで効率を良く供給しようとした場合、小電流時はリプル電流が平均電流に比較して大きくなり、電源効率が悪くなるという問題があった。そこで、小電流時の効率を良くするため、小電流時のインダクタンスが特に大きいチョークコイルが要望されている。   On the other hand, on the power circuit side, when trying to supply efficiency efficiently in a wide range from small current (light load) to large current (heavy load), the ripple current becomes larger than the average current at the small current, There was a problem that efficiency became worse. In order to improve the efficiency at a small current, a choke coil having a particularly large inductance at a small current is desired.

電力変換効率及び負荷変動応答特性を考慮しながら大電流から小電流までの広い出力レンジを効率良くカバーする電源装置を構成するため、小電流時にインダクタンスが大きく、大電流時にインダクタンスが小さくなるコイル(インダクタ)が開示されている(例えば、特許文献1参照。)。インダクタンスが前記のような非線形の特性を有するようにする手法として、特許文献1には、EI型のコアの中足部に間隔の異なる二種類のギャップ、即ち段付きギャップを設けることにより形成する方法が記載されている。また、図6に示すように、EI型のコア51の中足部52にギャップ53を設けるとともに、同一の導線の一部を中足部52に巻回して第1のコイル54とし、一部を一方の外足部55に巻回して第2のコイル56とする構成が開示されている。
特開2002−57046号公報(明細書の段落[0003]、[0016]〜[0021]、図1,図8)
In order to construct a power supply that efficiently covers a wide output range from large current to small current while taking into account power conversion efficiency and load fluctuation response characteristics, a coil with a large inductance at small current and a small inductance at large current ( Inductors) are disclosed (for example, see Patent Document 1). As a method for making the inductance have the nonlinear characteristics as described above, in Patent Document 1, it is formed by providing two types of gaps with different intervals, that is, stepped gaps, in the middle legs of the EI type core. A method is described. In addition, as shown in FIG. 6, a gap 53 is provided in the middle foot portion 52 of the EI type core 51, and a part of the same conductive wire is wound around the middle foot portion 52 to form a first coil 54. Is wound around one outer foot portion 55 to form a second coil 56.
JP 2002-57046 A (paragraphs [0003], [0016] to [0021] of the specification, FIGS. 1 and 8)

ところが、コアにギャップが存在すると、ギャップからの漏洩磁束によりノイズが発生したり、漏洩磁束が巻線に鎖交することで近接効果が発生して銅損の増加を招くという問題がある。また、段付きギャップの加工には工数がかかるという問題もある。また、同一の導線の一部を中足部52に巻回して第1のコイル54とし、一部を一方の外足部55に巻回して第2のコイル56とする構成では、巻線工程が複雑になるという問題がある。   However, when there is a gap in the core, there is a problem that noise is generated due to the leakage magnetic flux from the gap, or that the proximity effect occurs due to the leakage magnetic flux interlinking with the windings, resulting in an increase in copper loss. In addition, there is a problem that it takes time to process the stepped gap. In the configuration in which a part of the same conducting wire is wound around the middle foot portion 52 to form the first coil 54 and a part is wound around one outer foot portion 55 to form the second coil 56, the winding step There is a problem that becomes complicated.

本発明は、前記の問題に鑑みてなされたものであって、その目的は磁路にギャップを設けたり、巻線を磁気抵抗の異なる二つの磁路に形成するという複雑な巻線加工を行ったりすることなく、インダクタンスが小電流時には大きく、大電流時には小さくなるように非線形に変化することができる有芯コイルを提供することにある。   The present invention has been made in view of the above problems, and its purpose is to perform complicated winding processing such as providing a gap in a magnetic path or forming a winding in two magnetic paths having different magnetic resistances. Therefore, an object of the present invention is to provide a cored coil that can change nonlinearly so that the inductance is large when the current is small and small when the current is large.

前記の目的を達成するため、請求項1に記載の発明は、透磁率が異なる磁性材料で形成された複数のコア部材が接合されて、磁気抵抗が異なる環状でギャップのない複数の磁路が設けられたコアと、前記コアに対して前記複数の磁路に共通して巻回された巻線とを備えている。コアの形状はトロイダル形(ドーナツ形)に限らず、二つのE形コアを組み合わせたEE形やE形コアとI形コアとを組み合わせたEI形等がある。   In order to achieve the above object, according to the first aspect of the present invention, a plurality of core members formed of magnetic materials having different magnetic permeability are joined, and a plurality of annular magnetic paths having no gap and different magnetic resistances are formed. A core provided; and a winding wound around the core in common with the plurality of magnetic paths. The shape of the core is not limited to the toroidal shape (donut shape), and there are an EE type in which two E-shaped cores are combined, an EI type in which an E-shaped core and an I-shaped core are combined, and the like.

この発明では、コアは透磁率が異なる磁性材料で形成された複数のコア部材が接合されて、磁気抵抗が異なる環状でギャップのない磁路が複数設けられているため、コイルに流れる電流が小さい場合は、透磁率が高く、磁気飽和し易い磁性材料で形成された磁気抵抗が小さい磁路によって比較的高いインダクタンス値がコイルの両端に現れる。また、コイル(巻線)に流れる電流が大きい場合は、透磁率が低く、磁気飽和し難い磁性材料で形成された磁気抵抗が大きい磁路によって比較的低いインダクタンス値がコイルの両端に現れる。従って、磁路にギャップを設けたり、巻線を磁気抵抗の異なる二つの磁路に形成するという複雑な巻線加工を行ったりすることなく、インダクタンスが小電流時には大きく、大電流時には小さくなるように非線形に変化することができる。その結果、小電流(軽負荷)時に高インダクタンス値となるチョークコイルとして用いることができる。また、各磁路にはギャップが存在しないため、漏洩磁束に起因するノイズの発生や近接効果による銅損の増加を招くことがない。   In this invention, the core is formed by joining a plurality of core members formed of magnetic materials having different magnetic permeability, and having a plurality of annular magnetic paths with different magnetic resistances, so that the current flowing through the coil is small. In this case, a relatively high inductance value appears at both ends of the coil due to a magnetic path having a high magnetic permeability and a small magnetic resistance formed of a magnetic material that is easily magnetically saturated. In addition, when the current flowing through the coil (winding) is large, a relatively low inductance value appears at both ends of the coil due to a magnetic path formed of a magnetic material having a low magnetic permeability and hardly magnetically saturated. Therefore, the inductance is large when the current is small and small when the current is large, without performing a complicated winding process such as providing a gap in the magnetic path or forming the winding in two magnetic paths having different magnetic resistances. Can change nonlinearly. As a result, it can be used as a choke coil having a high inductance value at a small current (light load). In addition, since there is no gap in each magnetic path, there is no occurrence of noise due to leakage magnetic flux or an increase in copper loss due to the proximity effect.

請求項2に記載の発明は、請求項1に記載の発明において、前記コアは、軸方向と直交する断面形状が同じ環形状の2個のコア部材を組み合わせて構成され、前記コア部材が前記環形状の重なる並列状に配置されている。ここで、「環形状」とは、円環状に限らず四角環状や多角環状の形状を含む。この発明では、環形状が同じであるため組立や巻線が容易になる。   The invention according to claim 2 is the invention according to claim 1, wherein the core is configured by combining two core members having the same ring shape in cross section perpendicular to the axial direction, and the core member is It is arranged in parallel with the ring shape. Here, the “annular shape” includes not only an annular shape but also a rectangular or polygonal shape. In the present invention, since the ring shape is the same, assembly and winding are facilitated.

請求項3に記載の発明は、請求項2に記載の発明において、前記コアはトロイダルコアである。この発明では、コアの形状が四角の場合に比較して磁路の長さが短くなり磁路の抵抗が小さくなるとともに、角がないため磁束が流れ易い。   The invention according to claim 3 is the invention according to claim 2, wherein the core is a toroidal core. In the present invention, the length of the magnetic path is shortened and the resistance of the magnetic path is reduced as compared with the case where the core has a square shape, and the magnetic flux easily flows because there is no corner.

本発明によれば、磁路にギャップを設けたり、巻線を磁気抵抗の異なる二つの磁路に形成するという複雑な巻線加工を行ったりすることなく、インダクタンスが小電流時には大きく、大電流時には小さくなるように非線形に変化することができる。   According to the present invention, the inductance is large when the current is small, without providing a gap in the magnetic path or performing complicated winding processing such as forming the winding in two magnetic paths having different magnetic resistances. Sometimes it can change non-linearly to be smaller.

(第1の実施形態)
以下、本発明をトロイダルコイルに具体化した第1の実施形態を図1〜図3に従って説明する。図1はトロイダルコイルの模式斜視図、図2(a),(b)は作用を説明する模式図である。なお、図2(a),(b)では、巻線の図示を省略している。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is embodied in a toroidal coil will be described with reference to FIGS. FIG. 1 is a schematic perspective view of a toroidal coil, and FIGS. 2A and 2B are schematic views for explaining the operation. In FIGS. 2A and 2B, the winding is not shown.

図1に示すように、トロイダルコイル11は、コア12と、コア12の周囲に導線を巻回して形成した巻線13とから構成されている。
コア12は、2個(複数個)の円環状のコア部材14,15が接合されて構成されたトロイダルコアである。両コア部材14,15は、内径及び外径がそれぞれ同じに形成されている。即ち、コア12は、軸方向と直交する断面形状が同じ環形状の2個のコア部材14,15を組み合わせて構成され、コア部材14,15が前記環形状の重なる並列状に配置されている。両コア部材14,15の軸方向の長さの比は、目的とする直流重畳特性に応じて変更され、両コア部材14,15の軸方向の長さが同じ場合、コア部材14が長い場合、コア部材14が短い場合がある。各コア部材14,15は、透磁率が異なる磁性材料で形成されている。即ち、コア12には、磁気抵抗が異なる環状でギャップのない複数の磁路が設けられている。
As shown in FIG. 1, the toroidal coil 11 includes a core 12 and a winding 13 formed by winding a conductive wire around the core 12.
The core 12 is a toroidal core formed by joining two (plural) annular core members 14 and 15. Both core members 14 and 15 are formed to have the same inner diameter and outer diameter. That is, the core 12 is configured by combining two ring-shaped core members 14 and 15 having the same cross-sectional shape orthogonal to the axial direction, and the core members 14 and 15 are arranged in parallel with the ring shape. . The ratio of the axial lengths of both core members 14 and 15 is changed according to the target DC superposition characteristics. When the axial lengths of both core members 14 and 15 are the same, the core member 14 is long. The core member 14 may be short. Each of the core members 14 and 15 is made of a magnetic material having different magnetic permeability. That is, the core 12 is provided with a plurality of annular magnetic paths having different magnetic resistances and no gaps.

一方のコア部材14には透磁率が比較的高く、磁気飽和し易い材料、例えば、フェライトや鉄系のアモルファス箔帯(以下、単にアモルファス箔帯と称す。)が使用される。フェライトやアモルファス箔帯は、熱処理等の低透磁率化処理を行わずに使用される。他方のコア部材15には透磁率が低く、磁気飽和し難い材料、例えば、センダスト、アモルファスダスト等の圧粉磁性材料が使用される。   One core member 14 is made of a material having a relatively high magnetic permeability and easily magnetically saturated, for example, a ferrite or iron-based amorphous foil strip (hereinafter simply referred to as an amorphous foil strip). Ferrite and amorphous foil strips are used without a low permeability treatment such as heat treatment. The other core member 15 is made of a material having a low magnetic permeability and hardly magnetically saturated, for example, a dust magnetic material such as sendust or amorphous dust.

巻線13は、コア12の周囲に、導線としての絶縁皮膜を有する銅線を所要の回数だけ巻回して形成されている。即ち、トロイダルコイル11は、コア12に対して複数の磁路に共通して巻回された巻線13を備えている。   The winding 13 is formed by winding a copper wire having an insulating film as a conducting wire around the core 12 a required number of times. That is, the toroidal coil 11 includes a winding 13 that is wound around the core 12 in common with a plurality of magnetic paths.

次に、前記のように構成されたトロイダルコイル11の作用を説明する。
コア部材14及びコア部材15は、単独で巻線された場合、図3(a)に示すように異なった直流重畳特性を持つ。そして、両者を組み合わせて一体化したコア12に巻線を行うことで、図3(b)に示すような、直流重畳特性、即ち負荷電流が小さい時はインダクタンスが大きく、負荷電流が大きくなるに連れてインダクタンスが小さくなり、かつその変化が非線形となる直流重畳特性を得ることができる。負荷電流に対するインダクタンスの値及び変化割合は、コア部材14,15の材料の透磁率及び飽和磁束密度やコア部材14,15の軸方向の長さの比や断面積によって変化するため、それらの値を調整してコア12を形成することにより目的とする直流重畳特性を有するコア12を形成することができる。
Next, the operation of the toroidal coil 11 configured as described above will be described.
When the core member 14 and the core member 15 are wound alone, they have different direct current superposition characteristics as shown in FIG. Then, by winding the core 12 which is a combination of both, the DC superposition characteristics as shown in FIG. 3B, that is, when the load current is small, the inductance is large and the load current is large. Accordingly, it is possible to obtain a DC superposition characteristic in which the inductance is reduced and the change is nonlinear. Since the inductance value and the change ratio with respect to the load current vary depending on the magnetic permeability and saturation magnetic flux density of the material of the core members 14 and 15, the ratio of the axial length of the core members 14 and 15, and the cross-sectional area, these values are used. The core 12 having the desired direct current superimposition characteristic can be formed by forming the core 12 by adjusting the above.

トロイダルコイル11の巻線13に電流が流れると、巻線13に流れる電流が小さい場合は、図2(a)に示すように、コア部材14の磁路Aによって比較的高いインダクタンス値が巻線13の両端に現れる。しかし、巻線13に流れる電流が大きくなると、図2(b)に示すように、磁路Aの磁気飽和によってインダクタンス値が低下し、コア部材15の磁路Bによる比較的低いインダクタンス値が現れるようになる。従って、トロイダルコイル11をチョークコイルに用いれば、小電流(軽負荷)時には高インダクタンス値となり、大電流(重負荷)時には低インダクタンス値となって広いレンジで電源効率が良くなる。   When a current flows through the winding 13 of the toroidal coil 11, when the current flowing through the winding 13 is small, a relatively high inductance value is generated by the magnetic path A of the core member 14 as shown in FIG. Appears at both ends of 13. However, when the current flowing through the winding 13 increases, the inductance value decreases due to the magnetic saturation of the magnetic path A and a relatively low inductance value due to the magnetic path B of the core member 15 appears as shown in FIG. It becomes like this. Therefore, when the toroidal coil 11 is used as a choke coil, a high inductance value is obtained at a small current (light load), and a low inductance value is obtained at a large current (heavy load), thereby improving power supply efficiency in a wide range.

この実施形態では以下の効果を有する。
(1)コイルは、透磁率が異なる磁性材料で形成された複数のコア部材14,15が接合されて、磁気抵抗が異なる環状でギャップのない複数の磁路が設けられたコア12と、コア12に対して前記複数の磁路に共通して巻回された巻線13とを備えている。従って、磁路にギャップを設けたり、巻線13を磁気抵抗の異なる二つの磁路に形成するという複雑な巻線加工を行ったりすることなく、インダクタンスが小電流時には大きく、大電流時には小さくなるように非線形に変化することができる。その結果、小電流(軽負荷)時に高インダクタンス値となるチョークコイルとして用いることができる。また、各磁路A,Bにはギャップが存在しないため、漏洩磁束に起因するノイズの発生や近接効果による銅損の増加を招くことがない。
This embodiment has the following effects.
(1) The coil includes a core 12 in which a plurality of core members 14 and 15 formed of magnetic materials having different magnetic permeability are joined, and a plurality of annular magnetic paths having different magnetic resistances and no gaps are provided; 12 is provided with a winding 13 wound in common with the plurality of magnetic paths. Therefore, the inductance is large when the current is small and small when the current is large, without providing a gap in the magnetic path or performing complicated winding processing such as forming the winding 13 in two magnetic paths having different magnetic resistances. Can be changed non-linearly. As a result, it can be used as a choke coil having a high inductance value at a small current (light load). In addition, since there is no gap in each of the magnetic paths A and B, there is no occurrence of noise due to leakage magnetic flux or an increase in copper loss due to the proximity effect.

(2)コア12は、トロイダルコアである。従って、コアの形状が四角の場合に比較して磁路の長さが短くなり磁路の抵抗が小さくなるとともに、角がないため磁束が流れ易い。   (2) The core 12 is a toroidal core. Accordingly, the length of the magnetic path is shortened and the resistance of the magnetic path is reduced as compared with the case where the core has a square shape, and the magnetic flux easily flows because there is no corner.

(3)コア12は、内径及び外径が同じで軸方向の長さが異なるように形成されている。従って、コア部材14,15を構成する磁性材料の組み合わせが同じであっても、コア部材14,15の厚さの比を変更することにより、所望の直流重畳特性を有するコア12を得ることが可能になる。また、コア部材14,15の磁気材料の変更と組み合わせれば、直流重畳特性の変更調整の自由度がより高くなる。   (3) The core 12 is formed such that the inner diameter and the outer diameter are the same and the lengths in the axial direction are different. Therefore, even if the combination of the magnetic materials constituting the core members 14 and 15 is the same, the core 12 having a desired DC superposition characteristic can be obtained by changing the thickness ratio of the core members 14 and 15. It becomes possible. In addition, when combined with the change of the magnetic material of the core members 14 and 15, the degree of freedom in changing and adjusting the DC superimposition characteristics becomes higher.

(第2の実施形態)
次に第2の実施形態を図4(a)〜(c)に従って説明する。図4(a)はEE形コイルの模式正面図、(b)は模式側面図、(c)は組み付け途中を示す模式正面図である。但し、図4(b)では巻線の図示を省略している。この実施形態は、コア12の構成が前記第1の実施形態と異なっている。具体的には、コア12がトロイダルコアではなく、EE形コアである点が大きく異なっている。第1の実施形態と同様の部分については同一符号を付してその詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. FIG. 4A is a schematic front view of an EE type coil, FIG. 4B is a schematic side view, and FIG. 4C is a schematic front view showing the middle of assembly. However, the winding is not shown in FIG. In this embodiment, the configuration of the core 12 is different from that of the first embodiment. Specifically, the point that the core 12 is not a toroidal core but an EE type core is greatly different. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

EE形コイル20は、一対のE形のコア部品21aを組み合わせたコア部材21と、一対のE形のコア部品22aを組み合わせたコア部材22とが接合されて構成されている。各E形のコア部品21a,22aは、同じ形状で同じ大きさに形成されている。コア部材21には透磁率が比較的高く、磁気飽和し易い材料、例えば、フェライトやアモルファス箔帯が使用され、コア部材22には透磁率が低く、磁気飽和し難い材料、例えば、センダスト、アモルファスダスト等の圧粉磁性材料が使用される。   The EE coil 20 is configured by joining a core member 21 combining a pair of E-shaped core components 21a and a core member 22 combining a pair of E-shaped core components 22a. The E-shaped core parts 21a and 22a are formed in the same shape and the same size. The core member 21 is made of a material having a relatively high magnetic permeability and easily magnetically saturated, such as ferrite or an amorphous foil strip, and the core member 22 is made of a material having a low magnetic permeability and hardly magnetically saturated, such as sendust or amorphous. A dust magnetic material such as dust is used.

巻線13は、E形のコア部品21a,22aの中足部21b,22bに設けられている。巻線13は、中足部21b,22bに導線としての絶縁皮膜を有する銅線を直接巻回して形成するのではなく、図4(c)に示すように、銅線が所要の回数だけ巻回されたボビン23に中足部21b,22bを挿通することで中足部21b,22bに設けられている。なお、巻線13はボビン23を設けずに、中足部21b,22bに直接巻回された構成としてもよい。   The winding 13 is provided on the middle legs 21b and 22b of the E-shaped core parts 21a and 22a. The winding 13 is not formed by directly winding a copper wire having an insulating film as a conducting wire around the middle legs 21b and 22b, but as shown in FIG. 4C, the copper wire is wound a required number of times. By inserting the middle foot portions 21b and 22b into the rotated bobbin 23, the middle foot portions 21b and 22b are provided. The winding 13 may be configured to be wound directly around the middle legs 21b and 22b without providing the bobbin 23.

この実施形態においては、EE形コイル20の巻線13に電流が流れると、巻線13に流れる電流が小さい場合は、図4(b)に示すように、コア部材21の磁路Aによって比較的高いインダクタンス値が巻線13の両端に現れる。しかし、巻線13に流れる電流が大きくなると、磁路Aの磁気飽和によってインダクタンス値が低下し、コア部材22の磁路Bによる比較的低いインダクタンス値が現れるようになる。   In this embodiment, when a current flows through the winding 13 of the EE coil 20, if the current flowing through the winding 13 is small, a comparison is made by the magnetic path A of the core member 21 as shown in FIG. A high inductance value appears at both ends of the winding 13. However, when the current flowing through the winding 13 increases, the inductance value decreases due to the magnetic saturation of the magnetic path A, and a relatively low inductance value due to the magnetic path B of the core member 22 appears.

従って、この実施形態では、前記第1の実施形態の効果(1)と同様の効果を有する他に次の効果を有する。
(4)トロイダルコアに比較して形状の自由度が高くなる。
Therefore, this embodiment has the following effect in addition to the same effect as the effect (1) of the first embodiment.
(4) The degree of freedom of shape is higher than that of a toroidal core.

(5)トロイダルコアに比較して巻線13の巻回作業が簡単になる。
(6)磁路の長さをトロイダルコアと同じにする場合、トロイダルコアに比較してコアの外形が占める面積が小さくなり、電源装置に取り付ける位置の自由度が高くなる。
(5) The winding work of the winding wire 13 is simplified as compared with the toroidal core.
(6) When the length of the magnetic path is made the same as that of the toroidal core, the area occupied by the outer shape of the core is smaller than that of the toroidal core, and the degree of freedom of the position to be attached to the power supply device is increased.

実施形態は前記に限定されるものではなく、例えば、次のように構成してもよい。
○ 環状のコア部材の形状は、トロイダルコアのように円環状に限らず四角環状等の多角環状としてもよい。
The embodiment is not limited to the above, and may be configured as follows, for example.
The shape of the annular core member is not limited to an annular shape like a toroidal core, but may be a polygonal ring such as a square ring.

○ コア12を構成する2個のコア部材14,15等の配置は、各コア部材14,15に形成される磁路A,Bが全周にわたって平行に形成される配置に限らない。例えば、透磁率が異なる磁性材料で形成され環状の2個のコア部材24,25を、図5(a)に示すように、隣接して組み合わせた構成としてもよい。コア部材24には透磁率が比較的高く、磁気飽和し易い材料が使用され、コア部材25には透磁率が低く、磁気飽和し難い材料が使用される。この実施形態においては、巻線13に電流が流れると、巻線13に流れる電流が小さい場合は、コア部材24の磁路Aによって比較的高いインダクタンス値が巻線13の両端に現れる。しかし、巻線13に流れる電流が大きくなると、磁路Aの磁気飽和によってインダクタンス値が低下し、コア部材25の磁路Bによる比較的低いインダクタンス値が現れるようになる。   The arrangement of the two core members 14 and 15 constituting the core 12 is not limited to the arrangement in which the magnetic paths A and B formed in the core members 14 and 15 are formed in parallel over the entire circumference. For example, two annular core members 24 and 25 formed of magnetic materials having different magnetic permeability may be combined adjacently as shown in FIG. The core member 24 is made of a material having a relatively high magnetic permeability and easily magnetically saturated, and the core member 25 is made of a material having a low magnetic permeability and hardly magnetically saturated. In this embodiment, when a current flows through the winding 13, a relatively high inductance value appears at both ends of the winding 13 due to the magnetic path A of the core member 24 when the current flowing through the winding 13 is small. However, when the current flowing through the winding 13 increases, the inductance value decreases due to the magnetic saturation of the magnetic path A, and a relatively low inductance value due to the magnetic path B of the core member 25 appears.

○ 透磁率が異なる磁性材料で形成された環状の2個のコア部材24,25を、図5(a)に示すように、隣接して組み合わせた構成の場合、両コア部材24,25を磁路の長さが異なるように形成してもよい。例えば、透磁率が高い磁性材料で形成されたコア部材24を磁路が短くなる形状に形成すれば、同じ磁性材料の組合せでも小電流(軽負荷)時のインダクタンス値をより大きくすることができる。   ○ In the case where two annular core members 24 and 25 formed of magnetic materials having different magnetic permeability are adjacently combined as shown in FIG. 5A, both core members 24 and 25 are magnetized. You may form so that the length of a path | route may differ. For example, if the core member 24 formed of a magnetic material having a high magnetic permeability is formed in a shape that shortens the magnetic path, the inductance value at a small current (light load) can be increased even with the same combination of magnetic materials. .

○ 環状の2個のコア部材24,25を孔が隣接するように配置する構成において、図5(b)に示すように、コア部材24,25をコ字状のコア部品24a,25aを組み合わせて形成した構成としてもよい。   ○ In the configuration in which the two annular core members 24 and 25 are arranged so that the holes are adjacent to each other, as shown in FIG. 5B, the core members 24 and 25 are combined with the U-shaped core parts 24a and 25a. It is good also as a structure formed.

○ 第2の実施形態におけるコア12のように、各コア部材21,22がそれぞれ2個の環状磁路を有する構成の場合、コア12の形状の全体形状がE形のコア部品を組み合わせたものと同じ形状であればよく、E形のコア部品を組み合わせたものに限らない。例えば、E型のコア部品とI型のコア部品とを組み合わせたものとしたり、図5(c)に示すように、F形のコア部品を組み合わせたものとしたり、図5(d)に示すように、略C形のコア部品とT形のコア部品とを組み合わせたものとしたりしてもよい。   ○ When the core members 21 and 22 each have two annular magnetic paths, like the core 12 in the second embodiment, the core 12 has a combination of E-shaped core parts. The shape is not limited to a combination of E-shaped core parts. For example, an E-type core part and an I-type core part may be combined, as shown in FIG. 5C, or an F-type core part may be combined, as shown in FIG. 5D. Thus, a substantially C-shaped core component and a T-shaped core component may be combined.

○ コア12は、2個の環状のコア部材を組み合わせて形成する代わりに3個以上の環状のコア部材を組み合わせて形成してもよい。この場合でも、2個のコア部の透磁率や磁路の長さ、トロイダルコアの場合の径等を調整することで、直流重畳特性をインダクタンスが小電流時には大きく、大電流時には小さくなるように非線形に変化させることができる。   The core 12 may be formed by combining three or more annular core members instead of combining two annular core members. Even in this case, by adjusting the permeability of the two cores, the length of the magnetic path, the diameter in the case of the toroidal core, etc., the DC superposition characteristics are increased when the inductance is small and small when the current is large. It can be changed nonlinearly.

○ 実施形態の有芯コイルは、チョークコイルに限らず、トランスに適用してもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1に記載の発明において、前記コアは断面E状に形成されたコア部品を含むコア部材を備えている。
(Circle) the cored coil of embodiment may be applied not only to a choke coil but to a transformer.
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention described in claim 1, the core includes a core member including a core component formed in an E-shaped cross section.

第1の実施形態におけるトロイダルコイルの模式斜視図。The schematic perspective view of the toroidal coil in 1st Embodiment. (a),(b)は作用を説明する模式図。(A), (b) is a schematic diagram explaining an effect | action. (a)は各コア部材の直流重畳特性を示すグラフ、(b)はコアの直流重畳特性を示すグラフ。(A) is a graph which shows the direct current superimposition characteristic of each core member, (b) is a graph which shows the direct current superposition characteristic of a core. 第2の実施形態を示し、(a)はEE形コイルの模式正面図、(b)は作用を説明する模式側面図、(c)は組み付け途中を示す模式正面図。The 2nd Embodiment is shown, (a) is a schematic front view of EE type coil, (b) is a schematic side view explaining an effect | action, (c) is a schematic front view which shows the assembly | attachment middle. (a)は別の実施形態におけるコイルの模式図、(b),(c),(d)はそれぞれ別の実施形態におけるコアの模式正面図。(A) is a schematic diagram of the coil in another embodiment, (b), (c), (d) is a schematic front view of the core in another embodiment, respectively. 従来技術のEI形コイルの模式正面図。The schematic front view of EI type coil of a prior art.

符号の説明Explanation of symbols

A,B…磁路、12…コア、13…巻線、14,15,21,22,24,25…コア部材。   A, B ... Magnetic path, 12 ... Core, 13 ... Winding, 14, 15, 21, 22, 24, 25 ... Core member.

Claims (3)

透磁率が異なる磁性材料で形成された複数のコア部材が接合されて、磁気抵抗が異なる環状でギャップのない複数の磁路が設けられたコアと、前記コアに対して前記複数の磁路に共通して巻回された巻線とを備えている有芯コイル。   A plurality of core members formed of magnetic materials having different magnetic permeability are joined to each other, a core provided with a plurality of annular magnetic paths having different magnetic resistances, and a gap between the cores. A cored coil having a winding wound in common. 前記コアは、軸方向と直交する断面形状が同じ環形状の2個のコア部材を組み合わせて構成され、前記コア部材が前記環形状の重なる並列状に配置されている請求項1に記載の有芯コイル。   The said core is comprised combining 2 core members of the ring shape with the same cross-sectional shape orthogonal to an axial direction, The said core member is arrange | positioned in parallel with the said ring shape overlapping. Core coil. 前記コアはトロイダルコアである請求項2に記載の有芯コイル。   The cored coil according to claim 2, wherein the core is a toroidal core.
JP2005262478A 2005-09-09 2005-09-09 Cored coil Pending JP2007073903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262478A JP2007073903A (en) 2005-09-09 2005-09-09 Cored coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262478A JP2007073903A (en) 2005-09-09 2005-09-09 Cored coil

Publications (1)

Publication Number Publication Date
JP2007073903A true JP2007073903A (en) 2007-03-22

Family

ID=37935063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262478A Pending JP2007073903A (en) 2005-09-09 2005-09-09 Cored coil

Country Status (1)

Country Link
JP (1) JP2007073903A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986400A (en) * 2010-05-11 2011-03-16 云南电力试验研究院(集团)有限公司 Integrated inductor based on differential mode and common mode filtering
JP2014093405A (en) * 2012-11-02 2014-05-19 Tdk Corp Coil device
JP2014093404A (en) * 2012-11-02 2014-05-19 Tdk Corp Coil device
CN106486261A (en) * 2015-09-01 2017-03-08 乐金电子研发中心(上海)有限公司 Integrated EMI inductance and the device of low frequency filtering inductance
JP2021002585A (en) * 2019-06-21 2021-01-07 パナソニックIpマネジメント株式会社 core
WO2022044803A1 (en) * 2020-08-28 2022-03-03 三菱電機株式会社 Power conversion device
CN114325138A (en) * 2021-12-24 2022-04-12 上海嘉益电器设备有限公司 Measuring coil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986400A (en) * 2010-05-11 2011-03-16 云南电力试验研究院(集团)有限公司 Integrated inductor based on differential mode and common mode filtering
JP2014093405A (en) * 2012-11-02 2014-05-19 Tdk Corp Coil device
JP2014093404A (en) * 2012-11-02 2014-05-19 Tdk Corp Coil device
CN106486261A (en) * 2015-09-01 2017-03-08 乐金电子研发中心(上海)有限公司 Integrated EMI inductance and the device of low frequency filtering inductance
JP2021002585A (en) * 2019-06-21 2021-01-07 パナソニックIpマネジメント株式会社 core
JP7320748B2 (en) 2019-06-21 2023-08-04 パナソニックIpマネジメント株式会社 core
US11798724B2 (en) 2019-06-21 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Core
WO2022044803A1 (en) * 2020-08-28 2022-03-03 三菱電機株式会社 Power conversion device
CN114325138A (en) * 2021-12-24 2022-04-12 上海嘉益电器设备有限公司 Measuring coil

Similar Documents

Publication Publication Date Title
US10083791B2 (en) Integrated magnetics for soft switching converter
EP2624260B1 (en) Forward converter with magnetic component
US20080224809A1 (en) Magnetic integration structure
US8400250B2 (en) Composite transformer
JP2007073903A (en) Cored coil
US20140266530A1 (en) Integrated magnetic assemblies and methods of assembling same
JP6953920B2 (en) Magnetic composite parts
WO2018070199A1 (en) Coil component and power source device comprising same
JP2010016234A (en) Choke coil for interleave-controlled power factor correction circuit
JP2009059995A (en) Composite magnetic components
JP2008166624A (en) Transformer and resonance type switching power supply using the same
JP2007128984A (en) Magnetic part
JP2014123639A (en) PFC choke coil for interleave
JP2006286880A (en) Transformer
US20120062347A1 (en) Transformer
JP4193942B2 (en) Inductance parts
JP4747789B2 (en) Trance
JP2008205212A (en) Transformer
JP6674726B2 (en) Reactor and DC voltage converter
JP2021019104A (en) Reactor device
JP2008288441A (en) Coil
JP2008270347A (en) Transformer
JP6781043B2 (en) Composite magnetic circuit inductor
JP2002057046A (en) Nonlinear inductor
JP2001319817A (en) Choke coil