JP3789333B2 - Electromagnetic equipment - Google Patents

Electromagnetic equipment Download PDF

Info

Publication number
JP3789333B2
JP3789333B2 JP2001253016A JP2001253016A JP3789333B2 JP 3789333 B2 JP3789333 B2 JP 3789333B2 JP 2001253016 A JP2001253016 A JP 2001253016A JP 2001253016 A JP2001253016 A JP 2001253016A JP 3789333 B2 JP3789333 B2 JP 3789333B2
Authority
JP
Japan
Prior art keywords
magnetic
winding
main
core
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001253016A
Other languages
Japanese (ja)
Other versions
JP2003068539A (en
Inventor
満 前田
大日向  敬
重昭 赤塚
智之 葵木
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2001253016A priority Critical patent/JP3789333B2/en
Publication of JP2003068539A publication Critical patent/JP2003068539A/en
Application granted granted Critical
Publication of JP3789333B2 publication Critical patent/JP3789333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、主巻線の励磁電流に影響されず、高調波歪みが少なく、突き合わせ面に絶縁フィルムを必要としないでリアクタンスを可変できる電磁機器に関し、特に、電力系統に直列に接続可能なリアクタンス可変電磁機器に関する。
【0002】
【従来の技術】
リアクタンスを可変する従来の技術としては、本出願人が先に提案した線形可変リアクトル(特開平09−330829号公報)や誘導性素子(特開平09−129450号公報)がある。
【0003】
図7は、本出願人が先に提案した線形可変リアクトル(特開平09−330829号公報)の一例を示す斜視図で、この線形可変リアクトルは、図7に示すように、主巻線32が巻回された第1のU形カットコア31と、制御巻線34が巻回された第2のU形カットコア33から構成され、これら第1及び第2のU形カットコア31、33は、そのカット面同志を互いに対向させ、且つ、第1のU形カットコア31に対して第2のU形カットコア33を捩じり方向に90°回転させた状態で接触されている。カット面同志の4面の接触面36は、主巻線32、制御巻線34の各々に電圧e1、e2を印加して発生する磁束φ1、φ2の全てが通る共通磁路となる。そこで、制御巻線34の電流i2で当該共通磁路を磁気飽和させることにより主巻線32による磁束の磁路を楔形の間隙35に移行させることができ、制御巻線34の励磁電流を変えることにより、主巻線32のリアクタンスを線形に可変させることができる。
【0004】
図8は、誘導性素子(特開平09−129450号公報)の一例を示す斜視図で、この誘導性素子は、図8に示すように、EI型コア44に主巻線45と制御用巻線46を巻回した構成であり、主巻線45に交流電源を接続することにより、巻線部45aによる磁束φ1及び巻線部45bによる磁束φ2が発生する。ここで、制御用巻線46に制御電流を流すと磁束φ3が発生するが、外枠47と外枠48を等断面積とすることにより、外枠47内には磁束φ1に磁束φ3の1/2を加算した磁束が通過し、外枠48内には磁束φ2に磁束φ3の1/2を差し引いた磁束が通過する。このとき、外枠47の端部47aに前記加算磁束が集中し、先端部が磁気飽和して外枠47の透磁率が減少しインダクタンスが低下する。
【0005】
【発明が解決しようとする課題】
しかし、上記線形可変リアクトルは、第1及び第2のU形カットコアの共通磁路を制御巻線の励磁電流により磁気飽和させ透磁率を制御することによりリアクタンスを可変しており、また、上記誘導性素子についても、主磁束と制御磁束により外枠先端部を磁気飽和させ透磁率を制御することによりリアクタンスを可変している。このため、共に、主巻線に流れる負荷電流が増加すると、負荷電流により磁気飽和現象が生じてしまい、制御巻線の励磁電流によるリアクタンス制御が困難になるという課題があった。
【0006】
また、上記線形可変リアクトルは、直交するU形カットコアの鉄心接合面に於いて生ずる渦電流発生の対策として、鉄心接合面における積層鋼板間の短絡を防止するため接合面に絶縁フィルムを挿入しているが、十分な耐久性を持つ絶縁フィルム材料を確保することが困難であり、また、絶縁フィルムを介在させると磁気回路の磁気抵抗が増大し、大きなリアクタンスの変化が困難となるという課題があった。
【0007】
本発明は、上述のごとき課題に鑑み、磁気回路の構造及び巻線の巻装構造が簡単で、かつ、絶縁フィルムを必要としないで、かつ、高調波電流を低減させ、リアクタンスを可変できる電磁機器を提供することを目的とする。
さらに、従来から用いられている主鉄心構造を適用して容易に構成できるリアクタンス可変の電磁機器を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、対称的に四つの閉磁路を形成する田の字状磁心を有し、該田の字状磁心に対し、該磁心の互いに交叉して十字状磁路を形成する一方の磁心に同軸線上に対向させて一対の主巻線を巻回し、該主巻線を巻回した磁心と平行する2対の磁心にそれぞれ制御巻線を巻回し、前記主巻線は一対の主巻線による磁束が互いに十字状磁路の交点に対向するように直列に接続し、前記制御巻線は主巻線による磁束によって生じる誘起電圧が互いに打消されるように接続し、その開放端子側には制御回路を接続して直流制御電流を供給し、主巻線により生じる磁束と制御巻線により生じる磁束の共通磁路の磁気抵抗を制御して主巻線のリアクタンスを連続的に可変としたことを特徴としたものである。
【0009】
請求項2の発明は、請求項1の発明において、I字状磁心の長辺両側に一対のE字状磁心を対向させて前記田の字状磁心を形成したことを特徴としたものである。
【0010】
請求項3の発明は、請求項1の発明において、E形カットコアを上下に対向させた三脚磁心2組を、互いにE形カットコアの背辺を接して前記田の字状磁心を形成したことを特徴としたものである。
【0011】
【発明実施の形態】
図1は、本発明による電磁機器の基本構成例を示す接続図、図2は、図1で示した電磁機器を等価的に回路表示した回路構成図である。本発明の基本構成を以下に説明する。
【0012】
田の字状磁心は、第1のE形磁心3aと第2のE形磁心3bを、I形磁心4に鉄心窓部が4個所形成されるように対称に対向させ、第1のE形磁心3aとI形磁心4の接合面及び第2のE形磁心3bとI形磁心4の接合面は、磁心を構成する各々の積層鋼板を平行になるように突き合わせて構成する。
【0013】
第1のE形磁心3aの中央脚に第1主巻線1aを巻回し、第2のE形磁心3bの中央脚に第2主巻線1bを巻回する。主巻線1a及び1bを、両主巻線から生じる磁束φ1a及びφ1bがI形磁心4に向かって同方向になるように直列に接続する。第1のE形磁心3aの外脚には制御巻線2a及び2bを巻回し、第2のE形磁心3bの外脚には制御巻線2c及び2dを巻回し、主巻線による磁束で制御巻線2a及び2b、2c及び2dに生じる誘起電圧がそれぞれ打消されるように全制御巻線を直列に接続し、その開放端子側に制御回路5を接続する。
なお、制御巻線は、2a、2b、2c、2dのうち、任意の2巻線を、生じる誘起電圧がそれぞれ打消されるように接続した一組と、同様に接続した残る2巻線一組を、直列または並列接続とし、その開放端子側に制御回路5を接続することもできる。
【0014】
図1において、主巻線の開放端に交流電源を接続し、図示矢印方向の電流IL1が流れていたとする。なお、電流IL1を正サイクルとした場合、負サイクルでは電流IL2が流れる。電流IL1が流れると、磁路には主巻線1aによる主磁束φ1a及び主磁束φ1a’、並びに主巻線1bによる主磁束φ1b及び主磁束φ1b’がそれぞれ発生する。逆に、電流IL2が流れた場合についてはそれぞれ前記と逆向きの主磁束が発生する。発生した主磁束は、制御巻線に直流制御電流を流さない場合にはそれぞれ四つの閉磁路を通過し、主巻線には巻数と鉄心の磁気抵抗に応じたリアクタンスが発生する。制御巻線を巻回した鉄心部及びI形磁心部は、制御磁束φcと主磁束との共通磁路となる。
【0015】
主巻線に電流IL1、IL2を流した状態で制御巻線に直流制御電流Icを流すと、制御巻線2a、2b、2c、2dにおいて、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで、制御巻線磁束φc1及びφc2と主磁束φ1a、φ1a’及びφ1b、φ1b’が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。
【0016】
主巻線電流IL1、IL2あるいは直流制御電流Icを増加させることにより共通磁路が磁気飽和状態に近づくと、主巻線1a及び1bより発生する主磁束がI形磁心4に向かって同方向になるように主巻線を分割して接続しているため、増加する主磁束φ1a及び主磁束φ1a’と増加する主磁束φ1b及び主磁束φ1b’は互いに相殺され、磁路は完全な磁気飽和状態に至らず一定の磁束密度に保たれる。一対の主巻線1a及び1bによる主磁束の増加分が閉磁路を環流しないので、互いの主巻線の起磁力を相殺することになる。
【0017】
更に、主巻線電流IL1、IL2が増加しても、共通磁路が一定の磁束密度に保たれるように、増加する主巻線1aによる主磁束と主巻線1bによる主磁束は相殺されるため、直流制御電流Icを制御することにより主磁束が制御でき、リアクタンスを可変することができる。
即ち、主巻線電流に拘わらず、制御巻線に直流制御電流Icを流すことでリアクタンスを可変することができる。
【0018】
図3(A)は、本発明によるリアクタンスの制御特性例を示したものであり、主巻線電流が増加した場合でも、直流制御電流Icを増加させることにより、リアクタンスが可変できることがわかる。
図3(B)は、本発明によるリアクタンスの磁化特性を示したもので、縦軸は主巻線部の磁束、横軸は主巻線の巻数と主巻線電流の積で表される起磁力を表している。
直流制御電流Icが少ない場合には磁化特性の非線形が生じているものの、制御電流Icを増加させることにより、主磁束が相殺されて磁束の増加を抑制し、磁化特性の非線形性が改善されることが確認でき、これにより高調波歪みが減少することがわかる。
【0019】
また、第1のE形磁心3aとI形磁心4の磁心接合面及び第2のE形磁心3bとI形磁心4の磁心接合面は、各々の積層鋼板が平行に突き合わされているため積層鋼板間の短絡は生じない。このため、磁心接合面に絶縁フィルムを挿入する必要はない。
【0020】
以上のように、本発明によると、直流制御電流を調整することにより主磁束を制御するとともに、主巻線間の主磁束を相殺することにより、主巻線電流の影響を受けずに高調波を低減させてリアクタンスを高速且つ連続的に可変することができる。
【0021】
図4は、中央脚に主巻線1aを、外脚に制御巻線2a及び2bを巻回した第1のE形カットコア6aと第2のE形カットコア6bを対向させ、中央脚に主巻線1bを、外脚に制御巻線2c及び2dを巻回した第3のE形カットコア6cと第4のE形カットコア6dを対向させた2組の三脚磁心を、磁路が田の字状になるように対向させたものである。
【0022】
主巻線1a及び1bを、両主巻線から生じる磁束φ1a及びφ1bがE形磁心6b及び6dのなかで同方向になるように直列に接続する。また、主巻線による磁束で制御巻線2a、2b及び2c、2dに生じる誘起電圧がそれぞれ打消されるように全制御巻線を直列に接続し、その開放端子側に制御回路5を接続したものである。
なお、制御巻線は、2a、2b、2c、2dのうち、任意の2巻線を、生じる誘起電圧がそれぞれ打消されるように接続した一組と、同様に接続した残る2巻線一組を、直列または並列接続とし、その開放端子側に制御回路5を接続することもできる。
【0023】
本構成によれば、高磁束密度鋼板を適用したE形カットコアが使用できることから、コアの設計磁束密度を高くすることができ、機器のコンパクト化が図れるとともに、低コストの電磁機器を実現することができる。
【0024】
(適用例)
図5は、本発明の電磁機器を無効電力補償装置へ適用した場合の例を示した図で、図5において、電磁機器7と電力用コンデンサ8を並列接続し、送電線路に並列に挿入し、電磁機器7を制御回路により制御して、系統に生じる遅相から進相の無効電力を連続的に補償するようにしたものである。
【0025】
(応用例)
図6は、図1に示した本発明の電磁機器を多機能変圧器へ適用した応用例を説明するための図で、図示のように、主巻線を一次巻線9a、9bとし、さらに一次巻線9a、9bを巻回した脚それぞれに、二次巻線10a、10bを巻回して一次巻線と同様に接続して構成した多機能変圧器である。
【0026】
図6において、一次巻線に交流電源を接続し二次巻線には負荷を接続し、二次巻線に図示矢印方向の二次電流IL2が流れたとする。制御電流を流さない場合には、一次巻線9a及び9bには、上記二次電流で発生した磁束を打消すように一次電流IL1が流れ、全体として変圧器動作を示す。
【0027】
制御巻線に直流制御電流Icを流すと、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで透磁率が変化し、主磁束が制御される。主巻線1aによる主磁束φ1a及び主磁束φ1a’と主巻線1bによる主磁束φ1b及び主磁束φ1b’はそれぞれが互いに逆向きの磁束であるため相殺され、その結果、一次巻線と鎖交する主磁束が減少する。
【0028】
このため、一次巻線には制御電流の制御に伴う主磁束の減少に応じて、一次巻線の端子間電圧を維持するために必要な主磁束を発生させる遅れ無効電流である励磁電流が増加する。
即ち、変圧器としての機能に加えて、制御電流を調整することで一次側に流入する無効電流の調整が可能な多機能変圧器を実現することができる。
なお、多機能変圧器を図1に示した電磁機器に適用して説明したが、本発明で記載した他の電磁機器についても適用可能なことは明らかである。
【0029】
【発明の効果】
以上に詳述したように、本発明によれば、タップを設けることなく、負荷電流の有無に拘わらず、高調波電流を抑制し、広範囲にリアクタンスを可変する電磁機器を実現することができ、近年の電力需要の増大や負荷の多様化により、系統電圧の変動等負荷の多様化に対応できるフレキシブルな電力設備の提供を図ることができる電力系統の電圧の安定化に寄与できる。
【0030】
また、主巻線による主磁束に対し田の字状磁心の四つの閉磁路を環流する磁路が形成され、主巻線が巻回された磁心部以外は、主巻線による主磁束と制御巻線による制御磁束が通る共通磁路となり、それにより、制御磁束を調整して共通磁路の磁気抵抗を制御することにより主巻線のリアクタンスを連続的に可変できる。
【0031】
また、主巻線電流が増加した場合、互いに共通磁路に向かって対向している主磁束も増加するので、前記四つの閉磁路における共通磁路部の磁束密度が大になり、共通磁路の磁気抵抗が増大し、それに伴い、主磁束が互いに相殺し、一対の各主巻線の起磁力を相殺するようになり、結果として主磁束は増加しない。
【0032】
上述のように、共通磁路が完全な磁気飽和に至ることはないので、主巻線電流値が大であってもリアクタンスの制御が可能であり、加えて、磁路が完全な磁気飽和状態に至らないため高調波電流歪を抑制することができる。
【0033】
更に、田の字状磁心の形成はI形積層磁心の両側に2個のE形積層鉄心を接合することにより簡単に構成できる。
カットコアで構成する場合は、E形カットコアを対向させて形成した2組の三脚磁心の背辺を接合すればよい。
【0034】
なお、上記の他、本発明の要旨を逸しない範囲で種々変形して実施することができる。
【図面の簡単な説明】
【図1】 本発明による単相形電磁機器の基本構成の一例を示す接続図である。
【図2】 図1に示した電磁機器の等価回路を示す回路構成図である。
【図3】 電磁機器の制御特性例を示す図である。
【図4】 発明による電磁機器の他の基本構成例を示す接続図である。
【図5】 本発明を無効電力補償装置へ適用した例を示す接続図である。
【図6】 本発明を多機能変圧器へ適用した例を示す接続図である。
【図7】 本出願人が先に提案した線形可変リアクトルの一例を示す斜視図である。
【図8】 誘導性素子の一例を示す斜視図である。
【符号の説明】
1(1a,1b)…主巻線、2(2a,2b,2c,2d)…制御巻線、3(3a,3b)…E形磁心、4…I形磁心、5…制御回路、6(6a,6b,6c,6d)…E形カットコア、7…電磁機器、8…電力用コンデンサ、9(9a,9b)…一次巻線、10(10a,10b)…二次巻線、31…第1のU形カットコア、32…主巻線、33…第2のU形カットコア、34…制御巻線、35…楔形間隙、36…カット面同士の接触面、41…誘導性素子、42…E型コア、43…I型コア、44…EI型コア、45…主巻線、46…制御用巻線、47…外枠、48…外枠、49…中枠。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic device that is not affected by the excitation current of a main winding, has less harmonic distortion, and can vary reactance without requiring an insulating film on a butt surface, and in particular, reactance that can be connected in series to a power system. It relates to variable electromagnetic equipment.
[0002]
[Prior art]
As conventional techniques for changing reactance, there are a linear variable reactor (Japanese Patent Laid-Open No. 09-330829) and an inductive element (Japanese Patent Laid-Open No. 09-129450) previously proposed by the present applicant.
[0003]
FIG. 7 is a perspective view showing an example of a linear variable reactor (Japanese Patent Laid-Open No. 09-330829) previously proposed by the present applicant. The linear variable reactor has a main winding 32 as shown in FIG. The first U-shaped cut core 31 wound around and the second U-shaped cut core 33 around which the control winding 34 is wound. The cut surfaces are opposed to each other, and the second U-shaped cut core 33 is in contact with the first U-shaped cut core 31 while being rotated 90 ° in the twisting direction. The four contact surfaces 36 between the cut surfaces serve as a common magnetic path through which all of the magnetic fluxes φ1 and φ2 generated by applying voltages e1 and e2 to the main winding 32 and the control winding 34, respectively. Therefore, by magnetically saturating the common magnetic path with the current i2 of the control winding 34, the magnetic path of the magnetic flux by the main winding 32 can be shifted to the wedge-shaped gap 35, and the excitation current of the control winding 34 is changed. As a result, the reactance of the main winding 32 can be varied linearly.
[0004]
FIG. 8 is a perspective view showing an example of an inductive element (Japanese Patent Laid-Open No. 09-129450). As shown in FIG. 8, the inductive element has an EI core 44 and a main winding 45 and a control winding. The wire 46 is wound, and by connecting an AC power source to the main winding 45, a magnetic flux φ1 by the winding portion 45a and a magnetic flux φ2 by the winding portion 45b are generated. Here, when a control current is passed through the control winding 46, a magnetic flux φ3 is generated. By making the outer frame 47 and the outer frame 48 have an equal cross-sectional area, the magnetic flux φ1 and the magnetic flux φ3 are equal to one in the outer frame 47. The magnetic flux obtained by adding / 2 passes, and the magnetic flux obtained by subtracting 1/2 of the magnetic flux φ3 from the magnetic flux φ2 passes through the outer frame 48. At this time, the added magnetic flux is concentrated on the end 47a of the outer frame 47, the tip is magnetically saturated, the magnetic permeability of the outer frame 47 is reduced, and the inductance is reduced.
[0005]
[Problems to be solved by the invention]
However, the linear variable reactor varies the reactance by magnetically saturating the common magnetic path of the first and second U-shaped cut cores with the excitation current of the control winding and controlling the permeability. The reactance of the inductive element is also varied by magnetically saturating the outer frame tip with the main magnetic flux and the control magnetic flux to control the magnetic permeability. For this reason, when the load current flowing through the main winding increases, a magnetic saturation phenomenon occurs due to the load current, and there is a problem that reactance control by the excitation current of the control winding becomes difficult.
[0006]
In addition, the linear variable reactor has an insulating film inserted on the joint surface to prevent short circuit between the laminated steel sheets at the core joint surface as a countermeasure against eddy current generation at the core joint surface of the U-shaped cut core orthogonal to each other. However, it is difficult to secure an insulating film material having sufficient durability, and if an insulating film is interposed, the magnetic resistance of the magnetic circuit increases and it becomes difficult to change a large reactance. there were.
[0007]
In view of the above-described problems, the present invention is an electromagnetic that has a simple magnetic circuit structure and winding winding structure, does not require an insulating film, can reduce harmonic current, and can vary reactance. The purpose is to provide equipment.
It is another object of the present invention to provide a variable reactance electromagnetic device that can be easily configured by applying a conventionally used main iron core structure.
[0008]
[Means for Solving the Problems]
The invention of claim 1 has a field-shaped magnetic core that symmetrically forms four closed magnetic paths, and forms a cross-shaped magnetic path by crossing the magnetic cores with each other. A pair of main windings are wound around a coaxial line opposite to the magnetic core of the core, and a control winding is wound around each of two pairs of magnetic cores parallel to the magnetic core around which the main winding is wound. The main windings are connected in series so that the magnetic fluxes of the main windings face each other at the intersection of the cruciform magnetic paths, and the control windings are connected so that the induced voltages generated by the magnetic fluxes of the main windings cancel each other, and their open terminals A control circuit is connected to the side to supply DC control current, and the reactance of the main winding is continuously varied by controlling the magnetic resistance of the common magnetic path of the magnetic flux generated by the main winding and the magnetic flux generated by the control winding. It is characterized by that.
[0009]
The invention of claim 2 is characterized in that, in the invention of claim 1, a pair of E-shaped magnetic cores are opposed to both sides of the long side of the I-shaped magnetic core to form the rice field-shaped magnetic core. .
[0010]
The invention of claim 3 is the invention of claim 1, wherein two pairs of tripod magnetic cores with the E-shaped cut cores facing up and down are in contact with the back sides of the E-shaped cut cores to form the rice field-shaped magnetic core. It is characterized by that.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a connection diagram showing a basic configuration example of an electromagnetic device according to the present invention, and FIG. 2 is a circuit configuration diagram equivalently displaying a circuit of the electromagnetic device shown in FIG. The basic configuration of the present invention will be described below.
[0012]
The U-shaped magnetic core has a first E-shaped magnetic core 3a and a second E-shaped magnetic core 3b which are symmetrically opposed to each other so that four core window portions are formed on the I-shaped magnetic core 4. The joining surface of the magnetic core 3a and the I-shaped magnetic core 4 and the joining surface of the second E-shaped magnetic core 3b and the I-shaped magnetic core 4 are configured by abutting each laminated steel plate constituting the magnetic core so as to be parallel.
[0013]
The first main winding 1a is wound around the central leg of the first E-shaped magnetic core 3a, and the second main winding 1b is wound around the central leg of the second E-shaped magnetic core 3b. The main windings 1 a and 1 b are connected in series so that the magnetic fluxes φ 1 a and φ 1 b generated from both main windings are in the same direction toward the I-shaped magnetic core 4. The control windings 2a and 2b are wound around the outer leg of the first E-shaped magnetic core 3a, and the control windings 2c and 2d are wound around the outer leg of the second E-shaped magnetic core 3b. All control windings are connected in series so that the induced voltages generated in the control windings 2a and 2b, 2c and 2d are canceled out, and the control circuit 5 is connected to the open terminal side.
The control winding is a set of two arbitrary windings of 2a, 2b, 2c, and 2d connected so that the induced voltage generated is canceled, and the remaining two windings connected in the same manner Can be connected in series or in parallel, and the control circuit 5 can be connected to the open terminal side.
[0014]
In FIG. 1, it is assumed that an AC power source is connected to the open end of the main winding and a current IL1 in the direction indicated by the arrow flows. When current IL1 is a positive cycle, current IL2 flows in a negative cycle. When the current IL1 flows, main magnetic flux φ1a and main magnetic flux φ1a ′ generated by the main winding 1a and main magnetic flux φ1b and main magnetic flux φ1b ′ generated by the main winding 1b are generated in the magnetic paths, respectively. On the contrary, when the current IL2 flows, a main magnetic flux in the opposite direction to that described above is generated. The generated main magnetic flux passes through four closed magnetic paths when no DC control current is passed through the control winding, and reactance according to the number of turns and the magnetic resistance of the iron core is generated in the main winding. The iron core portion and the I-shaped magnetic core portion around which the control winding is wound serve as a common magnetic path for the control magnetic flux φc and the main magnetic flux.
[0015]
When the DC control current Ic is supplied to the control winding while the currents IL1 and IL2 are supplied to the main winding, the control windings 2a, 2b, 2c and 2d are represented by the product of the number of turns of the control winding and the control current Ic. When the magnetomotive force is generated, the magnetic flux density of the common magnetic path portion in which the control winding magnetic fluxes φc1 and φc2 and the main magnetic fluxes φ1a, φ1a ′, φ1b, and φ1b ′ are in the same direction increases, and the permeability changes. Then, the main magnetic flux is controlled and the reactance is lowered.
[0016]
When the common magnetic path approaches a magnetic saturation state by increasing the main winding currents IL1 and IL2 or the DC control current Ic, the main magnetic flux generated from the main windings 1a and 1b is directed in the same direction toward the I-shaped magnetic core 4. Since the main windings are divided and connected so that the increasing main magnetic flux φ1a and main magnetic flux φ1a ′ and the increasing main magnetic flux φ1b and main magnetic flux φ1b ′ cancel each other, the magnetic path is in a completely magnetic saturation state. However, the magnetic flux density is kept constant. Since the increase in the main magnetic flux caused by the pair of main windings 1a and 1b does not circulate in the closed magnetic circuit, the magnetomotive force of the main windings cancels each other.
[0017]
Further, even if the main winding currents IL1 and IL2 increase, the main magnetic flux generated by the main winding 1a and the main magnetic flux generated by the main winding 1b cancel each other so that the common magnetic path is maintained at a constant magnetic flux density. Therefore, the main magnetic flux can be controlled by controlling the DC control current Ic, and the reactance can be varied.
That is, regardless of the main winding current, the reactance can be varied by passing the DC control current Ic through the control winding.
[0018]
FIG. 3A shows an example of reactance control characteristics according to the present invention. It can be seen that the reactance can be varied by increasing the DC control current Ic even when the main winding current is increased.
FIG. 3B shows the reactance magnetization characteristic according to the present invention. The vertical axis represents the magnetic flux of the main winding, and the horizontal axis represents the product of the number of turns of the main winding and the main winding current. Represents magnetic force.
When the DC control current Ic is small, non-linearity of the magnetization characteristic occurs, but by increasing the control current Ic, the main magnetic flux is canceled and the increase of the magnetic flux is suppressed, and the non-linearity of the magnetization characteristic is improved. This confirms that the harmonic distortion is reduced.
[0019]
The first E-shaped magnetic core 3a and the I-shaped magnetic core 4 and the second E-shaped magnetic core 3b and the I-shaped magnetic core 4 are joined to each other because the laminated steel plates are abutted in parallel. There is no short circuit between the steel plates. For this reason, it is not necessary to insert an insulating film in a magnetic core joining surface.
[0020]
As described above, according to the present invention, the main magnetic flux is controlled by adjusting the direct current control current, and the main magnetic flux between the main windings is canceled, so that the harmonics are not affected by the main winding current. The reactance can be varied at high speed continuously.
[0021]
In FIG. 4, the first E-shaped cut core 6a and the second E-shaped cut core 6b each having the main winding 1a wound around the central leg and the control windings 2a and 2b wound around the outer leg are opposed to the central leg. The magnetic path is composed of two sets of tripod cores in which the main winding 1b is opposed to the third E-shaped cut core 6c and the fourth E-shaped cut core 6d in which the control windings 2c and 2d are wound on the outer legs. It is made to face like a rice field.
[0022]
The main windings 1a and 1b are connected in series so that the magnetic fluxes φ1a and φ1b generated from both main windings are in the same direction in the E-shaped magnetic cores 6b and 6d. Further, all control windings were connected in series so that the induced voltages generated in the control windings 2a, 2b and 2c, 2d were canceled by the magnetic flux generated by the main winding, and the control circuit 5 was connected to the open terminal side. Is.
The control winding is a set of two arbitrary windings of 2a, 2b, 2c, and 2d connected so that the induced voltage generated is canceled, and the remaining two windings connected in the same manner Can be connected in series or in parallel, and the control circuit 5 can be connected to the open terminal side.
[0023]
According to this configuration, since an E-shaped cut core to which a high magnetic flux density steel plate is applied can be used, the design magnetic flux density of the core can be increased, the device can be made compact, and a low-cost electromagnetic device can be realized. be able to.
[0024]
(Application example)
FIG. 5 is a diagram showing an example in which the electromagnetic device of the present invention is applied to a reactive power compensator. In FIG. 5, the electromagnetic device 7 and the power capacitor 8 are connected in parallel and inserted in parallel to the transmission line. The electromagnetic device 7 is controlled by a control circuit so that the reactive power from the slow phase to the fast phase occurring in the system is continuously compensated.
[0025]
(Application examples)
FIG. 6 is a diagram for explaining an application example in which the electromagnetic device of the present invention shown in FIG. 1 is applied to a multi-function transformer. As shown in the figure, the main windings are primary windings 9a and 9b, and This is a multi-function transformer configured by winding secondary windings 10a and 10b on each leg around which primary windings 9a and 9b are wound and connecting them in the same manner as the primary winding.
[0026]
In FIG. 6, it is assumed that an AC power source is connected to the primary winding, a load is connected to the secondary winding, and a secondary current IL2 in the direction indicated by the arrow flows in the secondary winding. When the control current is not passed, the primary current IL1 flows through the primary windings 9a and 9b so as to cancel the magnetic flux generated by the secondary current, and the transformer operation is shown as a whole.
[0027]
When a DC control current Ic is passed through the control winding, a magnetic force is generated by generating a magnetomotive force represented by the product of the number of turns of the control winding and the control current Ic, thereby controlling the main magnetic flux. The main magnetic flux φ1a and main magnetic flux φ1a ′ generated by the main winding 1a and the main magnetic flux φ1b and main magnetic flux φ1b ′ generated by the main winding 1b are canceled because they are opposite to each other. Main magnetic flux to be reduced.
[0028]
For this reason, the excitation current, which is a delayed reactive current that generates the main magnetic flux required to maintain the voltage between the terminals of the primary winding, increases in the primary winding as the main magnetic flux decreases due to control current control. To do.
That is, in addition to the function as a transformer, it is possible to realize a multi-function transformer capable of adjusting the reactive current flowing into the primary side by adjusting the control current.
In addition, although the multi-function transformer was applied and demonstrated to the electromagnetic device shown in FIG. 1, it is clear that it can apply also to the other electromagnetic device described by this invention.
[0029]
【The invention's effect】
As described above in detail, according to the present invention, without providing a tap, it is possible to realize an electromagnetic device that suppresses a harmonic current regardless of the presence or absence of a load current and can vary a reactance over a wide range. The increase in power demand and the diversification of loads in recent years can contribute to the stabilization of the voltage of the power system that can provide flexible power equipment that can cope with the diversification of loads such as fluctuations in the system voltage.
[0030]
In addition, a magnetic path that circulates the four closed magnetic paths of the U-shaped magnetic core is formed with respect to the main magnetic flux generated by the main winding, and the main magnetic flux and control by the main winding are controlled except for the magnetic core around which the main winding is wound. It becomes a common magnetic path through which the control magnetic flux by the winding passes, and thereby the reactance of the main winding can be continuously varied by adjusting the control magnetic flux and controlling the magnetic resistance of the common magnetic path.
[0031]
Further, when the main winding current increases, the main magnetic fluxes facing each other toward the common magnetic path also increase, so that the magnetic flux density of the common magnetic path portion in the four closed magnetic paths increases, and the common magnetic path Accordingly, the main magnetic flux cancels each other and cancels the magnetomotive force of each pair of main windings. As a result, the main magnetic flux does not increase.
[0032]
As described above, since the common magnetic path does not reach the complete magnetic saturation, the reactance can be controlled even when the main winding current value is large, and in addition, the magnetic path is in the complete magnetic saturation state. Therefore, harmonic current distortion can be suppressed.
[0033]
Further, the formation of the U-shaped magnetic core can be easily configured by joining two E-shaped laminated cores on both sides of the I-shaped laminated magnetic core.
In the case of using cut cores, the back sides of two sets of tripod magnetic cores formed by facing E-shaped cut cores may be joined.
[0034]
In addition to the above, various modifications can be made without departing from the spirit of the present invention.
[Brief description of the drawings]
FIG. 1 is a connection diagram showing an example of a basic configuration of a single-phase electromagnetic device according to the present invention.
2 is a circuit configuration diagram showing an equivalent circuit of the electromagnetic device shown in FIG. 1. FIG.
FIG. 3 is a diagram illustrating an example of control characteristics of an electromagnetic device.
FIG. 4 is a connection diagram showing another basic configuration example of the electromagnetic device according to the invention.
FIG. 5 is a connection diagram showing an example in which the present invention is applied to a reactive power compensator.
FIG. 6 is a connection diagram showing an example in which the present invention is applied to a multi-function transformer.
FIG. 7 is a perspective view showing an example of a linear variable reactor previously proposed by the present applicant.
FIG. 8 is a perspective view showing an example of an inductive element.
[Explanation of symbols]
1 (1a, 1b) ... main winding, 2 (2a, 2b, 2c, 2d) ... control winding, 3 (3a, 3b) ... E type magnetic core, 4 ... I type magnetic core, 5 ... control circuit, 6 ( 6a, 6b, 6c, 6d) ... E-cut core, 7 ... electromagnetic device, 8 ... power capacitor, 9 (9a, 9b) ... primary winding, 10 (10a, 10b) ... secondary winding, 31 ... 1st U-shaped cut core, 32 ... main winding, 33 ... second U-shaped cut core, 34 ... control winding, 35 ... wedge-shaped gap, 36 ... contact surface between cut surfaces, 41 ... inductive element, 42 ... E-type core, 43 ... I-type core, 44 ... EI-type core, 45 ... main winding, 46 ... control winding, 47 ... outer frame, 48 ... outer frame, 49 ... inner frame.

Claims (3)

対称的に四つの閉磁路を形成する田の字状磁心を有し、該田の字状磁心に対し、該磁心の互いに交叉して十字状磁路を形成する一方の磁心に同軸線上に対向させて一対の主巻線を巻回し、該主巻線を巻回した磁心と平行する2対の磁心にそれぞれ制御巻線を巻回し、前記主巻線は一対の主巻線による磁束が互いに十字状磁路の交点に対向するように直列に接続し、前記制御巻線は主巻線による磁束によって生じる誘起電圧が互いに打消されるように接続し、その開放端子側には制御回路を接続して直流制御電流を供給し、主巻線により生じる磁束と制御巻線により生じる磁束の共通磁路の磁気抵抗を制御して主巻線のリアクタンスを連続的に可変としたことを特徴とする電磁機器。Symmetrically, it has a field-shaped magnetic core that forms four closed magnetic paths, and is opposed to the field-shaped magnetic core on the same axis as one magnetic core that crosses the cores to form a cross-shaped magnetic path. A pair of main windings are wound, and a control winding is wound around each of two pairs of magnetic cores parallel to the magnetic core around which the main winding is wound. Connected in series so as to face the intersection of the cross-shaped magnetic path, the control winding is connected so that the induced voltage caused by the magnetic flux by the main winding cancel each other, and the control circuit is connected to the open terminal side DC control current is supplied to control the magnetic resistance of the common magnetic path of the magnetic flux generated by the main winding and the magnetic flux generated by the control winding so that the reactance of the main winding is continuously variable. Electromagnetic equipment. I字状磁心の長辺両側に一対のE字状磁心を対向させて前記田の字状磁心を形成したことを特徴とする請求項1に記載の電磁機器。2. The electromagnetic device according to claim 1, wherein a pair of E-shaped magnetic cores are formed on opposite sides of a long side of the I-shaped magnetic core to form the rice field-shaped magnetic core. E形カットコアを上下に対向させた三脚磁心2組を、互いにE形カットコアの背辺を接して前記田の字状磁心を形成したことを特徴とする請求項1に記載の電磁機器。2. The electromagnetic device according to claim 1, wherein two pairs of tripod magnetic cores each having an E-shaped cut core are vertically opposed to each other so that the back sides of the E-shaped cut core are in contact with each other to form the field-shaped magnetic core.
JP2001253016A 2001-08-23 2001-08-23 Electromagnetic equipment Expired - Lifetime JP3789333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253016A JP3789333B2 (en) 2001-08-23 2001-08-23 Electromagnetic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253016A JP3789333B2 (en) 2001-08-23 2001-08-23 Electromagnetic equipment

Publications (2)

Publication Number Publication Date
JP2003068539A JP2003068539A (en) 2003-03-07
JP3789333B2 true JP3789333B2 (en) 2006-06-21

Family

ID=19081404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253016A Expired - Lifetime JP3789333B2 (en) 2001-08-23 2001-08-23 Electromagnetic equipment

Country Status (1)

Country Link
JP (1) JP3789333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753554B1 (en) 2005-12-07 2007-09-12 용인전자주식회사 Inverter transformer for preventing gap-separation
JP2008004754A (en) * 2006-06-22 2008-01-10 Tohoku Electric Power Co Inc Electromagnetic equipment
JP2011259620A (en) * 2010-06-09 2011-12-22 Tohoku Electric Power Co Inc Anti-ground electrostatic capacitance compensator of distribution line
JP5896371B2 (en) * 2011-08-18 2016-03-30 東北電力株式会社 Three-phase electromagnetic equipment

Also Published As

Publication number Publication date
JP2003068539A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
US4206434A (en) Regulating transformer with magnetic shunt
US3686561A (en) Regulating and filtering transformer having a magnetic core constructed to facilitate adjustment of non-magnetic gaps therein
US5155676A (en) Gapped/ungapped magnetic core
KR100981194B1 (en) Controllable transformer
US3659191A (en) Regulating transformer with non-saturating input and output regions
US20040135661A1 (en) Magnetically controlled inductive device
JP2008177500A (en) Three-phase electromagnetic equipment
JP2012134266A (en) Composite magnetic component and switching power supply using the same
JP3789333B2 (en) Electromagnetic equipment
EP1559120B1 (en) Transformer
WO2012073246A1 (en) Magnetic core, methods of designing and constructing thereof and devices including same
JP3792109B2 (en) Electromagnetic equipment
JP5520613B2 (en) Magnetic flux control type variable transformer
JP3986809B2 (en) Three-phase electromagnetic equipment
JPH04206509A (en) Core with gap
JPH11219832A (en) Choke coil for noise filter
JP2005045133A (en) Electromagnetic device
JP4368051B2 (en) Electromagnetic equipment
JP3535294B2 (en) Trance
JP2008004754A (en) Electromagnetic equipment
JP5918066B2 (en) Electromagnetic equipment
JP2010123587A (en) Electromagnetic device
JP2002134328A (en) Coil
US20230215614A1 (en) Iron core structure in transformer and voltage converter
JP7427512B2 (en) electromagnetic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3789333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term