JP2008177500A - Three-phase electromagnetic equipment - Google Patents

Three-phase electromagnetic equipment Download PDF

Info

Publication number
JP2008177500A
JP2008177500A JP2007011775A JP2007011775A JP2008177500A JP 2008177500 A JP2008177500 A JP 2008177500A JP 2007011775 A JP2007011775 A JP 2007011775A JP 2007011775 A JP2007011775 A JP 2007011775A JP 2008177500 A JP2008177500 A JP 2008177500A
Authority
JP
Japan
Prior art keywords
magnetic
main
control
winding
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007011775A
Other languages
Japanese (ja)
Other versions
JP4646327B2 (en
Inventor
Kenji Nakamura
健二 中村
Osamu Ichinokura
理 一ノ倉
Takashi Ohinata
大日向  敬
Yoshihiko Sato
佳彦 佐藤
Kenji Arimatsu
健司 有松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Electric Power Co Inc
Original Assignee
Tohoku University NUC
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Electric Power Co Inc filed Critical Tohoku University NUC
Priority to JP2007011775A priority Critical patent/JP4646327B2/en
Publication of JP2008177500A publication Critical patent/JP2008177500A/en
Application granted granted Critical
Publication of JP4646327B2 publication Critical patent/JP4646327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide three-phase electromagnetic equipment with good three-phase balance which constitutes a variable reactor or variable transformer. <P>SOLUTION: A magnetic core is constituted which has six leg portions by putting together and joining one-end sides of six linear magnetic cores, coupling the other-end sides by coupling magnetic cores, and forming window portions. The magnetic cores of the six leg portions are wound with main windings connected to a three-phase AC power source. Control windings are wound around the coupling magnetic cores and connected in series or in parallel to cancel voltages induced with main magnetic flux produced by main windings, and a control circuit is connected to an open terminal thereof. A DC control current is supplied to the control windings to produce control magnetic flux which flows back in one direction and the magnetic resistance of a magnetic core as a common magnetic path of the main magnetic flux and control magnetic flux is controlled to continuously vary the reactance of the main windings. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、三相形のリアクタンスを可変できる電磁機器に関する。さらに、高調波歪みが少なく、鉄心の突き合わせ面にギャップを必要とせず、三相バランスの優れた三相形の電磁機器に関する。   The present invention relates to an electromagnetic device capable of varying a three-phase reactance. Furthermore, the present invention relates to a three-phase electromagnetic device that has low harmonic distortion, does not require a gap in the butt surface of the iron core, and has an excellent three-phase balance.

リアクタンスを可変できる従来の技術としては、本出願人が先に提案した電磁機器(特許文献1)や三相形電磁機器(特許文献2)がある。   As conventional techniques capable of varying reactance, there are electromagnetic devices (Patent Document 1) and three-phase electromagnetic devices (Patent Document 2) previously proposed by the present applicant.

図9は、本出願人が先に提案した単相形の電磁機器の一例を説明するための接続図である。この電磁機器は、田の字状磁心33に第1主巻線31a、第2主巻線31b、制御巻線32a、32b、32c及び32dを巻回し、直列に接続した制御巻線の開放端子側に制御回路34を接続した構成である。
主巻線の開放端に交流電源を接続し、制御巻線に直流制御電流Icを流すと、制御巻線32a、32b、32c、32dにおいて、制御巻線の巻数と直流制御電流Icの積で表される起磁力が発生することで、制御磁束φc31及びφc32と主磁束φ31a、φ31a’及びφ31b、φ31b’が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。
FIG. 9 is a connection diagram for explaining an example of a single-phase electromagnetic device previously proposed by the present applicant. In this electromagnetic device, a first main winding 31a, a second main winding 31b, and control windings 32a, 32b, 32c, and 32d are wound around a U-shaped magnetic core 33, and an open terminal of a control winding connected in series. The control circuit 34 is connected to the side.
When an AC power source is connected to the open end of the main winding and a DC control current Ic is passed through the control winding, the product of the number of turns of the control winding and the DC control current Ic in the control windings 32a, 32b, 32c, and 32d. When the magnetomotive force represented is generated, the magnetic flux density of the common magnetic path portion in which the control magnetic fluxes φc31 and φc32 and the main magnetic fluxes φ31a, φ31a ′, φ31b, and φ31b ′ are in the same direction increases, and the permeability changes. The main magnetic flux is controlled and the reactance is lowered.

図10は、本出願人が先に提案した三相形電磁機器の一例を説明するための接続図である。この三相形電磁機器は、各端が対をなす磁路を形成する3つのH状脚部44a〜44cと、これらH状脚部の各端側を連結して閉磁路を形成する2つの枠部45a,45bとから成る三相電磁路を有し、H状脚部の一方の連結端側には、各磁路に三相交流電源の各相に対応する主巻線41aa〜41cbを巻回して有し、他方の連結端側には、各磁路に制御巻線42aa〜42cbを巻回して有する。主巻線は前記一対の磁路に生じる主磁束が同一方向になるように直列又は並列に接続し、前記制御巻線は前記主磁束によって生じる誘起電圧が互いに打消されるように直列に接続し、主磁束と制御磁束の共通磁路の磁気抵抗を制御し主巻線のリアクタンスを連続的に可変する。
特許第3789333号明細書 特開2003−168612号公報
FIG. 10 is a connection diagram for explaining an example of a three-phase electromagnetic device previously proposed by the present applicant. This three-phase electromagnetic device includes three H-shaped leg portions 44a to 44c that form a magnetic path with each end paired, and two frames that form a closed magnetic circuit by connecting the end sides of these H-shaped leg portions. The main windings 41aa to 41cb corresponding to the respective phases of the three-phase AC power source are wound around each magnetic path on one coupling end side of the H-shaped leg portion. On the other connecting end side, control windings 42aa to 42cb are wound around each magnetic path. The main winding is connected in series or in parallel so that the main magnetic flux generated in the pair of magnetic paths is in the same direction, and the control winding is connected in series so that the induced voltages generated by the main magnetic flux are canceled each other. The reactance of the main winding is continuously varied by controlling the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux.
Japanese Patent No. 3789333 JP 2003-168612 A

しかし、上記特許文献1に開示の電磁機器は主磁束と制御磁束の共通磁路の磁気抵抗を制御し、主巻線のリアクタンスを連続的に可変することが可能であるものの、単相機器であるため、電力用として一般に用いられる三相構成とするためには3台で三相構成する必要があり、小型化のため重量や容積の観点から三相一体構成の電磁機器が望まれていた。
また、上記文献2に開示の三相形電磁機器についても、主磁束と制御磁束の共通磁路の磁気抵抗を制御し、主巻線のリアクタンスを連続的に可変することが可能であるものの、中央脚部に巻回した主巻線による主磁路の磁気抵抗と外側脚部に巻回した主巻線による主磁路の磁気抵抗が異なるため、リアクタンス制御時に三相間のアンバランスが生ずるという課題があった。
However, although the electromagnetic device disclosed in Patent Document 1 can control the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux and continuously vary the reactance of the main winding, it is a single-phase device. Therefore, in order to achieve a three-phase configuration that is generally used for power, it is necessary to configure a three-phase configuration with three units. From the viewpoint of weight and volume, a three-phase integrated electromagnetic device has been desired for miniaturization. .
The three-phase electromagnetic device disclosed in the above-mentioned document 2 can also control the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux and continuously vary the reactance of the main winding. The magnetic resistance of the main magnetic path due to the main winding wound around the leg is different from the magnetic resistance of the main magnetic path due to the main winding wound around the outer leg, which causes an imbalance between the three phases during reactance control. was there.

そこで、本発明は、上記課題に鑑み、三相間のアンバランスがなく、鉄心の突き合わせ面にギャップを必要とせず、磁気回路構造及び巻線の巻装構造が簡単で、三相一体構造を構成でき、且つ、タップを設けることなくリアクタンスを可変できる三相形電磁機器を提供することを目的とする。   Therefore, in view of the above-mentioned problems, the present invention has no imbalance between the three phases, does not require a gap in the abutting surface of the iron core, has a simple magnetic circuit structure and winding structure of the winding, and constitutes a three-phase integrated structure. An object of the present invention is to provide a three-phase electromagnetic device capable of changing the reactance without providing a tap.

本発明の技術手段は、同一平面状に放射状に対称的に分岐する6つの脚部の端部が夫々連結されて6つの窓部を形成する磁心と、前記磁心の6つの各脚部に三相交流電源に接続される主巻線を巻回し、前記磁心の脚部を連結する連結部に制御巻線を巻回し、前記主巻線に流れる交流主電流によって制御巻線に誘起する電圧が互いに打ち消されるように接続し、当該制御巻線の開放端に制御回路を接続して直流制御電流を供給することにより前記連結部を還流する制御磁束を発生させ、前記直流制御電流を制御することによって、前記主巻線に流れる交流主電流により発生する主磁束と前記制御磁束との共通磁路を形成する磁心の磁気抵抗を制御し主巻線のリアクタンスを連続的に可変する三相形電磁機器である。
第2の技術手段は、前記磁心の6つの脚部の互いに延長方向に対となる脚部の磁心に同一相の主巻線が同方向に主磁束が発生するように3対の各磁心に各相の主巻線を巻回することを特徴とする三相形電磁機器である。
第3の技術手段は、前記磁心の6つの脚部の互いに隣り合って対となる脚部の磁心に同一相の主巻線を互いに反対方向の主磁束が発生するように3対の各磁心に各相の主巻線を巻回することを特徴とする三相形電磁機器である。
第4の技術手段は、前記主巻線を巻回する各脚部の磁心を連結する6つの各連結部の磁心に夫々制御巻線を巻回することを特徴とする三相形電磁機器である。
第5の技術手段は、前記主巻線を巻回する各脚部の磁心を連結する各連結部の磁心に1つおきに3つの制御巻線を巻回することを特徴とする三相形電磁機器である。
第6の技術手段は、6つの直線磁心の夫々の一端を集合させて接合し、他方端を夫々6つの磁心で連結して6つの窓部を形成し、それぞれの直線磁心は隣接する直線磁心との角度が60゜を成すように配置した磁心の構成を特徴とする三相形電磁機器である。
第7の技術手段は、各相の主巻線を巻回した脚部の磁心に二次巻線を巻回し、前記直流制御電流の調整により前記二次巻線に誘起する電圧を連続的に可変する可変変圧器であることを特徴とする三相形電磁機器である。
The technical means of the present invention includes a magnetic core in which the ends of six legs that are radially symmetrically branched in the same plane are connected to each other to form six windows, and three legs on each of the six legs of the magnetic core. The main winding connected to the phase AC power source is wound, the control winding is wound around the connecting portion connecting the leg portions of the magnetic core, and the voltage induced in the control winding by the AC main current flowing in the main winding is Connecting the control circuit to the open ends of the control windings so as to cancel each other, supplying a DC control current to generate a control magnetic flux that recirculates the connecting portion, and controlling the DC control current Three-phase electromagnetic device that controls the magnetic resistance of the magnetic core that forms a common magnetic path of the main magnetic flux generated by the AC main current flowing through the main winding and the control magnetic flux, and continuously varies the reactance of the main winding It is.
According to a second technical means, three pairs of magnetic cores are provided so that the main magnetic flux of the same phase is generated in the same direction in the magnetic cores of the leg portions that are paired in the extending direction of the six leg portions of the magnetic core. A three-phase electromagnetic device characterized by winding a main winding of each phase.
According to a third technical means, three pairs of magnetic cores are formed so that main magnetic fluxes of the same phase are generated in opposite magnetic cores in the magnetic cores of the leg portions adjacent to each other of the six leg portions of the magnetic cores. The three-phase electromagnetic device is characterized by winding a main winding of each phase.
A fourth technical means is a three-phase electromagnetic device characterized in that control windings are wound around the magnetic cores of each of the six connecting portions that connect the magnetic cores of the respective leg portions around which the main winding is wound. .
A fifth technical means is characterized in that three control windings are wound around every other magnetic core of each connecting portion for connecting the magnetic cores of the respective leg portions around which the main winding is wound. Equipment.
In the sixth technical means, one end of each of the six linear magnetic cores is assembled and joined, and the other end is connected with each of the six magnetic cores to form six windows, and each linear magnetic core is adjacent to the linear magnetic core. It is a three-phase electromagnetic device characterized by the configuration of a magnetic core arranged so that the angle between and the angle is 60 °.
In a seventh technical means, the secondary winding is wound around the magnetic core of the leg portion around which the main winding of each phase is wound, and the voltage induced in the secondary winding is continuously adjusted by adjusting the DC control current. This is a three-phase electromagnetic device characterized by being a variable transformer.

本発明によれば、タップを設けることなく、鉄心の突き合わせ面にギャップを必要とせずに、広範囲にリアクタンスを可変する三相バランスの優れた可変リアクトル又は可変変圧器などの三相形の電磁機器を実現することができ、近年の電力需要の増大や負荷の多様化により、系統電圧の変動等負荷の多様化に対応できるフレキシブルな電力設備の提供がはかられ、電力系統の電圧安定化や力率及び潮流のより適切な制御に寄与できる。   According to the present invention, a three-phase electromagnetic device such as a variable reactor or a variable transformer with excellent three-phase balance that can vary reactance over a wide range without providing a tap and without requiring a gap in the abutting surface of the iron core is provided. With the recent increase in power demand and diversification of loads, flexible power facilities that can cope with diversification of loads such as fluctuations in system voltage can be provided. It can contribute to more appropriate control of rate and current.

図1は、本発明による三相形電磁機器の磁心及び巻線の基本構成を示す接続図、図2は、図1で示した三相形電磁機器を等価的に回路表示した回路構成を示す図、図3は、図1で示した三相形電磁機器を磁心の構成例と共に示す接続図である。以下に本発明の基本構成例を説明する。   FIG. 1 is a connection diagram showing a basic configuration of the magnetic core and winding of a three-phase electromagnetic device according to the present invention, and FIG. 2 is a diagram showing a circuit configuration in which the three-phase electromagnetic device shown in FIG. FIG. 3 is a connection diagram showing the three-phase electromagnetic device shown in FIG. 1 together with a configuration example of a magnetic core. The basic configuration example of the present invention will be described below.

本三相形電磁機器を構成する磁心は、図3の如く、6つの直線磁心3aa、3ab、3ba、3bb、3ca及び3cbの夫々の一端部を集合させて接合し隣接する直線磁心との角度が60゜となるように配置し6つの脚部を形成する。さらに前記6つの脚部を形成する直線磁心の他方の端部を6つの鉄心窓部が形成されるように連結磁心3dで連結する。なお、直線磁心3aa、3ab、3ba、3bb、3ca、3cbの夫々の接合部及び連結磁心3dとの接合部は、磁心を構成する各々の積層鋼板を平行になるように突き合わせて構成する。   As shown in FIG. 3, the magnetic cores constituting the three-phase electromagnetic device are assembled by joining one end of each of the six linear magnetic cores 3aa, 3ab, 3ba, 3bb, 3ca and 3cb, and having an angle with the adjacent linear magnetic core. It is arranged at 60 ° and six legs are formed. Further, the other end of the linear magnetic core forming the six legs is connected by a connecting magnetic core 3d so that six iron window portions are formed. In addition, each junction part of linear magnetic core 3aa, 3ab, 3ba, 3bb, 3ca, 3cb and junction part with the connection magnetic core 3d are faced | matched and comprised so that each laminated steel plate which comprises a magnetic core may be parallel.

第1の直線磁心3aaには主巻線1aaを、直線磁心3aaと同一軸上に配置された第2の直線磁心3abには主巻線1abを巻回す。主巻線1aa及び1abを、両主巻線から生じる磁束φa1及びφa2が同一方向になるように直列又は並列に接続する。   The main winding 1aa is wound around the first linear magnetic core 3aa, and the main winding 1ab is wound around the second linear magnetic core 3ab arranged on the same axis as the linear magnetic core 3aa. The main windings 1aa and 1ab are connected in series or in parallel so that the magnetic fluxes φa1 and φa2 generated from both main windings are in the same direction.

同様に、第3の直線磁心3baには主巻線1baを、直線磁心3baと同一軸上に配置された第4の直線磁心3bbには主巻線1bbを巻回し、第5の直線磁心3caには主巻線1caを、直線磁心3caと同一軸上に配置された第6の直線磁心3cbには主巻線1cbを巻回す。
主巻線1ba及び1bb並びに主巻線1ca及び1cbは、両主巻線から生じる磁束φb1及びφb2並びに磁束φc1及びφc2が同一方向になるように直列又は並列に接続する。
Similarly, the main winding 1ba is wound around the third linear magnetic core 3ba, the main winding 1bb is wound around the fourth linear magnetic core 3bb arranged on the same axis as the linear magnetic core 3ba, and the fifth linear magnetic core 3ca is wound. The main winding 1ca and the main winding 1cb are wound around the sixth linear magnetic core 3cb disposed on the same axis as the linear magnetic core 3ca.
The main windings 1ba and 1bb and the main windings 1ca and 1cb are connected in series or in parallel so that the magnetic fluxes φb1 and φb2 and the magnetic fluxes φc1 and φc2 generated from both main windings are in the same direction.

直線磁心を連結した6つの連結磁心3dには、それぞれに制御巻線2a、2b、2c、2d、2e及び2fを巻回し、主巻線1aa及び1ab、並びに主巻線1ba及び1bb、並びに主巻線1ca及び1cbによる磁束で制御巻線2a、2b、2c、2d、2e及び2fに誘起する電圧が互いに打消されるように前記制御巻線を直列又は並列に接続し、その開放端子側に制御回路4を接続する。図示の例では、同方向に巻回した6個の制御巻線をすべて直列に接続しているが、主巻線には平衡三相交流電流が流れるので、制御巻線の誘起電圧は互いに打ち消される。   Control windings 2a, 2b, 2c, 2d, 2e, and 2f are wound around the six connecting magnetic cores 3d that connect the linear magnetic cores, respectively. The main windings 1aa and 1ab, the main windings 1ba and 1bb, and the main windings The control windings are connected in series or in parallel so that the voltages induced in the control windings 2a, 2b, 2c, 2d, 2e, and 2f are canceled by the magnetic fluxes of the windings 1ca and 1cb, and the open terminal side thereof is connected. The control circuit 4 is connected. In the example shown in the figure, all six control windings wound in the same direction are connected in series. However, since a balanced three-phase alternating current flows in the main winding, the induced voltages of the control windings cancel each other. It is.

図1において、直線磁心に巻回して接続した主巻線の開放端子に三相交流電源を接続し、それぞれの主巻線に図示矢印方向の電流ILu、ILv、ILwが流れていたとする。なお、図示の電流矢印方向を正サイクルとした場合、負サイクルでは逆方向の電流が流れる。
上記構成の三相形電磁機器は、制御巻線に直流制御電流を流さない場合には、主巻線1aa及び1ab、主巻線1ba及び1bb、主巻線1ca及び1cbより発生する各相各々の交流磁束は、直線磁心を連結した連結磁心部を介して還流することになる。
In FIG. 1, it is assumed that a three-phase AC power source is connected to an open terminal of a main winding that is wound and connected to a linear magnetic core, and currents ILu, ILv, and ILw in the directions indicated by the arrows flow through the respective main windings. When the current arrow direction shown in the figure is a positive cycle, a current in the reverse direction flows in the negative cycle.
In the three-phase electromagnetic device having the above configuration, when no DC control current is passed through the control winding, each of the phases generated from the main windings 1aa and 1ab, the main windings 1ba and 1bb, and the main windings 1ca and 1cb. The AC magnetic flux returns through the connecting magnetic core portion connecting the linear magnetic cores.

以下、主巻線1aaを巻回した第1の直線磁心部と主巻線1abを巻回した第2の直線磁心部について説明する。
電流ILuが流れると、磁路には主巻線1aaにより主磁束φa1、並びに主巻線1abにより主磁束φa2がそれぞれ発生する。
発生した主磁束は、制御巻線に直流制御電流を流さない場合には制御巻線を巻回した連結磁心部を通過し、主巻線には巻数と磁心の磁気抵抗に応じたリアクタンスが生ずる。制御巻線を巻回した連結磁心部は、制御磁束φdcと主磁束φa1、φa2との共通磁路となる。
Hereinafter, the first linear magnetic core portion wound around the main winding 1aa and the second linear magnetic core portion wound around the main winding 1ab will be described.
When current ILu flows, main magnetic flux φa1 and main magnetic flux φa2 are generated in the magnetic path by main winding 1aa and main winding 1ab, respectively.
The generated main magnetic flux passes through the connecting magnetic core around which the control winding is wound when no DC control current is passed through the control winding, and reactance is generated in the main winding according to the number of turns and the magnetic resistance of the magnetic core. . The connecting magnetic core portion around which the control winding is wound serves as a common magnetic path for the control magnetic flux φdc and the main magnetic fluxes φa1 and φa2.

主巻線電流ILuを流した状態で制御巻線に直流制御電流Icを流すと、制御巻線2a、2b、2c、2d、2e及び2fにおいて、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで、制御巻線磁束φdcと主磁束φa1及びφa2が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。   When the DC control current Ic is supplied to the control winding while the main winding current ILu is supplied, in the control windings 2a, 2b, 2c, 2d, 2e and 2f, the product of the number of turns of the control winding and the control current Ic When the magnetomotive force expressed is generated, the magnetic flux density of the common magnetic path portion in which the control winding magnetic flux φdc and the main magnetic fluxes φa1 and φa2 are in the same direction increases, and the permeability changes, and the main magnetic flux is controlled. Reactance decreases.

このことは、同様に他の直線磁心部についても成り立つことから、直流制御電流Icを調整することによってリアクタンスを可変できる三相形の電磁機器として機能することができる。   Since this also holds true for other linear magnetic cores, it can function as a three-phase electromagnetic device whose reactance can be varied by adjusting the DC control current Ic.

図4は、本三相形電磁機器の構成例を示したもので、図4(a)は前述の如く直線磁心を連結する連結磁心形状が円形状を成すものであり、電動機などで使用される打ち抜き鉄心から簡単に構成することができる。図4(b)及び図4(c)は直線磁心を連結する連結磁心形状が直線状を成すものであり、打ち抜き鉄心のほか積鉄心で簡単に構成することができる。なお、連結磁心は、6つの連結磁心が同等の構成であれば、様々な形状が可能である。図4(d)は磁心中央部における直線磁心同士の接続部を連結磁心とし、巻線を巻回す窓形状を台形にしたものであり、積鉄心で簡単に構成することができるほか巻線の占積率を向上させ、電磁機器の軽量化を図ることができる。
また、図4(e)に示すようにカットコアで構成することもできる。
FIG. 4 shows an example of the configuration of this three-phase electromagnetic device. FIG. 4 (a) shows that the connecting magnetic cores connecting the linear magnetic cores form a circular shape as described above, and are used in an electric motor or the like. It can be easily constructed from a punched iron core. 4 (b) and 4 (c), the shape of the connecting magnetic cores connecting the linear magnetic cores is a straight line, and can be easily constituted by a stacked iron core in addition to the punched iron core. The connecting magnetic core can have various shapes as long as the six connecting magnetic cores have the same configuration. FIG. 4 (d) shows a connecting core between the linear magnetic cores in the central part of the magnetic core, and a trapezoidal window shape around which the winding is wound. The space factor can be improved and the weight of the electromagnetic device can be reduced.
Moreover, it can also be comprised with a cut core as shown in FIG.4 (e).

図5は、本発明による三相形電磁機器の、他の巻線構成例を示す接続図であり、三相形電磁機器を構成する6つの直線磁心3aa、3ab、3ba、3bb、3ca及び3cbを、各相の対を構成する直線磁心3aa及び3ab、3ba及び3bb、3ca及び3cbがそれぞれ60゜を成すように、主巻線1aa及び1ab、1ba及び1bb、1ca及び1cbを配置したものである。
前述と同様に、制御巻線磁束と主磁束が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御され、リアクタンスを可変できる三相形の電磁機器として機能することができる。
図3、図5に示す例では、6つの連結磁心の夫々に制御巻線を巻回しているが、1つおきに3つの連結部の磁心に巻回することもできる。この場合、3つの制御巻線は同方向に巻回し直列に接続する。
FIG. 5 is a connection diagram showing another winding configuration example of the three-phase electromagnetic device according to the present invention. The six linear magnetic cores 3aa, 3ab, 3ba, 3bb, 3ca and 3cb constituting the three-phase electromagnetic device are The main windings 1aa and 1ab, 1ba and 1bb, 1ca and 1cb are arranged so that the linear magnetic cores 3aa and 3ab, 3ba and 3bb, 3ca and 3cb constituting each phase pair form 60 °, respectively.
As before, the magnetic flux density of the common magnetic path part where the control winding magnetic flux and the main magnetic flux are in the same direction increases, the permeability changes, the main magnetic flux is controlled, and the reactance can be varied. Can function as.
In the example shown in FIGS. 3 and 5, the control winding is wound around each of the six connecting magnetic cores, but every other connecting core can be wound around three connecting cores. In this case, the three control windings are wound in the same direction and connected in series.

図6は、本発明による三相形電磁機器に三相交流電圧を印加し、直流制御電流Icを増加させた場合の制御特性例を示したものである。
図6(a)は、主巻線電流の制御特性例を示したものであり、直流制御電流Icを増加させることにより、リアクタンスが変化し、主巻線電流を線形に可変できることがわかる。
図6(b)は、主巻線電流の電流歪み特性例を示したものであり、直流制御電流Icによらず良好な主巻線電流歪みであることがわかる。
FIG. 6 shows an example of control characteristics when a three-phase AC voltage is applied to the three-phase electromagnetic device according to the present invention to increase the DC control current Ic.
FIG. 6A shows an example of control characteristics of the main winding current, and it can be seen that the reactance changes and the main winding current can be varied linearly by increasing the DC control current Ic.
FIG. 6B shows an example of the current distortion characteristic of the main winding current, and it can be seen that the main winding current distortion is good regardless of the DC control current Ic.

以上のように、本発明によると、直流制御電流を調整することによりリアクタンスを高速且つ連続的に可変することができる。   As described above, according to the present invention, the reactance can be continuously varied at a high speed by adjusting the DC control current.

図7は、前記図1で示した磁心巻線構成において、電磁機器を構成する主巻線部を一次巻線とし、一次巻線5aaを巻回した直線磁心に二次巻線6aa、一次巻線5abを巻回した直線磁心に二次巻線6ab、一次巻線5baを巻回した直線磁心に二次巻線6ba、一次巻線5bbを巻回した直線磁心に二次巻線6bb、一次巻線5caを巻回した直線磁心に二次巻線6ca、一次巻線5cbを巻回した直線磁心に二次巻線6cbを巻回して一次巻線と同様に接続して構成した三相形の電磁機器である。   FIG. 7 shows the configuration of the magnetic core winding shown in FIG. 1, in which the main winding portion constituting the electromagnetic device is a primary winding, and the secondary winding 6aa and the primary winding are wound around a linear magnetic core wound with the primary winding 5aa. The secondary winding 6ab is wound around the linear magnetic core wound around the wire 5ab, the secondary winding 6ba is wound around the linear magnetic core wound around the primary winding 5ba, and the secondary winding 6bb is wound around the linear magnetic core wound around the primary winding 5bb. A three-phase type constituted by connecting a secondary winding 6ca to a linear magnetic core wound with the winding 5ca and a secondary winding 6cb wound around a linear magnetic core wound with the primary winding 5cb in the same manner as the primary winding. It is an electromagnetic device.

図7において、一次巻線に三相交流電源を接続し二次巻線には三相負荷を接続し、それぞれの二次巻線に図示矢印方向の電流ILu2、ILv2、ILw2が流れていたとする。
以下、一次巻線5aaを巻回した第1の直線磁心部と一次巻線5abを巻回した第2の直線磁心部について説明する。
In FIG. 7, it is assumed that a three-phase AC power source is connected to the primary winding and a three-phase load is connected to the secondary winding, and currents ILu2, ILv2, and ILw2 in the directions indicated by the arrows flow through the respective secondary windings. .
Hereinafter, the first linear magnetic core portion wound with the primary winding 5aa and the second linear magnetic core portion wound with the primary winding 5ab will be described.

制御電流を流さない場合には、一次巻線5aa及び5abには、上記二次電流で発生した磁束を打消すように一次電流ILu1が流れ、全体として変圧器動作を示す。   When the control current is not passed, the primary current ILu1 flows through the primary windings 5aa and 5ab so as to cancel the magnetic flux generated by the secondary current, and the transformer operation is shown as a whole.

制御巻線に直流制御電流Icを流すと、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで透磁率が変化し、主磁束が制御される。このため、一次巻線には制御電流の制御に伴う主磁束の減少に応じて、一次巻線の端子間電圧を維持するために必要な主磁束を発生させるために励磁電流が増加する。
即ち、変圧器としての変圧機能に加えて、制御電流を調整することで主巻線のリアクタンスを連続的に可変して一次側に流入する無効電流の調整が可能となる。
このことは、同様に他の直線磁心部についても成り立つことから、変圧器としての変圧機能に加えて、リアクタンスを可変できる三相形の電磁機器として機能することができる。
When a DC control current Ic is passed through the control winding, a magnetic force is generated by generating a magnetomotive force represented by the product of the number of turns of the control winding and the control current Ic, thereby controlling the main magnetic flux. For this reason, in accordance with the decrease in the main magnetic flux accompanying the control of the control current, the exciting current increases in order to generate the main magnetic flux necessary for maintaining the voltage between the terminals of the primary winding.
That is, in addition to the transformation function as a transformer, the reactive current flowing into the primary side can be adjusted by continuously adjusting the reactance of the main winding by adjusting the control current.
Since this also holds true for other linear magnetic cores, it can function as a three-phase electromagnetic device capable of varying reactance in addition to the transformer function as a transformer.

(適用例)
図8は、本発明の三相形電磁機器の無効電力補償装置への適用例である。
図8において、本発明による三相形電磁機器と電力用コンデンサ7を並列に接続し、送電線路に並列に挿入し、電磁機器の制御により、系統に生じる遅相から進相の無効電力を連続的に補償するようにしたものである。
(Application example)
FIG. 8 shows an application example of the three-phase electromagnetic device of the present invention to a reactive power compensator.
In FIG. 8, the three-phase electromagnetic device according to the present invention and the power capacitor 7 are connected in parallel, inserted in parallel to the transmission line, and the reactive power from the slow phase to the fast phase generated in the system is continuously controlled by controlling the electromagnetic device. Is to compensate.

以上詳述したように、本発明によれば、タップを設けることなく、鉄心の突き合わせ面にギャップを必要とせずに、広範囲にリアクタンスを可変する三相バランスの優れた三相形の電磁機器を実現することができ、近年の電力需要の増大や負荷の多様化により、系統電圧の変動等負荷の多様化に対応できるフレキシブルな電力設備の提供がはかられ、電力系統の電圧安定化や力率及び潮流のより適切な制御に寄与できる。
なお、この他、発明の要旨を逸脱しない範囲で種々変形して実施することができる。
As described in detail above, according to the present invention, a three-phase electromagnetic device with excellent three-phase balance that can vary reactance over a wide range without providing a tap and without requiring a gap in the abutting surface of the iron core is realized. With the recent increase in power demand and diversification of loads, it is possible to provide flexible power facilities that can cope with diversification of loads such as fluctuations in system voltage. And contribute to more appropriate control of tidal currents.
In addition, various modifications can be made without departing from the scope of the invention.

請求項1又は2又は4又は6の発明による電磁機器の基本構成例を示す接続図である。It is a connection diagram showing a basic configuration example of an electromagnetic device according to the invention of claim 1 or 2 or 4 or 6. 図1に示した電磁機器の等価回路を示す回路構成図である。It is a circuit block diagram which shows the equivalent circuit of the electromagnetic device shown in FIG. 請求項1又は2又は4又は6の発明による電磁機器を磁心の構成例と共に示す接続図である。It is a connection diagram which shows the electromagnetic device by invention of Claim 1 or 2 or 4 or 6 with the structural example of a magnetic core. 請求項1又は2又は3又は4又は6の発明による電磁機器の磁心構成例を示す構成図である。It is a block diagram which shows the example of a magnetic core structure of the electromagnetic device by invention of Claim 1 or 2 or 3 or 4 or 6. 請求項1又は3又は6の発明による電磁機器の構成例を示す構成図である。It is a block diagram which shows the structural example of the electromagnetic device by invention of Claim 1 or 3 or 6. 電磁機器の制御特性例を示す図である。It is a figure which shows the example of control characteristics of an electromagnetic device. 請求項7の発明による電磁機器の基本構成例を示す接続図である。It is a connection diagram showing an example of the basic configuration of an electromagnetic device according to the invention of claim 7. 本発明の無効電力補償装置への適用例を示す回路構成図である。It is a circuit block diagram which shows the example of application to the reactive power compensation apparatus of this invention. 本出願人が先に提案した従来の電磁機器の一実施例を示す接続図である。It is a connection diagram which shows one Example of the conventional electromagnetic device which the present applicant previously proposed. 本出願人が先に提案した従来の三相型電磁機器の一実施例を示す接続図である。It is a connection diagram which shows one Example of the conventional three-phase type electromagnetic equipment which the present applicant previously proposed.

符号の説明Explanation of symbols

1(1aa、1ab、1ba、1bb、1ca、1cb)…主巻線、2(2a、2b、2c、2d、2e、2f)…制御巻線、3(3aa、3ab、3ba、3bb、3ca、3cb、3d)…磁心、4…制御回路、5(5aa、5ab、5ba、5bb、5ca、5cb)…一次巻線、6(6aa、6ab、6ba、6bb、6ca、6cb)…二次巻線、7…電力用コンデンサ。 1 (1aa, 1ab, 1ba, 1bb, 1ca, 1cb) ... main winding, 2 (2a, 2b, 2c, 2d, 2e, 2f) ... control winding, 3 (3aa, 3ab, 3ba, 3bb, 3ca, 3cb, 3d) ... magnetic core, 4 ... control circuit, 5 (5aa, 5ab, 5ba, 5bb, 5ca, 5cb) ... primary winding, 6 (6aa, 6ab, 6ba, 6bb, 6ca, 6cb) ... secondary winding 7 ... Power capacitors.

Claims (7)

同一平面状に放射状に対称的に分岐する6つの脚部の端部が夫々連結されて6つの窓部を形成する磁心と、
前記磁心の6つの各脚部に三相交流電源に接続される主巻線を巻回し、
前記磁心の脚部を連結する連結部に制御巻線を巻回し、前記主巻線に流れる交流主電流によって制御巻線に誘起する電圧が互いに打ち消されるように接続し、
当該制御巻線の開放端に制御回路を接続して直流制御電流を供給することにより前記連結部を還流する制御磁束を発生させ、
前記直流制御電流を制御することによって、前記主巻線に流れる交流主電流により発生する主磁束と前記制御磁束との共通磁路を形成する磁心の磁気抵抗を制御し主巻線のリアクタンスを連続的に可変することを特徴とする三相形電磁機器。
A magnetic core in which the ends of six legs that are radially symmetrically branched in the same plane are connected to each other to form six windows;
A main winding connected to a three-phase AC power source is wound around each of the six legs of the magnetic core,
A control winding is wound around a connecting portion that connects the leg portions of the magnetic core, and the voltages induced in the control winding by the AC main current flowing through the main winding are connected to each other,
By connecting a control circuit to the open end of the control winding and supplying a DC control current to generate a control magnetic flux that circulates through the connecting portion,
By controlling the DC control current, the magnetic resistance of the magnetic core that forms a common magnetic path of the main magnetic flux generated by the AC main current flowing in the main winding and the control magnetic flux is controlled, and the reactance of the main winding is made continuous. Three-phase electromagnetic equipment characterized by being variable.
前記磁心の6つの脚部の互いに延長方向に対となる脚部の磁心に同一相の主巻線が同方向に主磁束が発生するように3対の各磁心に各相の主巻線を巻回することを特徴とする請求項1に記載の三相形電磁機器。   The main windings of each phase are arranged on each of the three pairs of magnetic cores so that the main windings of the same phase are generated in the same direction in the magnetic cores of the leg portions that are paired in the extension direction of the six leg portions of the magnetic core. The three-phase electromagnetic device according to claim 1, wherein the three-phase electromagnetic device is wound. 前記磁心の6つの脚部の互いに隣り合って対となる脚部の磁心に同一相の主巻線を互いに反対方向の主磁束が発生するように3対の各磁心に各相の主巻線を巻回することを特徴とする請求項1に記載の三相形電磁機器。   The main windings of the respective phases are arranged in three pairs of magnetic cores so that the main windings of the same phase are generated in the magnetic cores of the pair of leg portions adjacent to each other of the six leg portions of the magnetic cores. The three-phase electromagnetic device according to claim 1, wherein the three-phase electromagnetic device is wound. 前記主巻線を巻回する各脚部の磁心を連結する各連結部の磁心に夫々制御巻線を巻回することを特徴とする請求項2又は3に記載の三相形電磁機器。   4. The three-phase electromagnetic device according to claim 2, wherein the control winding is wound around the magnetic core of each connecting portion that connects the magnetic cores of the respective legs that wind the main winding. 5. 前記主巻線を巻回する各脚部の磁心を連結する各連結部の磁心に1つおきに夫々制御巻線を巻回することを特徴とする請求項2又は3に記載の三相形電磁機器。   4. The three-phase electromagnetic according to claim 2, wherein every other control winding is wound around the magnetic core of each connecting portion that connects the magnetic cores of the respective legs that wind the main winding. 5. machine. 前記磁心は、6つの直線磁心の夫々の一端を集合させて接合し、他方端を夫々6つの磁心で連結して6つの窓部を形成し、それぞれの直線磁心は隣接する直線磁心との角度が60゜を成すように配置されることを特徴とする請求項1〜5のいずれか1に記載の三相形電磁機器。   One end of each of the six linear magnetic cores is assembled and joined, and the other end is connected with each of the six magnetic cores to form six windows, and each linear magnetic core has an angle with an adjacent linear magnetic core. The three-phase electromagnetic device according to claim 1, wherein the three-phase electromagnetic device is arranged so as to form 60 °. 各相の主巻線を巻回した脚部の磁心に二次巻線を巻回し、前記直流制御電流の調整により前記二次巻線に誘起する電圧を連続的に可変することを特徴とする請求項1から6のいずれか1に記載の三相形電磁機器。   A secondary winding is wound around the magnetic core of the leg portion around which the main winding of each phase is wound, and the voltage induced in the secondary winding is continuously varied by adjusting the DC control current. The three-phase electromagnetic device according to any one of claims 1 to 6.
JP2007011775A 2007-01-22 2007-01-22 Three-phase electromagnetic equipment Active JP4646327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011775A JP4646327B2 (en) 2007-01-22 2007-01-22 Three-phase electromagnetic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011775A JP4646327B2 (en) 2007-01-22 2007-01-22 Three-phase electromagnetic equipment

Publications (2)

Publication Number Publication Date
JP2008177500A true JP2008177500A (en) 2008-07-31
JP4646327B2 JP4646327B2 (en) 2011-03-09

Family

ID=39704278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011775A Active JP4646327B2 (en) 2007-01-22 2007-01-22 Three-phase electromagnetic equipment

Country Status (1)

Country Link
JP (1) JP4646327B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529393A (en) * 2010-06-10 2013-07-18 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Integrated magnetic device for low-harmonic three-phase front-end equipment
JP2015032814A (en) * 2013-08-07 2015-02-16 東北電力株式会社 Three-phase electromagnetic equipment
JP2017059805A (en) * 2015-09-17 2017-03-23 ファナック株式会社 Three-phase reactor with core and coil
DE102016010901A1 (en) 2015-09-17 2017-03-23 Fanuc Corporation Three-phase reactor with iron core units and coils
DE102016122564A1 (en) 2015-11-30 2017-06-01 Fanuc Corporation MULTI-PHASE INDUSTRY OF THE IMSTANDE IS TO OBTAIN A CONSTANT INDUCTANCE FOR EACH PHASE
DE102017101156A1 (en) 2016-01-28 2017-08-03 Fanuc Corporation Three-phase reactor with iron core units and coils
JP2017139438A (en) * 2016-01-28 2017-08-10 ファナック株式会社 Iron core part and three-phase reactor equipped with coil
CN108231364A (en) * 2016-12-22 2018-06-29 发那科株式会社 Transformer, motor drive, machinery and fairing
JP2018107180A (en) * 2016-12-22 2018-07-05 ファナック株式会社 Electromagnetic apparatus
JP2018133455A (en) * 2017-02-15 2018-08-23 東北電力株式会社 Three-phase electromagnetic apparatus
JP2018195783A (en) * 2017-05-22 2018-12-06 ファナック株式会社 Reactor having a plurality of divided outer circumferential core parts and manufacturing method of the same
JP2018206949A (en) * 2017-06-05 2018-12-27 ファナック株式会社 Reactor including outer circumference core
JP2019091910A (en) * 2019-01-24 2019-06-13 ファナック株式会社 Multiphase iron core reactor with variable inductance function
JP2019165145A (en) * 2018-03-20 2019-09-26 ファナック株式会社 Multistage-structure electromagnetic apparatus
CN110364332A (en) * 2018-04-09 2019-10-22 发那科株式会社 Polyphase transformer
USD864867S1 (en) 2017-03-23 2019-10-29 Fanuc Corporation Core for electromagnetic device
USD865670S1 (en) 2017-03-23 2019-11-05 Fanuc Corporation Core for electromagnetic device
USD875663S1 (en) 2017-03-23 2020-02-18 Fanuc Corporation Reactor
USD876338S1 (en) 2017-03-23 2020-02-25 Fanuc Corporation Reactor
US10790084B2 (en) 2017-01-30 2020-09-29 Fanuc Corporation Multi-phase iron-core reactor having function of changing magnitude of inductance
US11476033B2 (en) 2019-03-14 2022-10-18 Fanuc Corporation Reactor provided with end plate
WO2023164871A1 (en) * 2022-03-03 2023-09-07 罗灿 Tooth winding few-pole multi-speed direct current stator
WO2023164882A1 (en) * 2022-03-03 2023-09-07 罗灿 Tooth winding-based multi-pole multi-speed direct current stator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896371B2 (en) * 2011-08-18 2016-03-30 東北電力株式会社 Three-phase electromagnetic equipment
JP5946177B2 (en) * 2012-07-20 2016-07-05 東北電力株式会社 Three-phase electromagnetic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229315A (en) * 2002-02-01 2003-08-15 Tohoku Electric Power Co Inc Three-phase variable inductance device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229315A (en) * 2002-02-01 2003-08-15 Tohoku Electric Power Co Inc Three-phase variable inductance device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529393A (en) * 2010-06-10 2013-07-18 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Integrated magnetic device for low-harmonic three-phase front-end equipment
JP2015032814A (en) * 2013-08-07 2015-02-16 東北電力株式会社 Three-phase electromagnetic equipment
JP2017059805A (en) * 2015-09-17 2017-03-23 ファナック株式会社 Three-phase reactor with core and coil
DE102016010901A1 (en) 2015-09-17 2017-03-23 Fanuc Corporation Three-phase reactor with iron core units and coils
US10734153B2 (en) 2015-09-17 2020-08-04 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
DE102016010901B4 (en) 2015-09-17 2022-12-01 Fanuc Corporation Three phase reactor with iron core units and coils
DE102016122564B4 (en) 2015-11-30 2022-06-02 Fanuc Corporation MULTI-PHASE INDUCTOR CAPABLE OF OBTAINING A CONSTANT INDUCTANCE FOR EVERY PHASE
CN106876123A (en) * 2015-11-30 2017-06-20 发那科株式会社 Multiphase reactor
DE102016122564A1 (en) 2015-11-30 2017-06-01 Fanuc Corporation MULTI-PHASE INDUSTRY OF THE IMSTANDE IS TO OBTAIN A CONSTANT INDUCTANCE FOR EACH PHASE
US10373753B2 (en) 2015-11-30 2019-08-06 Fanuc Corporation Multi-phase reactor capable of obtaining constant inductance for each phase
CN107017082A (en) * 2016-01-28 2017-08-04 发那科株式会社 Three-phase reactor, motor drive, power governor and machinery or device
JP2017139438A (en) * 2016-01-28 2017-08-10 ファナック株式会社 Iron core part and three-phase reactor equipped with coil
DE102017101156A1 (en) 2016-01-28 2017-08-03 Fanuc Corporation Three-phase reactor with iron core units and coils
US11728091B2 (en) 2016-01-28 2023-08-15 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
CN107017082B (en) * 2016-01-28 2019-12-06 发那科株式会社 Three-phase reactor, motor drive device, power conditioner, and machine
US10748703B2 (en) 2016-01-28 2020-08-18 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
CN108231364A (en) * 2016-12-22 2018-06-29 发那科株式会社 Transformer, motor drive, machinery and fairing
US10896778B2 (en) 2016-12-22 2021-01-19 Fanuc Corporation Transformer including gaps
US10483033B2 (en) 2016-12-22 2019-11-19 Fanuc Corporation Electromagnetic device
JP2018107180A (en) * 2016-12-22 2018-07-05 ファナック株式会社 Electromagnetic apparatus
US11107624B2 (en) 2016-12-22 2021-08-31 Fanuc Corporation Electromagnetic device
US10790084B2 (en) 2017-01-30 2020-09-29 Fanuc Corporation Multi-phase iron-core reactor having function of changing magnitude of inductance
JP2018133455A (en) * 2017-02-15 2018-08-23 東北電力株式会社 Three-phase electromagnetic apparatus
USD864867S1 (en) 2017-03-23 2019-10-29 Fanuc Corporation Core for electromagnetic device
USD865670S1 (en) 2017-03-23 2019-11-05 Fanuc Corporation Core for electromagnetic device
USD875663S1 (en) 2017-03-23 2020-02-18 Fanuc Corporation Reactor
USD876338S1 (en) 2017-03-23 2020-02-25 Fanuc Corporation Reactor
US10714248B2 (en) 2017-05-22 2020-07-14 Fanuc Corporation Reactor having outer peripheral iron core divided into multiple portions and production method therefor
JP2018195783A (en) * 2017-05-22 2018-12-06 ファナック株式会社 Reactor having a plurality of divided outer circumferential core parts and manufacturing method of the same
JP2018206949A (en) * 2017-06-05 2018-12-27 ファナック株式会社 Reactor including outer circumference core
US10600551B2 (en) 2017-06-05 2020-03-24 Fanuc Corporation Reaction having outer peripheral iron core
JP2019165145A (en) * 2018-03-20 2019-09-26 ファナック株式会社 Multistage-structure electromagnetic apparatus
CN110364332A (en) * 2018-04-09 2019-10-22 发那科株式会社 Polyphase transformer
JP2019091910A (en) * 2019-01-24 2019-06-13 ファナック株式会社 Multiphase iron core reactor with variable inductance function
US11476033B2 (en) 2019-03-14 2022-10-18 Fanuc Corporation Reactor provided with end plate
WO2023164871A1 (en) * 2022-03-03 2023-09-07 罗灿 Tooth winding few-pole multi-speed direct current stator
WO2023164882A1 (en) * 2022-03-03 2023-09-07 罗灿 Tooth winding-based multi-pole multi-speed direct current stator

Also Published As

Publication number Publication date
JP4646327B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4646327B2 (en) Three-phase electromagnetic equipment
US7277302B2 (en) 12-pulse converter including a filter choke incorporated in the rectifier
US7142081B1 (en) Multiple three-phase inductor with a common core
JP5896371B2 (en) Three-phase electromagnetic equipment
JP2010520636A (en) Transformer structure
JP6025059B2 (en) Three-phase electromagnetic equipment
JP2003534591A (en) Magnetically controlled current or voltage regulators and transformers
US7474188B2 (en) 40° phase-shifting autotransformer
TW200842909A (en) Reactor-jointed transformer
JP5520613B2 (en) Magnetic flux control type variable transformer
US10504645B2 (en) Gapless core reactor
JP5946177B2 (en) Three-phase electromagnetic equipment
JPH118138A (en) Coaxial, group of coaxial, maltiaxial and coaxial, phase-shifting adjustment coaxial orthogonal, multiphase phase-shifting adjustment co-axial orthogonal, group of coaxial orthogonal, group of phase-shifting coaxial orthogonal, three-phase and single-phase coaxial orthogonal, group of multiphase single-phase coaxial-orthogonal, variable voltage adjustment coaxial, variable phase-shifting coaxial orthogonal, total transformation coaxial orthogonal transformer, transformer with degaussing device and cooling manifold and reactor
WO2008026297A1 (en) Current balancer and low-voltage power distribution system
JP2007235014A (en) Split balanced winding type transformer and single-phase three-wired power distribution system
KR200352351Y1 (en) 3 phase transformer
JP3986809B2 (en) Three-phase electromagnetic equipment
JP6909462B2 (en) Three-phase electromagnetic equipment
JP3792109B2 (en) Electromagnetic equipment
JP4368051B2 (en) Electromagnetic equipment
JP2629999B2 (en) DC / DC converter series connection circuit
US20140265709A1 (en) Steered Flux Generator
JP2003068539A (en) Electromagnetic equipment
JP2005045133A (en) Electromagnetic device
CN211828417U (en) Transformer core unit and iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250