JP2015032814A - Three-phase electromagnetic equipment - Google Patents

Three-phase electromagnetic equipment Download PDF

Info

Publication number
JP2015032814A
JP2015032814A JP2013164016A JP2013164016A JP2015032814A JP 2015032814 A JP2015032814 A JP 2015032814A JP 2013164016 A JP2013164016 A JP 2013164016A JP 2013164016 A JP2013164016 A JP 2013164016A JP 2015032814 A JP2015032814 A JP 2015032814A
Authority
JP
Japan
Prior art keywords
control
main
winding
magnetic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164016A
Other languages
Japanese (ja)
Other versions
JP6025059B2 (en
Inventor
敬 大日向
Takashi Ohinata
大日向  敬
健司 有松
Kenji Arimatsu
健司 有松
中村 健二
Kenji Nakamura
健二 中村
理 一ノ倉
Osamu Ichinokura
理 一ノ倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Electric Power Co Inc
Original Assignee
Tohoku University NUC
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Electric Power Co Inc filed Critical Tohoku University NUC
Priority to JP2013164016A priority Critical patent/JP6025059B2/en
Publication of JP2015032814A publication Critical patent/JP2015032814A/en
Application granted granted Critical
Publication of JP6025059B2 publication Critical patent/JP6025059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide three-phase electromagnetic equipment which simplifies a magnetic circuit structure and a winding structure of a coil, reduces the number of coils and is easily assembled and in which a space factor of coils is enlarged and a loss is reduced.SOLUTION: A main coil and a control coil are wound around each of linear magnetic cores of a six-leg magnetic core, two main coils are paired to prepare three pairs of main coils (1aa and 1ab, 1ba and 1bb, and 1ca and 1cb), and the mail coils of each pair are connected in series or in parallel correspondingly to each phase of a three-phase AC power source. The control coils (2a, 2d, 2c, 2f, 2e and 2b) are connected in series or in parallel so as to cancel an induction voltage caused by a main magnetic flux generated by three pairs of mail coils, and a control circuit 4 is connected at an open terminal side of the control coils. A DC control magnetic flux is generated by supplying a DC control current from the control circuit 4 to the control coils, and magnetic resistance of a common magnetic path for the main magnetic flux and the DC control magnetic flux is controlled, thereby continuously varying reactance of the main coils.

Description

この発明は、三相形のリアクタンスを可変できる電磁機器に関し、詳しくは、巻線の占積率が大きく巻装構造が簡単な三相電磁機器に関する。   The present invention relates to an electromagnetic device capable of varying the reactance of a three-phase type, and more particularly to a three-phase electromagnetic device having a large winding space factor and a simple winding structure.

三相交流電源に対応した三相形のリアクタンスを可変できる従来の技術としては、本出願人が先に提案した三相形電磁機器(特許文献1)や三相電磁機器(特許文献2)がある。   As conventional techniques capable of varying the reactance of a three-phase type corresponding to a three-phase AC power source, there are a three-phase type electromagnetic device (Patent Document 1) and a three-phase electromagnetic device (Patent Document 2) previously proposed by the present applicant.

図11は、本出願人が先に提案した三相形電磁機器(特許文献1)の一例を説明するための接続図である。この三相形電磁機器は、6つの直線磁心43aa〜43cbを、隣接する直線磁心との角度が60゜となるように配置し、さらに6つの直線磁心の一端を6つの鉄心窓部が形成されるように連結磁心43dで連結している。   FIG. 11 is a connection diagram for explaining an example of the three-phase electromagnetic device (Patent Document 1) previously proposed by the present applicant. In this three-phase electromagnetic device, six linear magnetic cores 43aa to 43cb are arranged so that the angle between adjacent linear magnetic cores is 60 °, and six iron core window portions are formed at one end of the six linear magnetic cores. In this way, they are connected by a connecting magnetic core 43d.

6つの直線磁心43aa〜43cbには3対の主巻線41aa〜41cbを巻装し、それぞれの対の主巻線から生じる磁束が同一方向になるように直列又は並列に接続している。そして、直線磁心を連結した6個の連結磁心43dには、それぞれに制御巻線42a〜42fを巻装し、制御巻線に直流制御電流Icを流すことで、主磁束と制御磁束の共通磁路の磁気抵抗を制御し、主巻線のリアクタンスを連続的に可変している。   Three pairs of main windings 41aa to 41cb are wound around the six linear magnetic cores 43aa to 43cb, and are connected in series or in parallel so that the magnetic flux generated from each pair of main windings is in the same direction. The six connecting magnetic cores 43d connected with the linear magnetic cores are respectively wound with control windings 42a to 42f, and a direct current control current Ic is caused to flow through the control windings. The magnetic resistance of the path is controlled, and the reactance of the main winding is continuously varied.

また、図12は、本出願人が先に提案した三相電磁機器(特許文献2)の一例を説明するための接続図である。この三相電磁機器は、18個の直線磁心53aa〜53dLを放射状に配置し、さらに、18個の直線磁心の中心側(内側)端部及び周辺側(外側)端部を18個の鉄心窓部が形成されるように連結磁心53eおよび53fで連結している。   FIG. 12 is a connection diagram for explaining an example of the three-phase electromagnetic device (Patent Document 2) previously proposed by the present applicant. In this three-phase electromagnetic device, 18 linear magnetic cores 53aa to 53dL are arranged radially, and further, 18 core windows are arranged at the center side (inner side) end and the peripheral side (outer side) end of the 18 linear magnetic cores. The magnetic cores 53e and 53f are connected so as to form a portion.

そして、18個の直線磁心に、6個の交流主巻線51aa〜51cbを2脚置きに卷装するとともに、他の12脚のそれぞれに直流制御巻線52a〜52Lを巻装し、制御巻線に直流制御電流Icを流すことで、主磁束と制御磁束の共通磁路の磁気抵抗を制御し、主巻線のリアクタンスを連続的に可変にしている。   Then, sixteen AC main windings 51aa to 51cb are mounted on every other 18 legs on 18 linear magnetic cores, and DC control windings 52a to 52L are wound around the other 12 legs, respectively. By flowing the DC control current Ic through the wire, the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux is controlled, and the reactance of the main winding is continuously variable.

特許4646327号明細書Japanese Patent No. 4646327 特開2013−042028号公報JP 2013-042028 A

しかし、特許文献1の三相形電磁機器については、主磁束と制御磁束の共通磁路の磁気抵抗を制御し、主巻線のリアクタンスを連続的に可変することが可能であるものの、一つの鉄心窓部に3個の主巻線乃至制御巻線が巻装されることから、巻線の占積率が低下してしまう。また、制御巻線を連結磁心へ巻装する必要があるため、磁心構成した後に手動による巻装を行う必要がある。   However, although the three-phase electromagnetic device of Patent Document 1 can control the magnetic resistance of the common magnetic path of the main magnetic flux and the control magnetic flux and continuously vary the reactance of the main winding, Since three main windings or control windings are wound around the window, the space factor of the windings is lowered. Further, since it is necessary to wind the control winding around the connecting magnetic core, it is necessary to perform manual winding after forming the magnetic core.

さらに、リアクタンスを可変させるための主磁束と制御磁束の共通磁路は主に制御巻線が巻装される窓周辺部の磁路であり、磁気抵抗の調整範囲が狭いためリアクタンスの可変範囲も広くない。   Furthermore, the common magnetic path of the main magnetic flux and the control magnetic flux for varying the reactance is mainly the magnetic path around the window around which the control winding is wound, and since the adjustment range of the magnetic resistance is narrow, the variable range of the reactance is also Not wide.

特許文献2の三相電磁機器は、特許文献1の三相形電磁機器の課題を踏まえて提案されたもので、制御巻線の連結磁心への巻装が不要な構成としたものであり、主巻線のリアクタンスを連続的に可変することが可能である。   The three-phase electromagnetic device of Patent Document 2 has been proposed in view of the problems of the three-phase electromagnetic device of Patent Document 1, and has a configuration that does not require the control winding to be wound around the coupling core. It is possible to continuously vary the reactance of the winding.

しかし、上記三相電磁機器は、直線磁心が18個必要であり、容量にあわせて鉄心窓部を大きくする場合には、周辺側(外側)と中心側(内側)の連結磁心の径が大きくなるため、磁心全体が大きくなり、重量も重くなる傾向がある。さらに、主巻線6個に対して制御巻線が12個必要であることから、機器組立工数が増加し、巻線重量も増加してしまうことになる。   However, the three-phase electromagnetic device requires 18 linear magnetic cores, and when the iron core window is enlarged in accordance with the capacity, the diameter of the connecting magnetic core on the peripheral side (outer side) and the central side (inner side) is large. Therefore, the whole magnetic core tends to be large and the weight tends to be heavy. Furthermore, since 12 control windings are required for 6 main windings, the number of equipment assembly steps increases and the winding weight also increases.

また、特許文献2の三相電磁機器は特許文献1の三相形電磁機器と同様に、リアクタンスを可変するための主磁束と制御磁束の共通磁路は主に制御巻線が巻装される窓周辺部の磁路であり、磁気抵抗の調整範囲が狭いことからリアクタンスの可変範囲も広くない。   Similarly to the three-phase electromagnetic device of Patent Document 1, the three-phase electromagnetic device of Patent Document 2 has a common magnetic path for main reactance and control magnetic flux for varying the reactance. This is a magnetic path in the peripheral part, and since the adjustment range of the magnetic resistance is narrow, the variable range of reactance is not wide.

加えて、特許文献1の三相形電磁機器および特許文献2の三相電磁機器は、主巻線と制御巻線を分離して巻回することが必須であるため、スペースの低減や組み立てが容易な汎用技術の重ね巻きを適用することが困難であるという問題があった。   In addition, the three-phase electromagnetic device of Patent Document 1 and the three-phase electromagnetic device of Patent Document 2 are required to separate and wind the main winding and the control winding, so that space reduction and assembly are easy. There is a problem that it is difficult to apply the lap winding of the general-purpose technology.

本発明は、これらの実情に鑑みてなされたものであり、鉄心の突き合わせ面にギャップを必要とせず、タップを用いることなくリアクタンスを広範囲に可変できる三相電磁機器であって、磁気回路構造および巻線の巻装構造が簡単で、巻線の個数が少なく、組み立てが簡単で、かつ、巻線の占積率が大きく低損失な三相電磁機器を提供することをその目的とする。   The present invention has been made in view of these circumstances, and is a three-phase electromagnetic device capable of varying a reactance over a wide range without using a gap on the abutting surface of the iron core without using a tap. It is an object of the present invention to provide a three-phase electromagnetic device having a simple winding structure, a small number of windings, simple assembly, a large winding space factor, and a low loss.

本発明は、特許文献2に示す18個の直線磁心に巻き回す12個の制御巻線の巻線数量を低減するにあたって、従来は交流巻線の電流歪みが増大する原因となる直流磁束の重畳による偏磁を防止するため困難と言われていた、同一直線磁心への交流巻線と制御巻線との巻き回しに着目し、制御巻線に適切な巻き回し方向を設定することで、同一相の交流端子間に偏磁が生じないことを見出したことによるものである。さらに、交流巻線と制御巻線とを同一直線磁心に巻き回すことで、制御磁束が磁路全体に還流し、リアクタンスを広範囲に可変することができることを見出したことによるものである。   According to the present invention, in reducing the number of 12 control windings wound around 18 linear magnetic cores shown in Patent Document 2, conventionally, the superposition of DC magnetic flux which causes an increase in current distortion of the AC windings. Focusing on the winding of the AC winding and the control winding around the same linear magnetic core, which was said to be difficult to prevent demagnetization due to the same, by setting the appropriate winding direction on the control winding, it is the same This is because it has been found that no demagnetization occurs between the AC terminals of the phases. Furthermore, it is because the control magnetic flux is returned to the entire magnetic path by winding the AC winding and the control winding around the same linear magnetic core, and the reactance can be varied over a wide range.

上記課題を解決するために、本発明の第1の技術手段は、中心側が連結され放射状に対称的に配列した6つの直線磁心を有し、各直線磁心の周辺端部を連結磁心により連結した6脚磁心を備えた三相電磁機器であって、各前記直線磁心に主巻線及び制御巻線を巻回し、2つの主巻線を1対として3対の主巻線とし、各対の主巻線を三相交流電源の各相に対応させて直列又は並列に接続し、前記制御巻線を前記3対の主巻線による主磁束によって生じる誘起電圧を打消すように直列又は並列に接続するとともに前記制御巻線の開放端子側に制御回路を接続し、該制御回路から前記制御巻線に直流制御電流を供給することにより直流制御磁束を発生させ、前記主磁束と前記直流制御磁束の共通磁路の磁気抵抗を制御し主巻線のリアクタンスを連続的に可変させることを特徴としている。   In order to solve the above-mentioned problems, the first technical means of the present invention has six linear magnetic cores connected at the center side and arranged radially symmetrically, and the peripheral ends of the respective linear magnetic cores are connected by the connecting magnetic cores. A three-phase electromagnetic device having a six-leg magnetic core, in which a main winding and a control winding are wound around each of the linear magnetic cores, and two main windings are used as one pair to form three main windings. A main winding is connected in series or in parallel corresponding to each phase of the three-phase AC power supply, and the control winding is connected in series or in parallel so as to cancel the induced voltage caused by the main magnetic flux generated by the three pairs of main windings. And connecting a control circuit to the open terminal side of the control winding and supplying a DC control current from the control circuit to the control winding to generate a DC control flux, and the main flux and the DC control flux Control the reluctance of the main winding by controlling the reluctance of the common magnetic path It is characterized by varying the.

第2の技術手段は、第1の技術手段において、前記1対の主巻線を巻回した直線磁心は、同一軸上に位置する2つの直線磁心であることを特徴としている。
第3の技術手段は、第1の技術手段において、前記一対の主巻線を巻回した直線磁心は、隣接する2つの直線磁心であることを特徴としている。
A second technical means is characterized in that, in the first technical means, the linear magnetic cores wound with the pair of main windings are two linear magnetic cores located on the same axis.
The third technical means is characterized in that, in the first technical means, the linear magnetic cores wound with the pair of main windings are two adjacent linear magnetic cores.

第4の技術手段は、第2または第3の技術手段において、前記1対の主巻線となる2つの主巻線から生じる磁束の方向が前記中心側に向かって同方向となるように、前記1対の主巻線を直列又は並列に接続したことを特徴としている。   The fourth technical means is the second or third technical means, so that the direction of the magnetic flux generated from the two main windings as the pair of main windings is the same direction toward the center side. The pair of main windings are connected in series or in parallel.

第5の技術手段は、第1〜4のいずれか1の技術手段において、各相の主巻線及び制御巻線を巻回した直線磁心に二次巻線を追加配置したことを特徴としている。   A fifth technical means is characterized in that in any one of the first to fourth technical means, a secondary winding is additionally arranged on a linear magnetic core wound with a main winding and a control winding of each phase. .

本発明によれば、鉄心の突き合わせ面にギャップを必要とせず、タップを用いることなくリアクタンスを広範囲に可変できる三相電磁機器であって、磁気回路構造および巻線の巻装構造が簡単で、巻線の個数が少なく、組み立てが簡単で、かつ、巻線の占積率が大きく低損失な三相電磁機器を実現することができる。   According to the present invention, a three-phase electromagnetic device capable of varying a reactance over a wide range without using a gap on the abutting surface of the iron core without using a tap, the magnetic circuit structure and the winding structure of the winding are simple, It is possible to realize a three-phase electromagnetic device with a small number of windings, easy assembly, a large winding space factor and low loss.

また、本発明を電力系統に使用することにより、近年の電力需要の増大や負荷の多様化による電力系統の電圧の変動等に対応可能で、フレキシブルな電力設備の提供が図られ、電力系統の電圧安定化や力率及び潮流のより適切な制御に寄与できる。   Further, by using the present invention for an electric power system, it is possible to cope with a recent increase in electric power demand and a fluctuation in the electric power system voltage due to diversification of loads, and to provide a flexible electric power facility. This can contribute to voltage stabilization and more appropriate control of power factor and power flow.

本発明による三相電磁機器の基本構成例を示す図である。It is a figure which shows the basic structural example of the three-phase electromagnetic device by this invention. 本発明の三相電磁機器の等価回路を示す図である。It is a figure which shows the equivalent circuit of the three-phase electromagnetic device of this invention. 本発明による三相電磁機器の磁心の構成及び巻線の接続を説明するための図である。It is a figure for demonstrating the structure of the magnetic core of the three-phase electromagnetic device by this invention, and the connection of a coil | winding. 本発明による三相電磁機器の磁心組立例を示す図である。It is a figure which shows the example of a magnetic core assembly of the three-phase electromagnetic device by this invention. 本発明による三相電磁機器の磁心構成例を示す図である。It is a figure which shows the example of a magnetic core structure of the three-phase electromagnetic device by this invention. 本発明による三相電磁機器の巻線構成例を示す図である。It is a figure which shows the example of a coil | winding structure of the three-phase electromagnetic device by this invention. 本発明による三相電磁機器の制御磁束例を説明するための図である。It is a figure for demonstrating the example of control magnetic flux of the three-phase electromagnetic equipment by this invention. 本発明の三相電磁機器の制御特性例を示す図である。It is a figure which shows the control characteristic example of the three-phase electromagnetic equipment of this invention. 本発明による変圧機能を有する三相電磁機器の例を示す図である。It is a figure which shows the example of the three-phase electromagnetic device which has a transformation function by this invention. 本発明の無効電力補償装置への適用例を示す図である。It is a figure which shows the example of application to the reactive power compensation apparatus of this invention. 従来の三相形電磁機器の例を示す図である。It is a figure which shows the example of the conventional three-phase electromagnetic device. 従来の三相電磁機器の他の例を示す図である。It is a figure which shows the other example of the conventional three-phase electromagnetic device.

以下、図面を参照しながら、本発明の三相電磁機器に係る好適な実施の形態について説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。   Hereinafter, preferred embodiments of the three-phase electromagnetic device of the present invention will be described with reference to the drawings. In the following description, the configurations denoted by the same reference numerals in different drawings are the same, and the description thereof may be omitted.

図1は、本発明による三相電磁機器の磁心及び巻線の基本構成例を示す図、図2は、本発明の三相電磁機器を等価的に回路表示した回路構成を示す図、図3は、図1で示した三相電磁機器の磁心の構成及び巻線の接続を説明するための図である。   FIG. 1 is a diagram showing a basic configuration example of a magnetic core and windings of a three-phase electromagnetic device according to the present invention, FIG. 2 is a diagram showing a circuit configuration in which the three-phase electromagnetic device of the present invention is equivalently displayed, and FIG. These are the figures for demonstrating the structure of the magnetic core of 3 phase electromagnetic equipment shown in FIG. 1, and the connection of a coil | winding.

本三相電磁機器を構成する磁心は、図3の如く、6つの直線磁心3aa、3ab、3ba、3bb、3ca及び3cbの夫々の一端部(中心側)を集合させて接合し、隣接する直線磁心がなす角度が60゜となるように配置して6つの脚部を形成している。さらに、6つの脚部を形成する直線磁心の他方の端部(周辺端部)を6つの鉄心窓部が形成されるように、環状ヨークとなる連結磁心3dで連結した6脚磁心を構成している。なお、直線磁心3aa、3ab、3ba、3bb、3ca及び3cbの夫々の接合部及び連結磁心3dとの接合部は、磁心を構成する各々の積層鋼板を平行になるように突き合わせて構成することができる。   As shown in FIG. 3, the magnetic cores constituting the three-phase electromagnetic device are joined together by gathering one end (center side) of each of the six linear magnetic cores 3aa, 3ab, 3ba, 3bb, 3ca and 3cb. The six legs are formed so that the angle formed by the magnetic core is 60 °. Further, a six-leg magnetic core is configured in which the other end (peripheral end) of the linear magnetic core forming the six legs is connected by a connecting magnetic core 3d serving as an annular yoke so that six iron core window portions are formed. ing. In addition, each joint part of the linear magnetic cores 3aa, 3ab, 3ba, 3bb, 3ca and 3cb and the joint part with the connecting magnetic core 3d may be configured by abutting each laminated steel plate constituting the magnetic core so as to be parallel to each other. it can.

6つの直線磁心には、各々交流主巻線(以下、「主巻線」と言う。)及び直流制御巻線(以下、「制御巻線」と言う。)を巻装する。具体的には、第1の直線磁心3aaには主巻線1aa及び制御巻線2aを、第1の直線磁心3aaと同一軸上に配置された第2の直線磁心3abには主巻線1ab及び制御巻線2dを巻回する。ここで、主巻線1aa及び1abは一対の主巻線として、三相交流電源の1相に対応するものであり、両主巻線から生じる磁束φa1及びφa2が中心方向に向かって対向するように、すなわち中心側に向かって同じ方向になるように直列又は並列に接続する。   An AC main winding (hereinafter referred to as “main winding”) and a DC control winding (hereinafter referred to as “control winding”) are wound around each of the six linear magnetic cores. Specifically, the main winding 1aa and the control winding 2a are provided in the first linear magnetic core 3aa, and the main winding 1ab is provided in the second linear magnetic core 3ab disposed on the same axis as the first linear magnetic core 3aa. And the control winding 2d is wound. Here, the main windings 1aa and 1ab correspond to one phase of the three-phase AC power supply as a pair of main windings, and the magnetic fluxes φa1 and φa2 generated from both main windings face each other in the central direction. That is, they are connected in series or in parallel so as to be in the same direction toward the center side.

同様に、第3の直線磁心3baには主巻線1ba及び制御巻線2cを、第3の直線磁心3baと同一軸上に配置された第4の直線磁心3bbには主巻線1bb及び制御巻線2fを巻回し、主巻線1ba及び1bbは、両主巻線から生じる磁束φb1及びφb2が中心方向に向かって対向するように直列又は並列に接続する。   Similarly, the main winding 1ba and the control winding 2c are provided in the third linear magnetic core 3ba, and the main winding 1bb and the control winding are provided in the fourth linear magnetic core 3bb disposed on the same axis as the third linear magnetic core 3ba. The winding 2f is wound, and the main windings 1ba and 1bb are connected in series or in parallel so that the magnetic fluxes φb1 and φb2 generated from both main windings face each other in the central direction.

さらに、第5の直線磁心3caには主巻線1ca及び制御巻線2eを、第5の直線磁心3caと同一軸上に配置された第6の直線磁心3cbには主巻線1cb及び制御巻線2bを巻回し、主巻線1ca及び1cbは、両主巻線から生じる磁束φc1及びφc2が中心方向に向かって対向するように直列又は並列に接続する。   The fifth linear magnetic core 3ca has a main winding 1ca and a control winding 2e. The sixth linear magnetic core 3cb arranged on the same axis as the fifth linear magnetic core 3ca has a main winding 1cb and a control winding. The wire 2b is wound, and the main windings 1ca and 1cb are connected in series or in parallel so that the magnetic fluxes φc1 and φc2 generated from both main windings face each other in the central direction.

直線磁心3aa、3ab、3ba、3bb、3ca及び3cbに巻回した6つの制御巻線2a、2d、2c、2f、2e及び2bは、主巻線1aa及び1ab、主巻線1ba及び1bb、並びに主巻線1ca及び1cbによる磁束で制御巻線2a、2d、2c、2f、2e及び2bに誘起する電圧が互いに打消されるように直列又は並列に接続され、その開放端子側に制御回路4を接続する。   Six control windings 2a, 2d, 2c, 2f, 2e, and 2b wound around the linear magnetic cores 3aa, 3ab, 3ba, 3bb, 3ca, and 3cb include main windings 1aa and 1ab, main windings 1ba and 1bb, and It is connected in series or in parallel so that the voltages induced in the control windings 2a, 2d, 2c, 2f, 2e and 2b by the magnetic fluxes of the main windings 1ca and 1cb cancel each other, and the control circuit 4 is provided on the open terminal side. Connecting.

図3の例では、制御巻線2a、2c及び2eは、制御直流電流Icと同方向に流れる電流が誘起されると、直線磁心の中心側に向かう磁束を発生するように、また、制御巻線2b、2d及び2fは、制御直流電流Icと同方向に流れる電流が誘起されると、直線磁心の周辺端部に向かう磁束を発生するように、直列接続されている。   In the example of FIG. 3, the control windings 2a, 2c, and 2e generate a magnetic flux toward the center side of the linear magnetic core when a current flowing in the same direction as the control DC current Ic is induced. The lines 2b, 2d and 2f are connected in series so as to generate a magnetic flux toward the peripheral end of the linear magnetic core when a current flowing in the same direction as the control DC current Ic is induced.

例えば、第1の直線磁心3aaの主巻線1aaに流れる電流によって生じる磁束φa1の変化によって同じ直線磁心3aaに巻回した制御巻線2aに誘起される電圧と、第2の直線磁心3abの主巻線1abに流れる電流によって生じる磁束φa2の変化によって制御巻線2dに誘起される電圧とが互いに打ち消されるように、制御巻線2aと2dとが直列接続されている。同様に、制御巻線2bと2e、及び制御巻線2cと2fとに誘起される電圧がそれぞれ互いに打ち消されるように直列接続されている。そして、主巻線には平衡三相交流電流が流れるので、制御巻線の誘起電圧は互いに打ち消される。   For example, the voltage induced in the control winding 2a wound around the same linear magnetic core 3aa by the change of the magnetic flux φa1 generated by the current flowing in the main winding 1aa of the first linear magnetic core 3aa and the main of the second linear magnetic core 3ab The control windings 2a and 2d are connected in series so that the voltage induced in the control winding 2d is canceled by the change in the magnetic flux φa2 generated by the current flowing through the winding 1ab. Similarly, the voltages induced in the control windings 2b and 2e and the control windings 2c and 2f are connected in series so as to cancel each other. Since the balanced three-phase alternating current flows through the main winding, the induced voltages of the control windings cancel each other.

それ故、図3に示すように、制御巻線を全て直列に接続することも可能であるし、制御巻線2aと2d、2bと2e、2cと2fとをそれぞれ直列接続し、これらの直列接続したものを並列に直並列に接続することもできる。   Therefore, as shown in FIG. 3, it is possible to connect all the control windings in series, or connect the control windings 2a and 2d, 2b and 2e, 2c and 2f in series, respectively. The connected ones can also be connected in series and parallel.

図3において、直線磁心に巻装して接続した主巻線の開放端子に三相交流電源を接続し、それぞれの主巻線に図示矢印方向の電流ILu、ILv、ILwが流れているとする。なお、電流矢印方向を正サイクルとした場合、負サイクルでは逆方向の電流が流れる。
上記構成の三相電磁機器は、制御巻線に直流制御電流を流さない場合には、主巻線1aa及び1ab、主巻線1ba及び1bb、主巻線1ca及び1cbより発生する各相各々の交流磁束は、直線磁心を連結した連結磁心を介して還流することになる。
In FIG. 3, it is assumed that a three-phase AC power source is connected to an open terminal of a main winding that is wound and connected to a linear magnetic core, and currents ILu, ILv, and ILw in the directions indicated by the arrows flow through the main windings. . When the current arrow direction is a positive cycle, a reverse current flows in the negative cycle.
In the three-phase electromagnetic device having the above configuration, when no DC control current is supplied to the control winding, each of the phases generated from the main windings 1aa and 1ab, the main windings 1ba and 1bb, and the main windings 1ca and 1cb. The AC magnetic flux returns through a connecting magnetic core that connects linear magnetic cores.

以下、主巻線1aaを巻装した第1の直線磁心3aaと主巻線1abを巻装した第2の直線磁心3abに着目して説明する。
電流ILuが流れると、磁路には主巻線1aaにより主磁束φa1、並びに主巻線1abにより主磁束φa2がそれぞれ発生する。発生した主磁束は、制御巻線に直流制御電流を流さない場合には、他の直線磁路部及び連結磁心3dを通過し、主巻線には巻数と磁心の磁気抵抗に応じたリアクタンスが生ずる。ここで、直線磁心及び連結磁心は、制御磁束φdcと主磁束φa1、φa2との共通磁路となる。
Hereinafter, the description will be given focusing on the first linear magnetic core 3aa wound with the main winding 1aa and the second linear magnetic core 3ab wound with the main winding 1ab.
When current ILu flows, main magnetic flux φa1 and main magnetic flux φa2 are generated in the magnetic path by main winding 1aa and main winding 1ab, respectively. The generated main magnetic flux passes through another linear magnetic path portion and the connecting magnetic core 3d when no DC control current is passed through the control winding, and the main winding has a reactance according to the number of turns and the magnetic resistance of the magnetic core. Arise. Here, the linear magnetic core and the connecting magnetic core serve as a common magnetic path for the control magnetic flux φdc and the main magnetic fluxes φa1 and φa2.

以上のことは、主巻線1baを巻装した第3の直線磁心3baと主巻線1bbを巻装した第4の直線磁心3bbとに着目した場合、及び、主巻線1caを巻装した第5の直線磁心3caと主巻線1cbを巻装した第6の直線磁心3cbとに着目した場合も同様である。   The above is the case where attention is paid to the third linear magnetic core 3ba around which the main winding 1ba is wound and the fourth linear magnetic core 3bb around which the main winding 1bb is wound, and the case where the main winding 1ca is wound. The same applies to the case where attention is paid to the fifth linear magnetic core 3ca and the sixth linear magnetic core 3cb around which the main winding 1cb is wound.

主巻線電流ILuを流した状態で制御巻線に直流制御電流Icを流すと、制御巻線2a、2b、2c、2d、2e及び2fにおいて、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで、制御巻線磁束φdcと主磁束φa1及びφa2が同方向となる共通磁路部分の磁束密度が大となって透磁率が変化し、主磁束が制御されリアクタンスが低下する。   When the DC control current Ic is supplied to the control winding while the main winding current ILu is supplied, in the control windings 2a, 2b, 2c, 2d, 2e and 2f, the product of the number of turns of the control winding and the control current Ic When the magnetomotive force expressed is generated, the magnetic flux density of the common magnetic path portion in which the control winding magnetic flux φdc and the main magnetic fluxes φa1 and φa2 are in the same direction increases, and the permeability changes, and the main magnetic flux is controlled. Reactance decreases.

このことは、他の直線磁心についても同様に成り立つことから、直流制御電流Icを調整することによって、リアクタンスを可変できる三相電磁機器として動作することができる。   Since this holds true for other linear magnetic cores, it is possible to operate as a three-phase electromagnetic device whose reactance can be varied by adjusting the DC control current Ic.

以上のように本発明の磁気回路構成は、透磁率を変化させ、主磁束を制御しリアクタンスを可変するための主磁束と制御磁束の共通磁路が、各直線磁心及び連結磁心となっており、後述するように当該磁路の磁気抵抗を広範囲に変化させることにより、従来の構造に比し、リアクタンスを広範囲に可変することができる。   As described above, in the magnetic circuit configuration of the present invention, the common magnetic path of the main magnetic flux and the control magnetic flux for changing the permeability, controlling the main magnetic flux, and changing the reactance is each linear magnetic core and the connecting magnetic core. As will be described later, the reactance can be varied over a wide range as compared with the conventional structure by changing the magnetic resistance of the magnetic path over a wide range.

図4は、本発明による三相電磁機器の磁心組立例を示したもので、積鉄心構造で構成した直線磁心3に、主巻線1及び制御巻線2を填め込んだ後、外側の連結磁心3を組立てて構成したものであり、組立てが簡単で巻線の占積率を向上させ、電磁機器の軽量化を図ることができる。ここで、主巻線1及び制御巻線2は重ね巻きをした一体構造のものを用いることができる。   FIG. 4 shows an example of assembling a magnetic core of a three-phase electromagnetic device according to the present invention. After the main winding 1 and the control winding 2 are inserted into a linear magnetic core 3 constructed with a stacked core structure, the outer coupling is shown. The magnetic core 3 is assembled and configured, the assembly is simple, the space factor of the winding is improved, and the weight of the electromagnetic device can be reduced. Here, the main winding 1 and the control winding 2 can be of an integral structure with lap winding.

図5は、本発明による三相電磁機器の磁心構成例を示したもので、図5(A)は、前述の如く直線磁心を連結する連結磁心形状が円形状を成すものであり、電動機などで使用される打ち抜き鉄心から簡単に構成することができる。図5(B)は、直線磁心を連結した中央部の穴形状を省略したもので、上記と同様に電動機などで使用される打ち抜き鉄心から簡単に構成することができる。   FIG. 5 shows an example of a magnetic core configuration of a three-phase electromagnetic device according to the present invention. FIG. 5A shows a case where the connecting magnetic cores connecting the linear magnetic cores form a circular shape as described above. Can be easily constructed from the punched iron core used in FIG. 5B omits the central hole shape connecting the linear magnetic cores, and can be simply configured from a punched iron core used in an electric motor or the like as described above.

図5(C)及び図5(D)は直線磁心を連結する連結磁心形状が直線状を成すものであり、打ち抜き鉄心のほか積鉄心で簡単に構成することができる。なお、連結磁心は、6つの連結磁心が同等の構成であれば、様々な形状で構成することが可能である。図5(E)及び図5(F)は磁心中央部における直線磁心同士の接続部を連結磁心とし、巻線を巻回する窓形状を台形にしたものであり、積鉄心で簡単に構成することができるほか巻線の占積率を向上させ、電磁機器の軽量化を図ることができる。   5 (C) and 5 (D), the shape of the connecting magnetic cores connecting the linear magnetic cores is a straight line, and can be easily configured with a stacked iron core in addition to the punched iron core. Note that the connecting magnetic cores can be formed in various shapes as long as the six connecting magnetic cores have the same configuration. 5 (E) and 5 (F), the connecting portion of the linear magnetic cores in the central portion of the magnetic core is a connecting magnetic core, and the window shape around which the winding is wound has a trapezoidal shape, and is simply configured with an iron core. In addition, the space factor of the winding can be improved, and the weight of the electromagnetic device can be reduced.

図6は、本発明による三相電磁機器の巻線構成例を示したもので、図6(A)は主巻線と制御巻線を分離巻きとして構成した例、図6(B)は主巻線と制御巻線を重ね巻きとして構成した例である。本発明による三相電磁機器は、巻装構成を図6(B)の如く重ね巻きとすることが可能であり、図11、図12に示す従来の巻装構成で必須となっていた分離巻装する場合と比較して、巻装構成の大幅な簡略化が可能となる。   FIG. 6 shows an example of the winding configuration of the three-phase electromagnetic device according to the present invention. FIG. 6 (A) shows an example in which the main winding and the control winding are configured as separate windings, and FIG. 6 (B) shows the main winding. This is an example in which the winding and the control winding are configured as a lap winding. In the three-phase electromagnetic device according to the present invention, the winding configuration can be overlapped as shown in FIG. 6B, and the separated winding that is essential in the conventional winding configuration shown in FIGS. Compared with the case of wearing, the winding configuration can be greatly simplified.

図7は、三相電磁機器において、制御電流を流した場合の制御磁束及び磁路の磁束密度例を示したもので、図7(A)は本発明の制御巻線配置とした場合の例、図7(B)は図11に示す従来の制御巻線配置とした場合の例である。図7において、磁束密度が大きくなる部分については、濃く塗りつぶしてある。   FIG. 7 shows an example of the magnetic flux density of the control magnetic flux and the magnetic path when a control current is passed in a three-phase electromagnetic device. FIG. 7A shows an example of the case of the control winding arrangement of the present invention. FIG. 7B shows an example in the case of the conventional control winding arrangement shown in FIG. In FIG. 7, the portion where the magnetic flux density is large is painted darkly.

従来の制御巻線配置では、制御巻線を外側の連結磁心に巻装しているため、制御磁束は連結磁心のみを還流し、磁束密度が大となる領域は連結磁心のみに限られている。これに対して、本発明の制御巻線配置にすることで、磁心部全体に制御磁束が還流し、磁束密度が大となる領域が直線磁心及び連結磁心の全てとなることから、従来の構造に比し、リアクタンスを広範囲に可変することができる。   In the conventional control winding arrangement, since the control winding is wound around the outer connecting magnetic core, the control magnetic flux only circulates through the connecting magnetic core, and the region where the magnetic flux density becomes large is limited only to the connecting magnetic core. . On the other hand, by adopting the control winding arrangement of the present invention, the control magnetic flux circulates in the entire magnetic core portion, and the region where the magnetic flux density is large is all of the linear magnetic core and the connecting magnetic core. Compared with the above, the reactance can be varied over a wide range.

図8は、本発明による三相電磁機器に三相交流電圧を印加し、直流制御電流Icを増加させた場合の制御特性例を示したものである。図8(A)は、主巻線電流の制御特性例を示したものであり、直流制御電流Icを増加させることにより、リアクタンスが変化し、主巻線電流を線形に可変できることが分かる。図8(B)は、主巻線電流の電流歪み特性例を示したものであり、直流制御電流Icによらず良好な主巻線電流歪みであることが分かる。また、上記の制御特性は三相各相の不平衡が無く、測定誤差の範囲で一致している。   FIG. 8 shows an example of control characteristics when a three-phase AC voltage is applied to the three-phase electromagnetic device according to the present invention to increase the DC control current Ic. FIG. 8A shows an example of control characteristics of the main winding current, and it can be seen that the reactance changes and the main winding current can be varied linearly by increasing the DC control current Ic. FIG. 8B shows a current distortion characteristic example of the main winding current, and it can be seen that the main winding current distortion is good regardless of the DC control current Ic. In addition, the above control characteristics have no unbalance between the three phases, and are consistent within the measurement error range.

以上のように、本発明によると、直流制御電流を調整することにより三相各相のリアクタンスを高速且つ連続的に可変することができる。   As described above, according to the present invention, the reactance of each of the three phases can be varied at high speed and continuously by adjusting the DC control current.

図9は、本発明による変圧機能を有する三相電磁機器の例を示す図である。図1で示した磁心巻線構成において、電磁機器を構成する主巻線部を一次巻線とし、一次巻線5aaを巻回した直線磁心に二次巻線6aa、一次巻線5abを巻回した直線磁心に二次巻線6ab、一次巻線5baを巻回した直線磁心に二次巻線6ba、一次巻線5bbを巻回した直線磁心に二次巻線6bb、一次巻線5caを巻回した直線磁心に二次巻線6ca、一次巻線5cbを巻回した直線磁心に二次巻線6cbを巻回し、これらの二次巻線を一次巻線と同様に接続して構成することにより、変圧機能を有する三相電磁機器を実現することができる。   FIG. 9 is a diagram showing an example of a three-phase electromagnetic device having a transformer function according to the present invention. In the configuration of the magnetic core winding shown in FIG. 1, the main winding constituting the electromagnetic device is a primary winding, and the secondary winding 6aa and the primary winding 5ab are wound around a linear magnetic core wound with the primary winding 5aa. The secondary winding 6ab and the primary winding 5ba are wound around the straight magnetic core, the secondary winding 6ba is wound around the linear magnetic core wound around the primary winding 5bb, and the secondary winding 6bb and the primary winding 5ca are wound around the linear magnetic core wound around the primary winding 5bb. The secondary winding 6ca and the primary winding 5cb are wound around the rotated linear magnetic core, the secondary winding 6cb is wound around the linear magnetic core, and these secondary windings are connected in the same manner as the primary winding. Thus, a three-phase electromagnetic device having a transformation function can be realized.

図9において、一次巻線に三相交流電源を接続し二次巻線には三相負荷を接続し、それぞれの二次巻線に図示矢印方向の電流ILu2、ILv2、ILw2が流れていたとする。
以下、一次巻線5aaを巻回した第1の直線磁心と一次巻線5abを巻回した第2の直線磁心について説明する。
In FIG. 9, it is assumed that a three-phase AC power source is connected to the primary winding and a three-phase load is connected to the secondary winding, and currents ILu2, ILv2, and ILw2 in the directions indicated by the arrows flow through the respective secondary windings. .
Hereinafter, the first linear magnetic core wound with the primary winding 5aa and the second linear magnetic core wound with the primary winding 5ab will be described.

制御電流を流さない場合には、一次巻線5aa及び5abには、上記二次電流で発生した磁束を打消すように一次電流ILu1が流れ、一次巻線5aa及び5abと二次巻線6aa及び6abの巻数比に応じて変圧され、また、一次巻線5ba及び5bbと二次巻線6ba及び6bb、一次巻線5ca及び5cbと二次巻線6ca及び6cbに着目した場合も同様であることから全体として変圧器として機能する。   When the control current is not passed, the primary currents ILu1 flow in the primary windings 5aa and 5ab so as to cancel the magnetic flux generated by the secondary current, and the primary windings 5aa and 5ab and the secondary windings 6aa and The same applies when attention is paid to the primary windings 5ba and 5bb and the secondary windings 6ba and 6bb, the primary windings 5ca and 5cb, and the secondary windings 6ca and 6cb. As a whole, it functions as a transformer.

制御巻線に直流制御電流Icを流すと、制御巻線の巻数と制御電流Icの積で表される起磁力が発生することで透磁率が変化し、主磁束が制御される。このため、一次巻線には制御電流の制御に伴う主磁束の減少に応じて、一次巻線の端子間電圧を維持するために必要な主磁束を発生させるための励磁電流が増加する。   When a DC control current Ic is passed through the control winding, a magnetic force is generated by generating a magnetomotive force represented by the product of the number of turns of the control winding and the control current Ic, thereby controlling the main magnetic flux. For this reason, the excitation current for generating the main magnetic flux required to maintain the voltage between the terminals of the primary winding increases in accordance with the decrease of the main magnetic flux accompanying the control of the control current.

即ち、変圧器としての変圧機能に加えて、制御電流を調整することで主巻線のリアクタンスを連続的に可変して一次側に流入する遅れ無効分電流の調整が可能となる。このことは、同様に他の直線磁心についても成り立つことから、変圧器としての変圧機能に加えて、リアクタンスを可変できる三相電磁機器として機能することができる。   That is, in addition to the transformer function as a transformer, the reactive current of the main winding can be continuously varied by adjusting the control current, and the delay reactive current flowing into the primary side can be adjusted. Since this holds true for other linear magnetic cores as well, in addition to the transformer function as a transformer, it can function as a three-phase electromagnetic device whose reactance can be varied.

(適用例)
図10は、本発明の三相電磁機器の無効電力補償装置への適用例を示す等価回路である。
図10において、本発明による三相電磁機器を三相結線し、電力用コンデンサ7を並列に接続したものを送電線路に並列に挿入し、電磁機器の制御により、系統に生じる遅相から進相の無効電力を連続的に補償するようにしたものである。
(Application example)
FIG. 10 is an equivalent circuit showing an application example of the present invention to a reactive power compensator for a three-phase electromagnetic device.
In FIG. 10, a three-phase electromagnetic device according to the present invention is three-phase connected, and a power capacitor 7 connected in parallel is inserted in parallel to the transmission line, and the phase is advanced from the slow phase generated in the system by controlling the electromagnetic device. The reactive power is continuously compensated.

以上詳述したように、本発明によれば、タップを設けることなく、制御巻線を連結磁心へ巻装する必要がないため、組立が簡単で、鉄心の突き合わせ面にギャップを必要とせずに、広範囲にリアクタンスを可変する三相電磁機器を実現することができる。また、近年の電力需要の増大や負荷の多様化により、系統電圧の変動等負荷の多様化に対応できるフレキシブルな電力設備の提供が図られ、電力系統の電圧安定化や力率及び潮流のより適切な制御に寄与できる。   As described above in detail, according to the present invention, since it is not necessary to wind the control winding around the connecting magnetic core without providing a tap, the assembly is simple and no gap is required on the abutting surface of the iron core. It is possible to realize a three-phase electromagnetic device with variable reactance over a wide range. In addition, due to the recent increase in power demand and diversification of loads, flexible power facilities that can cope with diversification of loads such as fluctuations in system voltage have been provided. Can contribute to appropriate control.

なお、上記実施形態では、1対の主巻線、例えば1aa、1abを巻回した直線磁心が、同一軸上に位置する2つの直線磁心3aa、3abである場合について説明したが、この他、発明の要旨を逸脱しない範囲で種々変形して実施することができる。   In the above embodiment, the case where the linear magnetic cores wound with a pair of main windings, for example, 1aa and 1ab are two linear magnetic cores 3aa and 3ab located on the same axis has been described. Various modifications can be made without departing from the scope of the invention.

例えば、1対の主巻線が隣接する2つの直線磁心に巻回されていてもよく、この場合、1対の主巻線の各主巻線から生じる磁束の方向は、中心側に向かって同方向となるように直列または並列に接続させておけばよい。そして、1対の主巻線と同じ直線磁心に巻回された2つの制御巻線は、一対の主巻線を流れる電流の変化によって生じる主磁束の変化による誘起電圧を打消すように接続しておけばよい。   For example, a pair of main windings may be wound around two adjacent linear magnetic cores. In this case, the direction of magnetic flux generated from each main winding of the pair of main windings is directed toward the center side. What is necessary is just to connect in series or parallel so that it may become the same direction. The two control windings wound around the same linear core as the pair of main windings are connected so as to cancel the induced voltage caused by the change in the main magnetic flux caused by the change in the current flowing through the pair of main windings. Just keep it.

1(1aa,1ab,1ba,1bb,1ca,1cb)…主巻線、2(2a,2b,2c,2d,2e,2f)…制御巻線、3(3aa,3ab,3ba,3bb,3ca,3cb,3d)…磁心、φa1,φa2,φb1,φb2,φc1,φc2…主磁束、φdc…制御磁束、4…制御回路、5(5aa,5ab,5ba,5bb,5ca,5cb)…一次巻線、6(6aa,6ab,6ba,6bb,6ca,6cb)…二次巻線、7…電力用コンデンサ。 1 (1aa, 1ab, 1ba, 1bb, 1ca, 1cb) ... main winding, 2 (2a, 2b, 2c, 2d, 2e, 2f) ... control winding, 3 (3aa, 3ab, 3ba, 3bb, 3ca, 3cb, 3d) ... magnetic core, φa1, φa2, φb1, φb2, φc1, φc2 ... main magnetic flux, φdc ... control magnetic flux, 4 ... control circuit, 5 (5aa, 5ab, 5ba, 5bb, 5ca, 5cb) ... primary winding , 6 (6aa, 6ab, 6ba, 6bb, 6ca, 6cb) ... secondary winding, 7 ... power capacitor.

Claims (5)

中心側が連結され放射状に対称的に配列した6つの直線磁心を有し、各前記直線磁心の周辺端部を連結磁心により連結した6脚磁心を備えた三相電磁機器であって、
各前記直線磁心に主巻線及び制御巻線を巻回し、2つの主巻線を1対として3対の主巻線とし、各対の主巻線を三相交流電源の各相に対応させて直列又は並列に接続し、
前記制御巻線を前記3対の主巻線による主磁束によって生じる誘起電圧を打消すように直列又は並列に接続するとともに前記制御巻線の開放端子側に制御回路を接続し、
該制御回路から前記制御巻線に直流制御電流を供給することにより直流制御磁束を発生させ、前記主磁束と前記直流制御磁束の共通磁路の磁気抵抗を制御し主巻線のリアクタンスを連続的に可変させることを特徴とする三相電磁機器。
A three-phase electromagnetic device having six linear magnetic cores connected at the center side and arranged radially symmetrically, and having a six-legged magnetic core in which peripheral ends of the linear magnetic cores are connected by a connecting magnetic core,
The main winding and the control winding are wound around each of the linear magnetic cores, the two main windings are paired into three main windings, and each pair of main windings corresponds to each phase of the three-phase AC power source. Connected in series or in parallel,
Connecting the control winding in series or in parallel so as to cancel the induced voltage caused by the main magnetic flux generated by the three pairs of main windings, and connecting a control circuit to the open terminal side of the control winding;
A DC control magnetic flux is generated by supplying a DC control current from the control circuit to the control winding, and a magnetic resistance of a common magnetic path of the main magnetic flux and the DC control magnetic flux is controlled to continuously react the reactance of the main winding. Three-phase electromagnetic equipment characterized by being variable.
前記1対の主巻線を巻回した直線磁心は、同一軸上に位置する2つの前記直線磁心であることを特徴とする請求項1記載の三相電磁機器。   The three-phase electromagnetic device according to claim 1, wherein the linear magnetic core around which the pair of main windings are wound is the two linear magnetic cores located on the same axis. 前記1対の主巻線を巻回した直線磁心は、隣接する2つの前記直線磁心であることを特徴とする請求項1記載の三相電磁機器。   The three-phase electromagnetic device according to claim 1, wherein the linear magnetic core around which the pair of main windings are wound is the two adjacent linear magnetic cores. 前記1対の主巻線となる2つの主巻線から生じる磁束の方向が前記中心側に向かって同方向となるように、前記1対の主巻線を直列又は並列に接続したことを特徴とする請求項2または3に記載の三相電磁機器。   The pair of main windings are connected in series or in parallel so that the direction of magnetic flux generated from the two main windings serving as the pair of main windings is the same direction toward the center. The three-phase electromagnetic device according to claim 2 or 3. 請求項1〜4のいずれか1に記載した三相電磁機器において、各相の主巻線及び制御巻線を巻回した直線磁心に二次巻線を追加配置したことを特徴とする三相電磁機器。   The three-phase electromagnetic device according to any one of claims 1 to 4, wherein a secondary winding is additionally arranged on a linear magnetic core wound with a main winding and a control winding of each phase. Electromagnetic equipment.
JP2013164016A 2013-08-07 2013-08-07 Three-phase electromagnetic equipment Active JP6025059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164016A JP6025059B2 (en) 2013-08-07 2013-08-07 Three-phase electromagnetic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164016A JP6025059B2 (en) 2013-08-07 2013-08-07 Three-phase electromagnetic equipment

Publications (2)

Publication Number Publication Date
JP2015032814A true JP2015032814A (en) 2015-02-16
JP6025059B2 JP6025059B2 (en) 2016-11-16

Family

ID=52517855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164016A Active JP6025059B2 (en) 2013-08-07 2013-08-07 Three-phase electromagnetic equipment

Country Status (1)

Country Link
JP (1) JP6025059B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103269A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
JP2018133455A (en) * 2017-02-15 2018-08-23 東北電力株式会社 Three-phase electromagnetic apparatus
JP2018133491A (en) * 2017-02-16 2018-08-23 ファナック株式会社 Reactor, motor drive device, power conditioner, and machine
JP2018133492A (en) * 2017-02-16 2018-08-23 ファナック株式会社 Reactor including iron core part and coil, motor drive device, power conditioner, and machine
JP2019029409A (en) * 2017-07-26 2019-02-21 ファナック株式会社 Reactor with iron core and coil
JP2019041119A (en) * 2018-11-08 2019-03-14 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511347A (en) * 1996-05-23 2000-08-29 アセア ブラウン ボベリ アクチボラグ Controllable inductor
JP2008177500A (en) * 2007-01-22 2008-07-31 Tohoku Univ Three-phase electromagnetic equipment
JP2013042028A (en) * 2011-08-18 2013-02-28 Tohoku Electric Power Co Inc Three-phase electromagnetic device
JP2015506162A (en) * 2011-12-09 2015-02-26 エーエスジー スーパーコンダクターズ エッセ.ピー.アー. Fault current limiter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511347A (en) * 1996-05-23 2000-08-29 アセア ブラウン ボベリ アクチボラグ Controllable inductor
US6154019A (en) * 1996-05-23 2000-11-28 Abb Ab Controllable inductor
JP2008177500A (en) * 2007-01-22 2008-07-31 Tohoku Univ Three-phase electromagnetic equipment
JP2013042028A (en) * 2011-08-18 2013-02-28 Tohoku Electric Power Co Inc Three-phase electromagnetic device
JP2015506162A (en) * 2011-12-09 2015-02-26 エーエスジー スーパーコンダクターズ エッセ.ピー.アー. Fault current limiter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103269A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
CN106876123A (en) * 2015-11-30 2017-06-20 发那科株式会社 Multiphase reactor
US10373753B2 (en) 2015-11-30 2019-08-06 Fanuc Corporation Multi-phase reactor capable of obtaining constant inductance for each phase
JP2018133455A (en) * 2017-02-15 2018-08-23 東北電力株式会社 Three-phase electromagnetic apparatus
JP2018133491A (en) * 2017-02-16 2018-08-23 ファナック株式会社 Reactor, motor drive device, power conditioner, and machine
JP2018133492A (en) * 2017-02-16 2018-08-23 ファナック株式会社 Reactor including iron core part and coil, motor drive device, power conditioner, and machine
US10770218B2 (en) 2017-02-16 2020-09-08 Fanuc Corporation Reactor, motor driver, power conditioner and machine
JP2019029409A (en) * 2017-07-26 2019-02-21 ファナック株式会社 Reactor with iron core and coil
US10685774B2 (en) 2017-07-26 2020-06-16 Fanuc Corporation Reactor having iron cores and coils
JP2019041119A (en) * 2018-11-08 2019-03-14 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase

Also Published As

Publication number Publication date
JP6025059B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP4646327B2 (en) Three-phase electromagnetic equipment
JP6025059B2 (en) Three-phase electromagnetic equipment
JP5896371B2 (en) Three-phase electromagnetic equipment
JP2010520636A (en) Transformer structure
US6166531A (en) Three phase to single phase power protection system with multiple primaries and UPS capability
US20070263335A1 (en) Single-phase filter for reducing harmonics
US20130021126A1 (en) Transformer
JP2016140126A (en) Electric power conversion device and electric power conversion system
JP2012231567A (en) Three-phase inverter type power generator
US10199952B2 (en) Quad-T transformer to convert AC single-phase to three-phase power
JP5520613B2 (en) Magnetic flux control type variable transformer
JP4411460B2 (en) Voltage regulation transformer
EP2993676B1 (en) Multi-phase common mode choke
JP5033898B2 (en) Power receiving equipment
JP5946177B2 (en) Three-phase electromagnetic equipment
EP3975210A1 (en) Three-phase magnetics assembly with unified core body
US10504645B2 (en) Gapless core reactor
JPH118138A (en) Coaxial, group of coaxial, maltiaxial and coaxial, phase-shifting adjustment coaxial orthogonal, multiphase phase-shifting adjustment co-axial orthogonal, group of coaxial orthogonal, group of phase-shifting coaxial orthogonal, three-phase and single-phase coaxial orthogonal, group of multiphase single-phase coaxial-orthogonal, variable voltage adjustment coaxial, variable phase-shifting coaxial orthogonal, total transformation coaxial orthogonal transformer, transformer with degaussing device and cooling manifold and reactor
JP6909462B2 (en) Three-phase electromagnetic equipment
JP4368051B2 (en) Electromagnetic equipment
CN110459385A (en) A kind of transformer and its iron core
JP7155081B2 (en) Static induction device
JP5918066B2 (en) Electromagnetic equipment
JP2005045133A (en) Electromagnetic device
JP2003068539A (en) Electromagnetic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6025059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250