JPH09266121A - Non-contact type power supply - Google Patents

Non-contact type power supply

Info

Publication number
JPH09266121A
JPH09266121A JP8076108A JP7610896A JPH09266121A JP H09266121 A JPH09266121 A JP H09266121A JP 8076108 A JP8076108 A JP 8076108A JP 7610896 A JP7610896 A JP 7610896A JP H09266121 A JPH09266121 A JP H09266121A
Authority
JP
Japan
Prior art keywords
coil
primary
power supply
primary coil
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8076108A
Other languages
Japanese (ja)
Inventor
Takuya Ishii
卓也 石井
Makoto Ono
信 大野
Etsuo Tsujimoto
悦夫 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8076108A priority Critical patent/JPH09266121A/en
Publication of JPH09266121A publication Critical patent/JPH09266121A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily identify the presence of an opposite secondary coil by constructing a primary coil with a plurality of primary windings wound such that magnetic fluxes produced in an O shaped closed magnetic path core are canceled out each other, and constructing the secondary coil with secondary windings wound on an I shaped open magnetic path core. SOLUTION: A primary coil 1 to which an rf current is supplied and a secondary coil 2 which is mounted in a different box from the primary coil 1 are opposed. The primary coil 1 is constructed with a plurality of primary windings 11 wound such that magnetic fluxes produced in an O shaped closed magnetic path core 10 are canceled out each other, and the secondary coil 2 is constructed with a secondary winding 12 wound on an I shaped open magnetic path core 20. Hereby, the primary coil 1 is short-circuited when the secondary coil 2 is not opposed thereto, so that the presence of the opposite to the secondary coil 2 is easily identified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電磁誘導を利用し
て、それぞれ独立した1次コイルから2次コイルへ電力
を伝達する非接触型電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type power supply device that utilizes electromagnetic induction to transmit power from independent primary coils to secondary coils.

【0002】[0002]

【従来の技術】従来、非接触型電源装置としては、特開
昭54−150645号公報などに開示されている。ま
た、その電力伝達部である1次コイルと2次コイルの形
状の開示されているものとしては、特開平6−2254
82号公報などがある。図9に従来の非接触型電源装置
の1次コイルと2次コイルの構成を示しており、図9
(a)は1次コイルと2次コイルがE形コアに巻線され
たもの、(b)は1次コイルがC形で2次コイルがI形
のものである。いずれも1次コイルに流れる高周波電流
が図中の向きの時、各コアに発生する磁束は図中の破線
のようになり、2次コイルに誘起される電圧を整流して
負荷に電力を供給する。
2. Description of the Related Art Conventionally, a non-contact type power supply device has been disclosed in Japanese Patent Laid-Open No. 54-150645. Further, as the disclosure of the shapes of the primary coil and the secondary coil, which are the power transmission parts, is disclosed in Japanese Patent Laid-Open No. 6-2254.
82 publication. FIG. 9 shows a configuration of a primary coil and a secondary coil of a conventional non-contact power supply device.
In (a), a primary coil and a secondary coil are wound around an E-shaped core, and in (b), the primary coil is C-shaped and the secondary coil is I-shaped. In both cases, when the high-frequency current flowing in the primary coil is in the direction shown in the figure, the magnetic flux generated in each core is as shown by the broken line in the figure, and the voltage induced in the secondary coil is rectified to supply power to the load. To do.

【0003】[0003]

【発明が解決しようとする課題】このような非接触型電
源装置においては、電力伝達のために2次コイルが1次
コイルと対向している場合と、2次コイルが1次コイル
と対向していない場合、あるいは2次コイル以外の物体
特に金属物が対向しているような場合との識別が課題で
あった。また、1次コイルのコアが開磁路であるため、
2次コイルが1次コイルと対向していない場合に、発生
する漏洩磁束によるノイズ対策も課題であった。
In such a non-contact power supply device, the secondary coil faces the primary coil and the secondary coil faces the primary coil for power transmission. The problem was to distinguish it from the case where it is not, or the case where an object other than the secondary coil, especially a metal object is facing. Also, since the core of the primary coil is an open magnetic circuit,
Another problem is how to prevent noise due to leakage flux generated when the secondary coil does not face the primary coil.

【0004】本発明は、このような非接触型電源装置に
おいて、2次コイルが1次コイルと対向していない場合
に、漏洩磁束の発生を抑制するとともに、2次コイルが
1次コイルと対向している場合としていない場合との識
別が容易にできる構造の提供を目的とする。
According to the present invention, in such a non-contact type power supply device, when the secondary coil does not face the primary coil, generation of leakage magnetic flux is suppressed and the secondary coil faces the primary coil. The purpose is to provide a structure that can be easily distinguished from the case where it is used and the case where it is not used.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
に、本発明の非接触型電源装置は、1次コイルはO形の
閉磁路コアに互いに発生する磁束が打ち消し合うように
巻回された複数の1次巻線から構成され、2次コイルは
I形の開磁路コアに巻回された2次巻線から構成される
ものである。
In order to solve this problem, in a non-contact type power supply device of the present invention, a primary coil is wound around an O-shaped closed magnetic circuit core so that magnetic fluxes generated by each other cancel each other out. The secondary coil is composed of a plurality of primary windings, and the secondary coil is composed of a secondary winding wound around an I-shaped open magnetic circuit core.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図8を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0007】(実施の形態1)図1は本発明の非接触型
電源装置の構成図であり、図1において1は1次コイル
であり、1次コア10、第1の1次巻線11、第2の1
次巻線12から構成される。1次コア10はO形の閉磁
路であり、対向する磁脚にそれぞれ1次巻線11及び1
2が巻線され、1次巻線11及び12は直列に接続され
ている。2は2次コイルであり、2次コア20と2次巻
線21から構成されている。2次コア20はI形であ
り、これに2次巻線21が巻線されている。3は高周波
交流電源であり、1次コイル1に接続され、高周波電流
を供給する。4は整流回路であり、2次コイル2に接続
され、2次コイル2に誘起される高周波交流電圧を整流
し、直流出力電圧として負荷5に供給する。6は電流制
限回路であり、高周波交流電源3から1次コイル1へ供
給される電流が過大とならないように制限する。また、
図2は2次コイル2が対向していない時の構成図であ
る。
(Embodiment 1) FIG. 1 is a block diagram of a non-contact type power supply device of the present invention. In FIG. 1, 1 is a primary coil, a primary core 10, a first primary winding 11 , The second one
It is composed of the secondary winding 12. The primary core 10 is an O-shaped closed magnetic circuit, and the primary windings 11 and 1 are provided on the opposing magnetic legs, respectively.
2 is wound and the primary windings 11 and 12 are connected in series. A secondary coil 2 is composed of a secondary core 20 and a secondary winding 21. The secondary core 20 has an I shape, and a secondary winding 21 is wound around the secondary core 20. Reference numeral 3 is a high frequency AC power supply, which is connected to the primary coil 1 and supplies a high frequency current. A rectifier circuit 4 is connected to the secondary coil 2 to rectify the high frequency AC voltage induced in the secondary coil 2 and supply it to the load 5 as a DC output voltage. A current limiting circuit 6 limits the current supplied from the high frequency AC power source 3 to the primary coil 1 so as not to become excessive. Also,
FIG. 2 is a configuration diagram when the secondary coils 2 do not face each other.

【0008】以上のように構成された非接触型電源装置
について、以下にその動作を述べる。高周波交流電源3
から供給された高周波電流は第1の1次巻線11と第2
の1次巻線12を流れる。この高周波電流が図1の矢印
の向きの時、第1の1次巻線11による磁束は1次コア
10の中の実線で示すように発生する。同様に第2の1
次巻線12による磁束は1次コア10の中の破線で示す
ように発生し、これらの磁束は2次コア20を通る。こ
のため2次コイル2には電圧が誘起され、整流回路4を
介して負荷5へ供給される。
The operation of the non-contact type power supply device configured as described above will be described below. High frequency AC power supply 3
The high-frequency current supplied from the first primary winding 11 and the second primary winding 11
Flowing through the primary winding 12 of the. When this high-frequency current is in the direction of the arrow in FIG. 1, the magnetic flux generated by the first primary winding 11 is generated as shown by the solid line in the primary core 10. Similarly the second one
The magnetic flux generated by the secondary winding 12 is generated as shown by the broken line in the primary core 10, and these magnetic fluxes pass through the secondary core 20. Therefore, a voltage is induced in the secondary coil 2 and is supplied to the load 5 via the rectifier circuit 4.

【0009】次に、図2のように2次コイル2が対向し
ていない場合、高周波電流が図2の矢印の向きの時、第
1の1次巻線11による磁束は1次コア10の中の実線
で示すように発生する。同様に第2の1次巻線12によ
る磁束は1次コア10の中の破線で示すように発生し、
これらの磁束は互いに打ち消し合う。このため1次コイ
ル1は短絡状態となり、電流制限回路6が動作して高周
波交流電源3からの電流を制限する。この時、1次コイ
ル1に発生する磁束は前記の通り打ち消し合う上、1次
コア10が閉磁路であるため漏洩磁束はほとんど発生し
ない。
Next, when the secondary coils 2 do not face each other as shown in FIG. 2, when the high frequency current is in the direction of the arrow in FIG. 2, the magnetic flux generated by the first primary winding 11 is in the primary core 10. It occurs as shown by the solid line inside. Similarly, the magnetic flux generated by the second primary winding 12 is generated as shown by the broken line in the primary core 10,
These magnetic fluxes cancel each other out. Therefore, the primary coil 1 is short-circuited, and the current limiting circuit 6 operates to limit the current from the high frequency AC power supply 3. At this time, the magnetic fluxes generated in the primary coil 1 cancel each other out as described above, and since the primary core 10 is a closed magnetic circuit, almost no leakage magnetic flux is generated.

【0010】なお、図1に示したように、1次コイル1
のO形コア内にI形の2次コイル2が挿入できるような
構造は、筐体も含む非接触型電源装置全体の形状的制約
から困難な場合が多い。しかし非接触型電源装置の1次
側と2次側がそれぞれの平面状の対向する筐体面71及
び72を有する場合として、図3に示すような構造でも
本発明は実施可能である。図3(a)は構造図、(b)
及び(c)はそれぞれその正面図と側面図である。煩雑
になるので(a)では筐体面71及び72は省略した。
As shown in FIG. 1, the primary coil 1
In many cases, it is difficult to form the structure in which the I-shaped secondary coil 2 can be inserted into the O-shaped core because of the shape restriction of the entire non-contact power supply device including the housing. However, the present invention can be implemented with a structure as shown in FIG. 3 in the case where the primary side and the secondary side of the non-contact type power supply device have respective planar facing casing surfaces 71 and 72. 3 (a) is a structural drawing, (b)
And (c) are a front view and a side view, respectively. Since it becomes complicated, the housing surfaces 71 and 72 are omitted in (a).

【0011】なお、1次コイル1に高周波電流を供給す
る手段を高周波交流電源3として説明したが、図4に示
すように、入力直流電源30とスイッチング手段31と
で構成し、入力直流電源30の直流電圧をスイッチング
手段31が高周波でチョッピングしても実施可能であ
る。
Although the means for supplying the high frequency current to the primary coil 1 has been described as the high frequency AC power source 3, it is composed of the input DC power source 30 and the switching means 31, as shown in FIG. It is also possible to implement the above DC voltage even if the switching means 31 chops at a high frequency.

【0012】なお、2次コイル2が対向していない場合
に、1次コイル1に流れる高周波電流を制限する手段と
して電流制限回路6を用いて説明したが、例えば図5
(a)のように抵抗60のような電流検出手段で高周波
電流を検出し、電流が所定値以上になろうとすると、ト
ランジスタ61によってスイッチング手段31をオフす
るような方法がある。これ以外の電流制限回路でも実施
可能である。さらに図5(b)に示したように1次コイ
ル1と直列にインダクタ62を接続し、2次コイル2が
対向していない場合に、1次コイル1が短絡状態となっ
てインダクタ62に入力電圧が印加されることを検出回
路63で検出してスイッチング手段31をオフするよう
な方法もある。1次コイル1が短絡状態となることを利
用して、2次コイル2が対向していない状態を検出でき
ることが本発明の効果の一つである。
The current limiting circuit 6 has been used as a means for limiting the high frequency current flowing through the primary coil 1 when the secondary coils 2 are not facing each other.
As shown in (a), there is a method in which a high-frequency current is detected by a current detecting means such as a resistor 60, and when the current is about to exceed a predetermined value, the transistor 61 turns off the switching means 31. Other current limiting circuits can also be implemented. Further, as shown in FIG. 5B, when the inductor 62 is connected in series with the primary coil 1 and the secondary coil 2 does not face each other, the primary coil 1 is short-circuited and input to the inductor 62. There is also a method in which the detection circuit 63 detects that a voltage is applied and the switching means 31 is turned off. One of the effects of the present invention is that it is possible to detect that the secondary coils 2 are not facing each other by utilizing the fact that the primary coil 1 is in a short-circuited state.

【0013】(実施の形態2)図6は本発明の非接触型
電源装置の1次側と2次側がそれぞれの平面状の対向す
る筐体面を有する場合の構造を示し、図6において、実
施の形態1と同様の動作をする構成部品については図3
と同じ番号を付与した。図3の構造と異なるのは、2次
コアの形状がH形になっている点である。
(Embodiment 2) FIG. 6 shows a structure of a non-contact type power supply device of the present invention in which the primary side and the secondary side respectively have planar housing surfaces facing each other. 3 is the same as that of FIG.
The same number was given. The difference from the structure of FIG. 3 is that the shape of the secondary core is H-shaped.

【0014】以上のように構成された非接触型電源装置
の1次及び2次コイルについて、以下、その動作を述べ
る。高周波電流の向きが図6中の矢印の向きの時、1次
コイル1に高周波電流が流れることによって発生する磁
束は破線のようになる。すなわち図3の構造に比べて1
次コア10と2次コア20との対向面積が増えるので、
漏洩磁束が減る。従って1次コイル1と2次コイル2と
の磁気結合が密となり、高効率な電力伝達が可能とな
る。
The operation of the primary and secondary coils of the non-contact type power supply device configured as described above will be described below. When the direction of the high-frequency current is the direction of the arrow in FIG. 6, the magnetic flux generated by the high-frequency current flowing through the primary coil 1 is as shown by the broken line. That is, compared to the structure of FIG.
Since the facing area between the secondary core 10 and the secondary core 20 increases,
Magnetic flux leakage is reduced. Therefore, the magnetic coupling between the primary coil 1 and the secondary coil 2 becomes close, and highly efficient power transmission becomes possible.

【0015】(実施の形態3)図7は本発明の非接触型
電源装置の1次側と2次側がそれぞれの凸凹状の対向す
る筐体面73及び74を有する場合の構造を示し、図7
において、実施の形態1と同様の動作をする構成部品に
ついては図3と同じ番号を付与した。図3の構造と異な
るのは、1次コア10の巻線されていない磁脚が2次側
に突起している点である。図7(a)は構造図、(b)
はその側面図である。煩雑になるので(a)では筐体面
73及び74は省略した。
(Embodiment 3) FIG. 7 shows the structure of the non-contact type power supply device of the present invention in which the primary side and the secondary side have respective concavo-convex facing casing surfaces 73 and 74.
In FIG. 3, the same numbers as in FIG. 3 are given to the components that operate in the same manner as in the first embodiment. The difference from the structure of FIG. 3 is that the unwound magnetic legs of the primary core 10 are projected to the secondary side. 7 (a) is a structural drawing, (b)
Is a side view thereof. The housing surfaces 73 and 74 are omitted in FIG.

【0016】以上のように構成された非接触型電源装置
の1次及び2次コイルについて、以下、その動作を述べ
る。高周波電流の向きが図7中の矢印の向きの時、1次
コイル1に高周波電流が流れることによって発生する磁
束は破線のようになる。すなわち1次及び2次側の対向
する筐体面に凸凹状の構造が許容される場合において、
図1のように1次コイル1のO形コア内にI形の2次コ
イル2を挿入できる構造と同程度の磁気結合でありなが
ら、1次コイル1の投影面積をより小さくでき、機器の
小型化が可能となる。
The operation of the primary and secondary coils of the non-contact type power supply device configured as described above will be described below. When the direction of the high-frequency current is the direction of the arrow in FIG. 7, the magnetic flux generated by the high-frequency current flowing through the primary coil 1 is as shown by the broken line. That is, in the case where uneven structures are allowed on the opposing casing surfaces on the primary and secondary sides,
Although the magnetic coupling is similar to the structure in which the I-shaped secondary coil 2 can be inserted into the O-shaped core of the primary coil 1 as shown in FIG. 1, the projected area of the primary coil 1 can be made smaller, and Miniaturization is possible.

【0017】(実施の形態4)図8は本発明の非接触型
電源装置の1次側と2次側がそれぞれの凸凹状の対向す
る筐体面75及び76を有する場合の構造を示し、図8
において、実施の形態3と同様の動作をする構成部品に
ついては図7と同じ番号を付与した。図7の構造と異な
るのは、2次コアの形状がH形になっている点である。
図8(a)は構造図、(b)はその側面図である。煩雑
になるので(a)では筐体面75及び76は省略した。
(Embodiment 4) FIG. 8 shows the structure of the non-contact type power supply device of the present invention in which the primary side and the secondary side have respective concavo-convex facing casing surfaces 75 and 76.
In FIG. 7, the same numbers as in FIG. 7 are assigned to the components that operate in the same manner as in the third embodiment. The difference from the structure of FIG. 7 is that the shape of the secondary core is H-shaped.
FIG. 8A is a structural view and FIG. 8B is a side view thereof. The housing surfaces 75 and 76 are omitted in FIG.

【0018】以上のように構成された非接触型電源装置
の1次及び2次コイルについて、以下、その動作を述べ
る。高周波電流の向きが図8中の矢印の向きの時、1次
コイル1に高周波電流が流れることによって発生する磁
束は破線のようになる。すなわち図7の構造に比べて1
次コア10と2次コア20との対向面積が増えるので、
漏洩磁束が減る。従って1次コイル1と2次コイル2と
の磁気結合が密となり、高効率な電力伝達が可能とな
る。
The operation of the primary and secondary coils of the non-contact type power supply device configured as described above will be described below. When the direction of the high-frequency current is the direction of the arrow in FIG. 8, the magnetic flux generated by the high-frequency current flowing through the primary coil 1 is as shown by the broken line. That is, compared to the structure of FIG.
Since the facing area between the secondary core 10 and the secondary core 20 increases,
Magnetic flux leakage is reduced. Therefore, the magnetic coupling between the primary coil 1 and the secondary coil 2 becomes close, and highly efficient power transmission becomes possible.

【0019】なお、実施の形態1から4において、第1
の1次巻線11と第2の1次巻線12は直列に接続して
いるとしたが、2次コイル2が対向していない場合に発
生する磁束が打ち消し合う方向であるなら、並列接続で
も実施可能である。
In the first to fourth embodiments, the first
The primary winding 11 and the second primary winding 12 are connected in series. However, if the magnetic fluxes generated when the secondary coils 2 do not face each other are in the directions canceling each other, they are connected in parallel. But it can be implemented.

【0020】[0020]

【発明の効果】以上のように本発明によれば、2次コイ
ルが対向していない場合に1次コイルが短絡状態となる
ので、2次コイルの有無の識別が容易にできる上、1次
コアを閉磁路としているので、漏洩磁束がほとんど発生
しないという有利な効果が得られる。
As described above, according to the present invention, when the secondary coils do not face each other, the primary coil is short-circuited, so that the presence or absence of the secondary coil can be easily identified and the primary coil can be easily identified. Since the core is a closed magnetic circuit, there is an advantageous effect that almost no leakage magnetic flux is generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の形態による非接触型電源装
置の構成図
FIG. 1 is a configuration diagram of a non-contact type power supply device according to an embodiment of the present invention.

【図2】図1で2次コイルの対向していない場合の非接
触型電源装置の構成図
FIG. 2 is a configuration diagram of a non-contact power supply device when the secondary coils are not opposed to each other in FIG.

【図3】(a)は1次及び2次側の対向する筐体面が平
面状の場合の構造図 (b)は(a)の正面図 (c)は(a)の側面図
FIG. 3A is a structural view in the case where the opposing casing surfaces on the primary and secondary sides are flat; FIG. 3B is a front view of FIG. 3A; and FIG. 3C is a side view of FIG.

【図4】高周波交流電源3を示す一回路図FIG. 4 is a circuit diagram showing a high frequency AC power supply 3.

【図5】(a)は電流制限回路6を示す一回路図 (b)は電流制限回路6以外の手段を示す一回路図5A is a circuit diagram showing a current limiting circuit 6, and FIG. 5B is a circuit diagram showing a means other than the current limiting circuit 6.

【図6】本発明の他の実施例の形態による非接触型電源
装置で、1次及び2次側の対向する筐体面が平面状の場
合の構造図
FIG. 6 is a structural diagram of a non-contact type power supply device according to another embodiment of the present invention in which the opposing casing surfaces on the primary and secondary sides are flat.

【図7】(a)は本発明の他の実施例の形態による非接
触型電源装置で、1次及び2次側の対向する筐体面が凸
凹状の場合の構造図 (b)は(a)の側面図
FIG. 7 (a) is a non-contact type power supply device according to another embodiment of the present invention, and FIG. 7 (b) is a structural diagram when the opposing casing surfaces on the primary and secondary sides are uneven. ) Side view

【図8】(a)は本発明の他の実施例の形態による非接
触型電源装置で、1次及び2次側の対向する筐体面が凸
凹状の場合の構造図 (b)は(a)の側面図
FIG. 8A is a non-contact type power supply device according to another embodiment of the present invention, and FIG. 8B is a structural diagram when the opposing casing surfaces on the primary and secondary sides are uneven. ) Side view

【図9】(a)は従来の非接触型電源装置の構成図 (b)は従来の非接触型電源装置の構成図9A is a configuration diagram of a conventional non-contact power supply device, and FIG. 9B is a configuration diagram of a conventional non-contact power supply device.

【符号の説明】[Explanation of symbols]

1 1次コイル 2 2次コイル 3 高周波交流電源 4 整流回路 5 負荷 6 電流制限回路 10 1次コア 11 第1の1次巻線 12 第2の1次巻線 20 2次コア 21 2次巻線 1 Primary coil 2 Secondary coil 3 High frequency AC power supply 4 Rectifier circuit 5 Load 6 Current limiting circuit 10 Primary core 11 First primary winding 12 Second primary winding 20 Secondary core 21 Secondary winding

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高周波電流を供給される1次コイルと、
この1次コイルとは異なる筐体の中に実装された2次コ
イルとを対向させ、前記1次コイルから前記2次コイル
に電力を伝達する非接触型電源装置において、前記1次
コイルはO形の閉磁路コアに互いに発生する磁束が打ち
消し合うように巻回された複数の1次巻線から構成さ
れ、前記2次コイルはI形の開磁路コアに巻回された2
次巻線から構成されることを特徴とする非接触型電源装
置。
1. A primary coil supplied with a high frequency current,
In a non-contact type power supply device in which a secondary coil mounted in a housing different from this primary coil is opposed to transmit electric power from the primary coil to the secondary coil, the primary coil is The secondary coil is wound around an I-shaped open magnetic circuit core so that the magnetic fluxes generated in the closed magnetic circuit core cancel each other, and the secondary coil is wound around an I-shaped open magnetic circuit core.
A non-contact power supply device comprising a secondary winding.
【請求項2】 2次コイルは、H形の開磁路コアの中磁
脚に巻回された2次巻線から構成されることを特徴とす
る請求項1記載の非接触型電源装置。
2. The non-contact type power supply device according to claim 1, wherein the secondary coil is composed of a secondary winding wound around a middle magnetic leg of an H-shaped open magnetic circuit core.
【請求項3】 1次コイルのコアは、巻回されていない
磁脚が2次側方向に突出した形状を有する請求項1記載
の非接触型電源装置。
3. The non-contact type power supply device according to claim 1, wherein the core of the primary coil has a shape in which a magnetic leg that is not wound protrudes in the secondary side direction.
【請求項4】 2次コイルは、H形の開磁路コアの中磁
脚に巻回された2次巻線から構成されることを特徴とす
る請求項3記載の非接触型電源装置。
4. The non-contact power supply device according to claim 3, wherein the secondary coil is composed of a secondary winding wound around a middle magnetic leg of an H-shaped open magnetic circuit core.
【請求項5】 2次コイルが1次コイルと対向していな
い時に、前記1次コイルが短絡状態となることを検知す
ることにより、前記1次コイルに供給される高周波電流
を制限もしくは遮断する機能を有する請求項1〜4のい
ずれか1項に記載の非接触型電源装置。
5. A high frequency current supplied to the primary coil is limited or cut off by detecting that the primary coil is short-circuited when the secondary coil does not face the primary coil. The non-contact power supply device according to claim 1, which has a function.
JP8076108A 1996-03-29 1996-03-29 Non-contact type power supply Pending JPH09266121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076108A JPH09266121A (en) 1996-03-29 1996-03-29 Non-contact type power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076108A JPH09266121A (en) 1996-03-29 1996-03-29 Non-contact type power supply

Publications (1)

Publication Number Publication Date
JPH09266121A true JPH09266121A (en) 1997-10-07

Family

ID=13595708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076108A Pending JPH09266121A (en) 1996-03-29 1996-03-29 Non-contact type power supply

Country Status (1)

Country Link
JP (1) JPH09266121A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399228B (en) * 2002-05-13 2006-01-04 Splashpower Ltd Inductive power transfer system having uniform coupling
US7525283B2 (en) 2002-05-13 2009-04-28 Access Business Group International Llc Contact-less power transfer
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
JP2011050127A (en) * 2009-08-25 2011-03-10 Saitama Univ Non-contact power feeder
CN102360781A (en) * 2011-08-29 2012-02-22 福州大学 Separable transformer with magnetic core in nested structure
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
JP2012151311A (en) * 2011-01-19 2012-08-09 Technova:Kk Core for non-contact power supply
US20130314200A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Multiple Cells Magnetic Structure for Wireless Power
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
JP2014180166A (en) * 2013-03-15 2014-09-25 Toshiba Corp Resonator and radio power transmission device
JP2015164395A (en) * 2011-11-15 2015-09-10 株式会社東芝 resonator
EP2870675A4 (en) * 2012-07-09 2016-04-27 Auckland Uniservices Ltd Flux coupling device and magnetic structures therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399228B (en) * 2002-05-13 2006-01-04 Splashpower Ltd Inductive power transfer system having uniform coupling
US7525283B2 (en) 2002-05-13 2009-04-28 Access Business Group International Llc Contact-less power transfer
US7714537B2 (en) 2002-05-13 2010-05-11 Access Business Group International Llc Contact-less power transfer
US7863861B2 (en) 2002-05-13 2011-01-04 Access Business Group International Llc Contact-less power transfer
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
JP2011050127A (en) * 2009-08-25 2011-03-10 Saitama Univ Non-contact power feeder
JP2012151311A (en) * 2011-01-19 2012-08-09 Technova:Kk Core for non-contact power supply
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
US9312729B2 (en) 2011-01-19 2016-04-12 Technova Inc. Contactless power transfer apparatus
CN102360781A (en) * 2011-08-29 2012-02-22 福州大学 Separable transformer with magnetic core in nested structure
JP2015164395A (en) * 2011-11-15 2015-09-10 株式会社東芝 resonator
US20130314200A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Multiple Cells Magnetic Structure for Wireless Power
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
US10553351B2 (en) * 2012-05-04 2020-02-04 Delta Electronics (Thailand) Public Co., Ltd. Multiple cells magnetic structure for wireless power
US11756726B2 (en) 2012-05-04 2023-09-12 Delta Electronics (Thailand) Pcl. Magnetic structures for large air gap
EP2870675A4 (en) * 2012-07-09 2016-04-27 Auckland Uniservices Ltd Flux coupling device and magnetic structures therefor
JP2014180166A (en) * 2013-03-15 2014-09-25 Toshiba Corp Resonator and radio power transmission device
EP2779309A3 (en) * 2013-03-15 2015-04-29 Kabushiki Kaisha Toshiba Resonator and wireless power transmission device

Similar Documents

Publication Publication Date Title
KR100298242B1 (en) Power supply
US6281779B1 (en) Coil device and switching power supply apparatus using the same
US5525951A (en) Choke coil
US5790005A (en) Low profile coupled inductors and integrated magnetics
US20060034101A1 (en) Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
JPH09266121A (en) Non-contact type power supply
US11398344B2 (en) Transformer
GB2048528A (en) Voltage regulators
KR20180129470A (en) Transformer and LLC Resonant Converter having the same
US6002319A (en) Inductance device with gap
JP2007123596A (en) Dc reactor and inverter device
GB2048576A (en) Transformers for voltage regulators
JP2001268823A (en) Non-contact feeder system
JP2002170725A (en) Power supply unit
JPH11219832A (en) Choke coil for noise filter
JPH0864439A (en) Converter transformer
JP3030612B2 (en) Power saving device
KR102075955B1 (en) Two-in-one planer inductor
JP2000306744A (en) Power transformer
JP3218585B2 (en) Print coil type transformer
JPH1167551A (en) Transformer and power source
JP2003197436A (en) Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element
JP2009147253A (en) Three-mode hybrid coil and power conversion device
JP2008112913A (en) Transformer with gap, and noncontact power transmitter
JP2000306745A (en) Power transformer