JP3908178B2 - 光モジュールの調整装置 - Google Patents

光モジュールの調整装置 Download PDF

Info

Publication number
JP3908178B2
JP3908178B2 JP2003028788A JP2003028788A JP3908178B2 JP 3908178 B2 JP3908178 B2 JP 3908178B2 JP 2003028788 A JP2003028788 A JP 2003028788A JP 2003028788 A JP2003028788 A JP 2003028788A JP 3908178 B2 JP3908178 B2 JP 3908178B2
Authority
JP
Japan
Prior art keywords
lens
light
optical axis
light emitting
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003028788A
Other languages
English (en)
Other versions
JP2004240133A (ja
Inventor
昌▲照▼ 岩本
康弘 市原
隆司 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003028788A priority Critical patent/JP3908178B2/ja
Publication of JP2004240133A publication Critical patent/JP2004240133A/ja
Application granted granted Critical
Publication of JP3908178B2 publication Critical patent/JP3908178B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レンズ調整を必要とする光モジュール、例えば、レーザダイオードモジュール(LDモジュール)等に対して、パッシブによる光モジュールの調整方法及び調整装置に関する。
【0002】
【従来の技術】
図21はLDモジュールの構成図である。図21(a)に示すように、LDモジュールは、LD素子2が収容されたLD−PKG4、レンズ6を支持するレンズホルダ8、スリーブ10及びファイバ12を支持するフェルール14から構成される。図21(b)に示すように、レンズホルダ8の底面がLD−PKG4の上面に固定されている。スリーブ10の底面がレンズホルダ8の上面に固定されている。フェルール14がスリーブ10に挿入されて固定される。レンズ6は、LD素子2からの出射光を集光して、ファイバ12へ結合させる。モジュールの調整方法は、▲1▼LD−PKG4−レンズ6の調整、▲2▼ファイバ12の調整の2ステップある。LD−PKG4−レンズ6調整では、LD−PKG4に対してレンズ6を所定の位置へ調整する。ファイバ12の調整では、レンズ6で集光されたLDビームを三次元的に探索し、光出力のピーク位置へ収束させている。ここで、LD−PKG4−レンズ6調整における精度が悪いと、LD出射光収束位置のバラツキが大きくなり、その結果ファイバ調整時間が増大し、また、ファイバ結合ロスや、LD素子2への戻り光による影響も懸念されるため、高精度なレンズ調整が要求されている。以下、従来のレンズ調整方法について説明する。レンズ調整方法の例として、実際にLD素子2を発光させて調整するアクティブアライメント法について説明する。
【0003】
図22はレンズ調整装置の構成図である。
【0004】
▲1▼ LD−PKG4をLD固定治具21にセットする。
【0005】
▲2▼ LD素子2の電極をDC電源に接続して作動させる。
【0006】
▲3▼ LD−PKG4傾き補正
Z軸ステージ26Zを移動して、赤外線カメラ(カメラと略す)24を光軸方向へ一定量移動させ、移動前後にカメラ24により撮像されるLD出射光のスポットの三次元位置情報からカメラ軸に対する出射光の傾きを算出する。撮像されるスポットが撮像画像の原点に来るように、LDX軸ゴニオステージ,LDY軸ゴニオステージ20XYをXY方向に煽り、傾きを補正する。
【0007】
▲4▼ レンズ6をLD−PKG4上に載せて、レンズ固定治具22によりレンズ6をチャックする。
【0008】
▲5▼ レンズ調整
X軸,Y軸ステージ26X,26Yを移動させて、カメラ24を所定位置に移動させる。カメラ24の焦点をLD出射光のレンズ6による集光スポットに合わせる。カメラ24を光軸方向へ一定量移動させて、移動前後のLD出射光の2点の三次元位置情報を得る。設定角度になるまでLD−PKG4をXY方向にシフトさせる。
【0009】
▲6▼ LD−PKG4とレンズホルダ8を溶接固定させる。
【0010】
また、従来、先行技術文献としては、以下の特許文献1〜3があった。
【0011】
特許文献1は、半導体レーザ(LD)素子をマウント(基板)へ位置合わせする際に、測定対象物への投光手段として同軸落射光源を内蔵したCCDカメラを使用することを開示している。
【0012】
特許文献2は、レンズの反射像を利用し、レンズ製造工程に起因するレンズ光軸と機械軸との偏心を測定することを開示している。
【0013】
特許文献3は、ファインダー光学系と視線検出光学系との光軸を簡単な構成で高精度に位置合わせをすることを開示している。
【0014】
【特許文献1】
特開平11−149019号公報
【0015】
【特許文献2】
特開平11−211611号公報
【0016】
【特許文献3】
特開平6−138369号公報
【0017】
【発明が解決しようとする課題】
しかしながら、従来のアクティブアライメント法によるレンズ調整では以下の問題点があった。
【0018】
(1) 設備が高価
光通信分野で使用するLDは赤外光であるため、赤外光を撮像できるカメラを使用しなけれならないが、赤外撮像用カメラは高価でサイズが大きい。また、アクティブであるため、LD駆動用のDC電源も必要となりコストが高くなる。このように、コスト面、設置スペースの面で制約される。
【0019】
(2) ビーム重心位置測定時の誤差
一般に、カメラ24により20〜30°の角度でLD素子2からの出射光を撮像したビームの断面強度分布はガウス分布である。LD素子2の出射光集光位置とカメラ24の焦点位置との距離(スパン)を長くすると、ビームスポットの面積が広がるが輪郭が不明瞭となる。また、ガウス分布をせずに、複数のピークを持つレーザ光もあり、その重心位置と実際のLD光軸とに少なからず誤差が発生する。
【0020】
(3) LD光軸測定時の誤差
集光光学系を成すLDモジュールの場合、レンズ6を通ったビームは集光系であり、小型モジュール程、焦点距離が短いため集光角度が大きくなる。また、LD単体においてもビーム発散角が上述したように通常20〜30°程度と大きい。そのため、ビーム角度を測定する際、精度を得るためにはある程度のスパンを必要とするが、スパンを大きくとるとビームの輪郭が不明瞭になることから、精度が得られない。
【0021】
(4) ビーム収束位置の探索機能が必要
光ビームの収束位置はレンズの把持位置の誤差に影響され、カメラの実視野からビームがはずれることがあるため、ビーム収束位置の探索機能が必要となる。また、ビーム角度測定の際、所定の角度になるまでレンズシフトを繰り返す必要がある。これにより調整時間が増大する。
【0022】
また、文献1は、測定対象がLD素子及び基板のパターンであることから、レンズや光ファイバの調整に適用することができず、本願の課題を解決することはできない。
【0023】
文献2は、レンズ製造工程に起因するレンズ光軸と機械軸との偏心を測定するものであり、本願発明のように光モジュールのアセンブリ工程に関するものでないため、アセンブリ工程におけるレンズや光ファイバの調整に適用することができず、本願の課題を解決することはできない。
【0024】
文献3は、角膜の曲率中心を受光レンズの光軸に軸対象に配置した2つのLDを利用して測定しており、さらに光軸と直交する面内の位置情報しか測定しておらず、カメラに内蔵した同軸落射照明のみの照明でレンズ第一面の曲率中心の3次元情報を取得することができず、本願の課題を解決することはできない。
【0025】
本発明は、上記課題を鑑みてなされたものであり、パッシブレンズ調整方法により、コストの低減化、装置スペースの縮小化、調整時間の短縮化を図ることのできる光モジュールの調整方法及び調整装置を提供することを目的とする。
【0026】
【課題を解決するための手段】
本発明の一側面によれば、発光素子を収容したパッケージと当該パッケージ上にレンズを支持するレンズホルダとを有する光モジュールの調整装置において、照明光源の出射光をカメラ鏡筒に導くライトガイドと当該ライトガイドによりカメラ鏡筒に導かれた光を上方から照射する光学系とを含むカメラと、前記パッケージを支持する素子固定冶具を水平方向に移動するステージと、前記光学系により上方から前記レンズに照射したとき、前記素子固定冶具により支持された前記パッケージの上面に載置された前記レンズホルダに収容された前記レンズの第一凸面及び第ニ凸面による前記ライトガイドの端面を含む開口絞り部の第一及び第ニ像の撮像画像に基づく第一及び第二重心座標並びに前記第一及び第二像の光路差に基づいて、前記第一及び第二凸面の曲率半径の中心を結ぶレンズ光軸の垂直方向からの傾きを算出するレンズ傾き算出部と、前記傾き、前記第一又は第二重心座標並びに前記第一凸面の曲率半径に基づいて、前記レンズ光軸を算出するレンズ光軸算出部と、前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸を通過するように、前記ステージを制御して、前記発光素子を移動するレンズ傾き補正部とを具備したことを特徴とする光モジュールの調整装置が提供される。
【0027】
好ましくは、前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸から一定距離離間するように、前記ステージを制御して、前記発光素子を移動するオフセット補正部を更に具備する。
【0028】
更に、好ましくは、前記ライトガイドの端面の重心を含む領域に前記照明光源からの出射光を遮断する遮光マスクを設ける。
【0029】
【発明の実施の形態】
本発明の実施形態の説明をする前に本発明の原理の説明をする。図1はレンズ傾き算出方法を示す図である。図2及び図3はレンズ光軸の位置情報算出方法を示す図である。図1中の左上及び右上はレンズ50の垂直方向の断面画を示し、左下はレンズ50の上面図を示す。図1及び図2に示すレンズ50は、図22と同様に、素子固定治具に支持されたLD−PKGの上面に載置されたレンズホルダに支持される。このとき、レンズ50が水平面から傾くことにより、レンズ光軸82がカメラ軸67に一致せずに傾くことがある。そこで、レンズ50の傾きを以下のようにして算出する。
【0030】
図2に示すように、カメラ鏡筒62に同軸照明(カメラ軸67に平行に通過する照明光による照明)を導入して、カメラ対物レンズ64を通して、レンズ50に照射する。レンズ50は、第一面70及び第ニ面72により、LD−PKGに収容された発光素子からの光を集光する。ここで、第一面70及び第二面72が凸球面であるとしている。同軸落射照明をレンズ50に照射すると、レンズ50付近において2つの像が結像する。カメラ鏡筒62に照明光源からの照明光を導くライトガイドの端面の像が結像したものである。
【0031】
一方は、レンズ第一面70による結像(第一像)74である。対物レンズ64から入射する照明の周辺光線は、照明光軸(Z軸)67を中心軸として、対物レンズ64のNAで規定される入射角θ(θ=arcsin(NA/n),n:対物レンズ64と被撮像物間の媒質の屈折率)で第1面70の第一面曲率中心78に向かう。第一像74は、第一面70が反射鏡として作用した結果結像したものである。よって、結像位置は、曲率中心78から第一面70の曲率半径の1/2である。他方は、レンズ第一面70を透過した照明光線がレンズ第ニ面72で反射し、その後結像した像(第二像76)である。第二像76は第一像74に対して倒立像である。
【0032】
そこで、まず、同軸落射照明をレンズ50に照射した状態で、カメラ対物レンズ64の焦点を第一像74に合わせて、第一像74を撮像する。例えば、図1に示すように、第一像74の形状が円であるとする。第一像74の重心(X1,Y1)を撮像画像により求める。次に、同軸落射照明をレンズ50に照射した状態で、カメラ対物レンズ64の焦点を第二像76に合わせて、第二像76を撮像する。例えば、図1に示すように、第二像76の形状は第一像74と同様に円であるとする。第二像76の重心(X2,Y2)を撮像画像により求める。これらの2つの像に対し、図1中の左下の図に示すように、重心のX座標の差δx(=X1−X2),重心のY座標の差δY(=Y1−Y2)、図1中の右上に示すように、第一像74から第二像76までの光路長をδZとすると、レンズ50のX軸に垂直な平面における照明光軸67に対する傾きθx,Y軸に垂直な平面における照明光軸67に対する傾きθyは、次式(1),(2)のようになる。
【0033】
θx=arctan(δX/δZ) (1)
θy=arctan(δY/δZ) (2)
図4及び図5は光路長δZの算出方法を示す図である。光路長δZは以下のようにして算出される。ステップS100において、レンズ表面へカメラ60の焦点を合わせ、レンズトップZ座標(Zt)を取得する。ステップS102において、第一像74のZ座標(Z1)を取得する。ステップS104において、既知のレンズ50の厚み(tg)より、第一像焦点位置〜レンズ裏面トップ間距離Zd1=Zt+tg−Z1を算出する。ステップS106において、カメラ60の焦点を第ニ像結像位置へ移動させ、第ニ像76の焦点合致Z座標(Z2)を取得する。ステップS108において、既知のレンズ50の厚み(tg)より、第ニ像焦点位置〜レンズ裏面トップ間距離Zd2=Zt+tg−Z2を算出する。ステップS110において、δZ=Zd1+Zd2を算出する。ここでレンズの製造品質が高精度であるためδZは事前測定のみで、同種のレンズである限り、δZの値は不変とみなせる。
【0034】
レンズ50の傾きからレンズ光軸の位置情報を得る方法を次に述べる。レンズ調整に必要な情報として、図2に示すように、第一面70,第二面72の曲率中心を結ぶ直線で定義されるレンズ50のレンズ光軸82がある。上述したように、レンズ光軸82の照明光軸67に対する傾きθx,θyが算出されているので、レンズ光軸82上の一点の位置が分かれば調整できる。ここでは、第一面70の曲率中心を求める方法を述べる。
【0035】
図3に示すように、ライトガイド66から発散する照明はコンデンサレンズ67で集光し、ハーフミラー69で反射して、対物レンズ64の射出瞳位置で結像した後、対物レンズ64を通り、レンズ50に照射する。レンズ50の第一面70は凸面鏡として作用することから次式(3),(4),(5)が成り立つ。
【0036】
1/f1=1/p+1/q ・・・(3)
但し、f1は第一面70の凸面鏡としての焦点距離、p(p>0)は対物レンズ64の射出瞳位置と第一面70のトップ表面との距離、q(q>0)は第一面70のトップ表面と第一像結像位置(X1,Y1,Z1)との距離である。
【0037】
f1=R1/2 ・・・(4)
但し、R1は第一面70の曲率半径である。
【0038】
p+q=P.L. ・・・(5)
但し、P.L.はレンズ50のカタログに記載された同焦距離である。
【0039】
式(3)〜(5)及びqを事前測定することにより、R1は次式(6)で表される。
【0040】
Figure 0003908178
従って、第一像結像位置(Z1)から計算される第一面70の曲率中心位置Zcは次式(7)で表される。
【0041】
Zc=Z1+(R1−q) ・・・(7)
pはqに比べて、通常、2桁大きな値であり、式(4),(5)により、q≒f1=R1/2となる。周辺光線は、カメラ対物レンズ64のNAで規定される入射角でレンズ第一面70の曲率中心に向かう。これにより、図2に示すように、曲率中心の座標は(X1,Y1,Z1+R1/2)で得られる。よって、曲率中心を通るZ軸からレンズ傾き角度だけ傾く直線をレンズ光軸として計算できる。上述したように、レンズ50のレンズ光軸82が傾いていることから、以下のようにしてレンズ傾き補正をする。
【0042】
図6はレンズ補正方法を示す図である。図6(a)はレンズ補正前、図6(b)はレンズ補正後、図6(c)は図6(b)中のA部拡大図である。レンズ補正とは、レンズ光軸82が発光素子の発光部の中心(発光点)を通過するように補正することである。レンズ補正前は、図6(a)に示すように、第一面曲率半径位置(X1,Y1,Zc)と発光素子の発光点(X0,Y0,Z0)を照明光軸67に同軸配置する。レンズ光軸82の傾きθx,θyにより傾き補正をする。例として、X方向の傾き補正計算を示す。図6(b)に示すように、レンズ光軸82が発光部の中心を通過するよう補正がなされたとき、補正前の発光部の中心位置と補正後の発光部の中心位置との距離ΔA、ΔAのX成分(X方向の補正量)をΔXa、第一曲率中心半径位置と発光部の中心の垂直距離(Z0−Zc)をZc0とする。図6(c)に示すように、ΔA,ΔXaは次式(8),(9)で表される。
【0043】
Figure 0003908178
同様に、Y方向に関しては、式(8),(9)中のθxaをθyaとすることにより、Y方向の補正量ΔYaが求められる。これにより、補正前から発光素子をX,Y方向にそれぞれΔXa,ΔYa移動することにより、レンズ傾き補正を行うことができる。
【0044】
ファイバから発光素子への戻り光を無くすために、ファイバへ結合されるビームに角度を持たせる場合がある。レンズシフトとは、その所望のビーム角度を得るためにレンズ50と発光素子を相対的にズラす作業である。レンズシフトは、既知のレンズパラメータであるレンズ50の焦点距離を利用する。
【0045】
図7はレンズシフト方法を示す図である。図7(a)はレンズシフト前、図7(b)はレンズシフト後、図7(c)は図7(b)中のA部拡大図である。X方向にθxs(レンズ光軸82と発光点からのレンズ光軸82に平行な光線がレンズにより屈折された光線とのなすX方向の角度)だけ曲げたい場合、X方向のシフト量ΔXsは次式(10),(11)以下のようになる。
【0046】
Figure 0003908178
Y方向のシフト量は式(10),(11)中のθxs,θxaをθys,θyaに変えることによりΔYsを得ることができる。よって、レンズ傾き補正後に、発光素子をX方向にΔXs、Y方向にΔYsシフトすればよい。
【0047】
ファイバ調整工程では、光モジュール毎の発光素子からの出射光のレンズ50による収束位置情報(ビーム収束位置情報)が必要となる。その際、レンズ50の倍率mに関する情報を得る必要がある。
【0048】
図8は、ビーム収束位置算出方法を示す図である。前焦点距離d1とは、発光点と第一主面90との距離をいう。後焦点距離d2は第ニ主面92と発光点からの光のレンズ50によるビーム収束位置までの距離をいう。レンズ50の倍率mは次式(12)で与えられる。
【0049】
m=d2/d1 ・・・(12)
よって、d2=m×d1により、出射光収束位置情報が得られる。
【0050】
また、レンズ50の焦点距離f,前焦点距離d1,後焦点距離d2の間には次式(13)が成り立つ。
【0051】
1/f=1/d1+1/d2 ・・・(13)
式(13)からd2を消去して、式(12)に代入すると、次式(14)が得られる。
【0052】
m=f/(d1−f) ・・・(14)
既知のレンズパラメ―タが、焦点距離f、第一主面90とレンズ裏面トップ間の距離Zp1、第ニ主面92とレンズ表面トップ間の距離Zp2であり、第一像74のZ座標Z1(第ニ像76のZ座標又は既知の点のZ座標)及び発光点のZ座標Z0が測定されると、第一像74と第一主面90との間の距離Zs1及び第一像74のZ座標Z1を算出することにより、第一主面90のZ座標が算出されることから前焦点距離d1が算出され、発光点と第ニ主面92のZ座標との間の距離Zs2を算出することにより、第ニ主面92のZ座標が算出されることからビーム収束位置が算出される。
【0053】
図9及び図10はZs1及びZs2の算出方法を示す図である。ステップS200において、レンズ表面へカメラ60の焦点を合わせ、レンズトップのZ座標(Zt)を取得する。ステップS202において、カメラ60を第一像結像位置まで下降させ、第一像74の焦点合致Z座標(Z1)を取得する。ステップS204において、既知のレンズ厚(tg)より、第一像焦点位置〜レンズ裏面トップ間距離Zd1=Zt+tg−Z1を算出する。ステップS206において、既知のレンズ裏面トップ〜第一主面90間距離(Zp1)よりZs1=Zd1−Zp1を算出する。ステップS208において、既知のレンズ表面トップ〜第一主面90間距離(Zp2)よりZs2=Z1−Zt−Zp2を算出する。光ファイバの先端部がビーム収束位置に位置するようにフェルールを調整する。これにより光ファイバの調整が容易になる。
【0054】
第1実施形態
図11は本発明の第1実施形態によるレンズ調整装置の構成図である。図11に示すように、レンズ調整装置は、制御用PC100、YAGレーザ溶接機102、カメラ同軸照明光源104、ステージドライバ106、YAGレ―ザ出射光学部110、CCDカメラ120、ステージ140、素子固定冶具150及びレンズ固定治具152を具備する。制御用PC100は、次の機能がプログラムの実行により実現されるパーソナルコンピュータである。▲1▼GP−IB108を通して、YAGレーザ溶接機102を制御して、YAGレーザ出射光学部110よりYAGレーザを出射して、LD−PKG4とレンズホルダとを溶融により固定する。▲2▼レンズ調整時に、GP−IB108を通して、カメラ同軸照明光源104の光量を調整する。▲3▼ステージドライバ106を制御して、カメラ120、素子固定冶具150及びレンズ固定冶具152をそれぞれ所定位置に移動し、後述するレンズ傾きを算出して、レンズ補正及びオフセット移動を行う。
【0055】
YAGレーザ溶接機102は、制御用PC100により制御されて、YAGレザを出射する。カメラ同軸照明光源104は、制御用PC100により光量が制御される白色光源等の光源であり、光源からの光が照明ファイバ130に光結合されている。ここで、赤外線ではなく白色光源等を用いているのは、パッシブ調整であるため赤外光を使用する必要がなく、CCDカメラ120によるカメラのコストダウンとカメラの縮小化が可能であることからである。ステージドライバ106は、制御用PC100により駆動が制御されて、X,Y,Zステージ140を駆動するドライバである。
【0056】
図12は図11中のCCDカメラ120の構成図である。図12に示すように、CCDカメラ120は、カメラ鏡筒122、ハーフミラー124、対物レンズ128、ライトガイド132、開口絞り136及びコンデンサレンズ135を含む。カメラ鏡筒122は、カメラ120の鏡筒である。ハーフミラー124は、ライトガイド132からの出射光を対物レンズ128の方向へ反射し、被撮像物の反射光を透過するミラーである。対物レンズ128を通った光束は、被撮像物に集光する。ライトガイド132は、カメラ同軸照明光源104からの出射光を導入して、カメラ鏡筒122に導くものである。コンデンサレンズ135はライトガイド132からの光を集光する。凹レンズ137はハーフミラー124からの光を拡大する。
【0057】
図13は図12中のライトガイド132の端面を示す図である。図13に示すように、ライトガイド132の端面133の照明出射面(例えば、口径6mm程度)の重心を含む領域に光を透過しない遮光マスク139が形成されている。
【0058】
図14は図13中の遮光マスク139を示す図である。図14に示すように、遮光マスク139は、遮光するものであり、材質は問わないが、例えば、黒色テープ等である。遮光マスク139は、方向性(例えば、図14では水平方向)を持つ欠損部139aを有する円形状のものである。円形状としているのは、上述の第一像,第二像が、この遮光部139が結像したものであることから、第一像,第二像の重心の位置が円の中心を算出することにより求められるからである。また、欠損部139aに方向性を持たせているのは、第一像と第ニ像が倒立(180°回転)関係にあることから、第一像と第二像を容易に識別可能であるからである。
【0059】
遮光マスク139を設けているのは、以下の理由による。レンズ調整精度を向上するべく高倍率の対物レンズ128を使用した場合、レンズ128のNAが増大するため、像径も増大する。像径が増大すると、画像認識時において像がCCD撮像範囲を超えてしまう場合があり、カメラの自動ステージを移動させねばならず、精度悪化の要因となる。第一像,第二像は開口絞り136が結像したものであることから、ライトガイド端面133にライトガイド端面部の開口径より小さな遮光マスク139を設けたのである。遮光マスク139の大きさにより像径を可変できるため、対物レンズ128の倍率に制約させない高精度な角度測定が可能であるからである。
【0060】
尚、像径を縮小する方法として、照明の絞り136(機械的なアパーチャー)を制約する方法もあるが、照明のNAを縮小すると、焦点深度が増大してしまうため、像面位置で鋭敏にフォーカス位置を特定できなくなる他、照明光量が減少する。絞りを大きく開き、ライトガイド132の端面の重心位置に遮光マスク139を設ける方法は、焦点深度を維持し、且つ照明光量もほぼ維持できるという利点がある。ステージ140は、ステージドライバ106により駆動されて、CCDカメラ120をX,Y,Z方向に移動し、素子固定治具150及びレンズ固定冶具152をX,Y方向に移動する。
【0061】
以下、図11に示すレンズ調整装置を用いてレンズ調整方法の説明をする。図15はレンズ調整方法を示すフローチャートである。ステップS300において、レンズの種類等に応じた調整プログラムの選択や光モジュールの製造番号等の製造情報を制御用PC100に入力する。レンズパラメータは各調整プログラムに予め格納されている。ステップS302において、製品取付け位置へ各ステージ140を移動する。ステップS304において、LD−PKG4を素子固定冶具150にセットする。ステップS306において、LD−PKG4を認識するためにカメラ120を移動する。ステップS308において、LD−PKG4に収容されたLDの発光部をカメラ120の撮像画像により画像認識(LD発光部位置取得)できたかを判別する。LD発光部位置取得できたならば、ステップS310に進む。
【0062】
ステップS310において、カメラ120をZ軸方向に上昇する。ステップS312において、レンズチャックステージ140をY軸方向(レンズチャックセット位置)に移動する。ステップS314において、レンズホルダに収容されたレンズをレンズ固定治具150により固定(レンズセット)する。このとき、レンズが以下の理由により水平方向から傾く。
【0063】
▲1▼ LD−PKG4をLDステージ140に固定するときにLD−PKG4自体が傾くため。
【0064】
▲2▼ LD−PKG4とレンズの接触面に塵埃等が存在したり、LD−PKG4の上面が平坦でなく、凸凹がある場合、レンズホルダにバリがある場合等により、レンズが傾くため。
【0065】
▲3▼ レンズメーカにおいて、レンズがレンズホルダに対して多少傾いて接着されることがあるため。
【0066】
ステップS316において、レンズ第一像付近へカメラ120を移動する。ステップS318において、カメラ120による撮像画像により画像認識して第一像の重心位置取得できたか否かを判断する。重心位置が取得できたならば、ステップS320に進む。重心位置が取得できていないならば、ステップS318を繰り返す。ステップS320において、カメラステージ140をZ軸方向(例えば、0.5mm程度)へ移動して、レンズ第二像付近へカメラ120を移動する。
【0067】
ステップS322において、カメラ120による撮像画像により画像認識して第ニ像の重心位置が取得できたか否かを判断する。重心位置が取得できたならば、ステップS324に進む。重心位置が取得できていないならば、ステップS322を繰り返す。ステップS324において、第一像,第ニ像の重心位置、第一像と第ニ像の光路長を元に上述した方法により、レンズ傾斜角度θx,θy及びレンズ第一面曲率中心位置(X,Y,Z)を算出する。ステップS326において、LD発光部をレンズ第一面曲率中心位置(X,Y)へ移動する。ステップS328において、上述したように、LDステージ140をX軸方向にΔXa、Y軸方向にΔYaを移動することにより、レンズの傾き補正を行う。
【0068】
図16は傾き補正によるビーム収束位置を示す図である。図16(a)はカメラ軸67とビーム収束位置との距離を示す図、図16(b)は事前測定パラメータを示す図である。図16(a)及び図16(b)に示すように、レンズの傾き補正によるカメラ軸67とビーム収束位置までのX方向の距離ΔXfaは次式(16)〜(18)に示すようになる。
【0069】
d1=Zc0×cosθx+R1−q−Zs1 ・・・(16)
d2=f/(1−(f/d1)) ・・・(17)
ΔXfa=(d2+R1−Zp2)×sinθx ・・・(18)
同様に、カメラ軸67とビーム収束位置とのY軸方向の距離ΔYfaは、式(16)〜(18)において、XをYに変えれば良い。
【0070】
ステップS330において、上述したように、LDステージ140をX軸方向にΔXs、Y軸方向にΔYsを移動することにより、レンズシフトを行う。
【0071】
レンズシフトによるカメラ軸67とビーム収束位置までのX方向の距離ΔXfsは、次式(19),(20)に示すようになる。
【0072】
m=1/((d1/f)−1) ・・・(19)
ΔXfs=−m×ΔXs ・・・(20)
同様に、カメラ軸67とビーム収束位置とのY軸方向の距離ΔYfsは、式(16)〜(18)において、XをYに変えれば良い。また、ビーム収束位置のZ座標も図16(a)より算出することができることから、レンズシフトによるビ―ム収束位置を予測することができる。
【0073】
図15中のステップS332において、制御用PC100は、YAGレーザ溶接機102を制御して、レンズホルダをLD−PKG4にレーザ溶接する。ステップS334において、カメラステージ140をZ軸方向に移動して、カメラ120を退避位置へ上昇する。ステップS336において、レンズ固定冶具152のレンズチャックを開放する。ステップS338において、部材取り外し位置へ素子固定冶具150を移動して、部材を取り外す。
【0074】
第2実施形態
図17は本発明の第2実施形態のファイバ調整装置の構成図であり、図11中の構成要素と実質的に同一の構成要素には同一の符号を附している。このファイバ調整装置は、図11に示したレンズ調整装置の機能に加えて、ファイバ調整機能を有する。制御用PC200は、上述のレンズ調整の制御機能に加えて、LD駆動電源202、光パワーメータ204を制御することにより、後述するファイバ調整機能を有する。LD駆動電源202は、制御用PC200の制御により、LD−PKG4にLD駆動電源電圧を供給する。光パワーメータ204は光ファイバの出力光のパワーを測定して、GP−IB108を通して、測定結果を制御用PC200に通知する。
【0075】
図18は、ファイバ調整方法を示すフローチャートである。図15に示したステップ300〜S326を実行する。ステップS400において、図15中のステップS328と同様にレンズの傾き補正を行う。ステップS402において、図15中のステップS330と同様にレンズシフトをする。ステップS404において、レンズホルダをLD−PKG4にレーザ溶接をする。ステップS406において、カメラ120を退避位置へ移動する。ステップS408において、レンズチャックをはずしてクランプする。
【0076】
ステップS410において、レンズホルダにスリーブをセットする。ステップS412において、スリーブ固定治具152を下降させてスリーブを押える。ステップS414において、フェルールアセンブリ(As)をセットする。ステップS416において、LD電源駆動204を駆動して、LDを発光させる。ステップS418において、レンズ調整の際に算出したビーム収束位置のカメラ軸(Z軸)からΔXfs,ΔYfs付近にファイバ先端が位置するようにフェルールの位置を調整する。
【0077】
ステップS420において、制御用PC200の光軸調整プログラムにより光ピークパワー探索して、光軸調整を行う。ステップS422において、光パワーメータ202により光ファイバの光パワーを測定して、制御用PC200に出力する。ステップS424において、ピークパワーであるか否かを判断する。ピークパワーでなければ、ステップS420に戻り、光ピークパワーの探索をする。ピークパワーであれば、ステップS426に進む。このとき、ファイバがレンズ調整の際に算出したビーム収束位置近辺にセットされているので、光ピークパワーの探索時間が従来と比較して短縮される。ステップS426において、フェルールをスリーブにレーザ溶接する。
【0078】
ステップS428〜S430において、以下に示す溶接固定による光軸ズレを補正する。ステップS428において、再光軸調整を行う。ステップS430において、光出力測定する。ステップS432において、ピークパワーであるか否かを判断する。ピークパワーでなければ、ステップS428に戻る。ピークパワーであれば、ステップS434に進む。ステップS434において、スリーブとレンズホルダ(LD As)とをレーザ溶接により固定する。ステップS436において、光出力測定する。ステップS438において、ファィバチャックを開放する。ステップS440において、スリーブ押えを開放する。ステップS442において、モジュールを取り出す。
【0079】
第3実施形態
図19は本発明の第3実施形態によるレンズ調整方法を示す図である。図19中、左上がレンズホルダ及びレンズの平面図、右上が側面図及び左下が正面図である。図19の横方向がX軸、縦方向がY軸である。第1実施形態では、レンズが第一面及び第ニ面が凸形状であったので、第一像,第二像を結像することができた。しかし、図19に示すように、レンズ300の第一面310が平面、第二面312が凸(平凸レンズ)では、レンズ300の第一面の平面側から観察した場合には、レンズ第一面310の曲率半径が無限大であるため、第一像が結像しない。そこで、以下のようにして、レンズ傾き角及びレンズ中心を測定する。
【0080】
図19に示すように、レンズホルダ302のレンズ枠304の内壁3点A,B,Cをカメラにより認識し、座標(XA,YA,ZA),(XB,YB,ZB),(XC,YC,ZC)を取得する。δZx=ZA−ZB、δX=XA−XBとすると、レンズ傾きθx=arctan(δZx/δX)となる。また、δZyx=ZC−ZB、δY=YC−YBとすると、レンズ傾きθy=arctan(δZy/δY)となる。これにより、レンズ傾きθx,θyが算出される。レンズ光軸は、レンズ中心を通り、Z軸よりレンズ傾きθx,θyだけ傾斜する直線により算出することができる。レンズ光軸が算出されると、第1実施形態と同様にして、レンズ傾き補正及びレンズシフトを行う。
【0081】
実施形態では自動レンズ調整装置と自動レンズ・ファイバ調整装置を挙げたが、以下のアプリケーションが考えられる。
【0082】
▲1▼ レンズホルダ内へ装着したレンズの傾き評価
例えば、レンズメーカにおいて、レンズをホルダにマウントする際、レンズがホルダへ傾き無くマウント(一般には接着固定)するのは難しく、許容値をオーバしてしまうものがある。そこで、レンズマウント後のホルダに対するレンズ自体の傾きを安価且つ簡易的に検査するものとして本発明を利用することができる。
【0083】
▲2▼ レンズ多段接続を必要とするレンズ組立
図20は本発明の他の適用例を示す図であり、直列にレンズを多段接続する場合を示している。図20に示すように、顕微鏡の対物レンズやコリメータレンズ等には、レンズの収差補正等のために複数のレンズ400a,400b,…,が直列に接続されているが、これらのレンズ位置の調整にも利用することができる。即ち、カメラから遠方のレンズから順に調整/固定していく方法で本発明を利用することができる。
【0084】
本発明は以下の付記を含むものである。
【0085】
(付記1) 発光素子を収容したパッケージと当該パッケージ上にレンズを支持するレンズホルダとを有する光モジュールの調整装置において、
照明光源の出射光をカメラ鏡筒に導くライトガイドと当該ライトガイドによりカメラ鏡筒に導かれた光を上方から照射する光学系とを含むカメラと、
前記パッケージを支持する素子固定冶具を水平方向に移動するステージと、
前記カメラの前記光学系により上方から前記レンズに照射したとき、前記素子固定冶具により支持された前記パッケージの上面に載置された前記レンズホルダに収容された前記レンズの第一凸面及び第ニ凸面による前記ライトガイドの端面の第一及び第ニ像の撮像画像に基づく第一及び第二重心座標並びに前記第一及び第二像の光路差に基づいて、前記第一及び第二凸面の曲率半径の中心を結ぶレンズ光軸の垂直方向からの傾きを算出するレンズ傾き算出部と、
前記傾き、前記第一又は第二重心座標並びに前記第一凸面の曲率半径に基づいて、前記レンズ光軸を算出するレンズ光軸算出部と、
前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸を通過するように、前記ステージを制御して、前記発光素子を移動するレンズ傾き補正部と、
を具備したことを特徴とする光モジュールの調整装置。
【0086】
(付記2) 前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸から一定距離離間するように、前記ステージを制御して、前記発光素子を移動するオフセット補正部を更に具備したことを特徴とする付記1記載の光モジュールの調整装置。
【0087】
(付記3) 前記ライトガイドの端面の重心を含む領域に前記照明光源からの出射光を遮断する遮光マスクを設けたことを特徴とする付記1記載の光モジュールの調整装置。
【0088】
(付記4) 前記第一又は第二重心座標、前記レンズの焦点距離、前記レンズの前記第ニ凸面による第一レンズ主点と前記レンズの裏面トップとの間の距離、前記第二凸面による第ニレンズ主点と前記レンズの表面トップとの間の距離及び前記発光部と前記第一レンズ主点との間の距離である前焦点距離に基づいて、前記第ニレンズ主点と前記発光部からの光の前記レンズによる結像位置までの後焦点距離を算出する後焦点距離算出部を更に具備したことを特徴とする付記1記載の光モジュールの調整装置。
【0089】
(付記5) 前記レンズの焦点距離をf、前記前焦点距離をd1、前記後焦点距離をd2としたとき、d2=d1×f/(d1−f)であることを特徴とする付記4記載の光モジュールの調整装置。
【0090】
(付記6) 前記第一重心座標(X1,Y1,Z1)、第二重心座標(X2,Y2,Z2)、前記光路長δZとしたとき、X軸に垂直な平面における前記レンズ光軸のZ軸からの傾きθx、Y軸に垂直な平面における前記レンズ光軸のZ軸からの傾きθyとしたとき、θx=arctan((X2-X1)/δZ),θy=arctan((Y2-Y1)/δZ)であることを特徴とする付記1記載の光モジュールの調整装置。
【0091】
(付記7) 前記遮光マスクは光を透過する欠損部が一定方向に形成されていることを特徴とする付記3記載の光モジュールの調整装置。
【0092】
(付記8) 発光素子を収容したパッケージとレンズを支持する前記パッケージ上に固定されたレンズホルダと光ファイバを収容するフェルールを支持する前記レンズホルダ上に固定されたスリーブとを含む光モジュールの調整方法において、
前記パッケージを素子固定冶具により支持するステップと、
照明光源の出射光をカメラ鏡筒に導くライトガイドと当該ライトガイドによりカメラ鏡筒に導かれた光を上方から照射する光学系とを含むカメラにより撮像した前記発光素子の撮像画像に基づいて、前記発光素子の発光部の座標を取得するステップと、
前記パッケージの上面に前記レンズホルダを載置するステップと、
前記光学系により上方より前記レンズホルダに支持されたレンズに照射して、当該レンズの第一凸面及び第ニ凸面による前記ライトガイドの端面の第一及び第ニ像の撮像画像に基づく第一及び第二重心座標並びに前記第一及び第二像の光路差に基づいて、前記第一及び第二凸面の曲率半径の中心を結ぶレンズ光軸の垂直方向からの傾きを算出するステップと、
前記傾き及び前記第一又は第二重心座標に基づいて、前記レンズ光軸を算出するステップと、
前記傾き、前記第一又は第二重心座標並びに前記第一凸面の曲率半径に基づいて、前記レンズ光軸を算出するステップと、
前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸を通過するよう前記発光素子を移動するステップと、
前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸から一定距離離間するよう前記発光素子を移動するステップと、
前記レンズホルダを前記パッケージに固定するステップと、
を含むことを特徴とする光モジュールの調整方法。
【0093】
(付記9) 前記第一又は第二重心座標、前記レンズの焦点距離、前記第ニ凸面の第一主点と前記レンズの裏面トップとの間の距離、前記第一凸面の第二主点と前記レンズの表面トップとの間の距離及び前記発光部と前記第一主点との間の垂直方向の距離である前焦点距離に基づいて、前記発光部からの出射光の光の前記レンズによる結像位置を算出するステップと、前記レンズホルダ上にスリーブ固定冶具により前記スリーブを固定するステップと、前記後焦点距離に基づいて、前記結像位置に前記光ファイバの先端部が位置するように前記スリーブに前記フェルールを挿入するステップとを更に含むことを特徴とする付記8記載の光モジュールの調整方法。
【0094】
【発明の効果】
以上説明した本発明によれば、簡単な構成・方法により短時間にレンズ調整を実現することができ、モジュール組立の低コスト化を行うことができる。
【図面の簡単な説明】
【図1】レンズ傾き算出方法を示す図である。
【図2】レンズ光軸の位置情報算出方法を示す図である。
【図3】レンズ光軸の位置情報算出方法を示す図である。
【図4】光路長算出方法を示す図である。
【図5】光路長算出方法を示す図である。
【図6】レンズ補正方法を示す図である。
【図7】レンズシフト方法を示す図である。
【図8】ビーム収束位置算出方法を示す図である。
【図9】Zs1及びZs2算出方法を示す図である。
【図10】Zs1及びZs2算出方法を示す図である。
【図11】本発明の第1実施形態によるレンズ調整装置を示す図である。
【図12】図11中のCCDカメラを示す図である。
【図13】図12中のライトガイド端面を示す図である。
【図14】図13中の遮光マスクを示す図である。
【図15】本発明の実施形態によるレンズ調整方法を示す図である。
【図16】傾き補正によるビーム収束位置を示す図である。
【図17】本発明の第2実施形態によるファイバ調整装置を示す図である。
【図18】本発明の実施形態によるファイバ調整方法を示す図である。
【図19】本発明の第3実施形態によるレンズ調整方法を示す図である。
【図20】本発明の適用例を示す図である。
【図21】光モジュールを示す図である。
【図22】従来のレンズ調整装置を示す図である。
【符号の説明】
2 LD発光部
4 LD−PKG
100 制御用PC
104 カメラ同軸照明光源
120 CCDカメラ
132 ライトガイド
140 ステージ
150 素子固定冶具

Claims (3)

  1. 発光素子を収容したパッケージと当該パッケージ上にレンズを支持するレンズホルダとを有する光モジュールの調整装置において、
    照明光源の出射光をカメラ鏡筒に導くライトガイドと当該ライトガイドによりカメラ鏡筒に導かれた光を上方から照射する光学系とを含むカメラと、
    前記パッケージを支持する素子固定冶具を水平方向に移動するステージと、
    前記光学系により上方から前記レンズに照射したとき、前記素子固定冶具により支持された前記パッケージの上面に載置された前記レンズホルダに収容された前記レンズの第一凸面及び第ニ凸面による前記ライトガイドの端面の第一及び第ニ像の撮像画像に基づく第一及び第二重心座標並びに前記第一及び第二像の光路差に基づいて、前記第一及び第二凸面の曲率半径の中心を結ぶレンズ光軸の垂直方向からの傾きを算出するレンズ傾き算出部と、
    前記傾き、前記第一又は第二重心座標並びに前記第一凸面の曲率半径に基づいて、前記レンズ光軸を算出するレンズ光軸算出部と、
    前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸を通過するように、前記ステージを制御して、前記発光素子を移動するレンズ傾き補正部と、
    を具備したことを特徴とする光モジュールの調整装置。
  2. 前記レンズ光軸に基づいて、前記発光素子の発光部が前記レンズ光軸から一定距離離間するように、前記ステージを制御して、前記発光素子を移動するオフセット補正部を更に具備したことを特徴とする請求項1記載の光モジュールの調整装置。
  3. 前記ライトガイドの端面の重心を含む領域に前記照明光源からの出射光を遮断する遮光マスクを設けたことを特徴とする請求項1記載の光モジュールの調整装置。
JP2003028788A 2003-02-05 2003-02-05 光モジュールの調整装置 Expired - Fee Related JP3908178B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028788A JP3908178B2 (ja) 2003-02-05 2003-02-05 光モジュールの調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028788A JP3908178B2 (ja) 2003-02-05 2003-02-05 光モジュールの調整装置

Publications (2)

Publication Number Publication Date
JP2004240133A JP2004240133A (ja) 2004-08-26
JP3908178B2 true JP3908178B2 (ja) 2007-04-25

Family

ID=32956152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028788A Expired - Fee Related JP3908178B2 (ja) 2003-02-05 2003-02-05 光モジュールの調整装置

Country Status (1)

Country Link
JP (1) JP3908178B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257342B (zh) * 2020-03-31 2023-02-21 北京博清科技有限公司 相机定位系统和相机定位方法
CN112817160B (zh) * 2020-12-31 2022-06-24 常州奥创医疗科技有限公司 光学成像系统的装调方法

Also Published As

Publication number Publication date
JP2004240133A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
TWI629131B (zh) Laser processing device
CN112930242B (zh) 加工系统以及加工方法
EP0762092B1 (en) Optical source position adjustment device
KR100619471B1 (ko) 본딩 장치
JPH09127378A (ja) 光モジュール組立体の製造方法および製造装置
JP2012108478A (ja) 光源ユニットの調整装置及び調整方法
JP2003232989A (ja) 顕微鏡ベースのシステムに対するオートフォーカスモジュール、オートフォーカスモジュールを有する顕微鏡システム、および顕微鏡ベースのシステムに対する自動焦点合わせ方法
US7527186B2 (en) Method and apparatus for mapping a position of a capillary tool tip using a prism
US20130120762A1 (en) Diaphragm position measuring method, diaphragm position measuring apparatus, diaphragm positioning method and diaphragm positioning apparatus
JP3908178B2 (ja) 光モジュールの調整装置
JP4287494B2 (ja) 調芯固定方法および調芯固定装置
JP3691361B2 (ja) 光素子モジュールの組み立て装置及び光軸調整方法
JP7398622B2 (ja) レーザ加工ヘッド及びレーザ加工システム
JP2020020990A (ja) 接合装置および接合方法
JPH10209502A (ja) 光軸調整装置及び光軸調整方法
JP4127986B2 (ja) 調芯固定方法および調芯固定装置
JP2000164680A (ja) ウェハ位置調整装置
JP4197680B2 (ja) 発光素子の実装方法
KR100631048B1 (ko) 레이저 가공용 자동초점장치
JP2003177292A (ja) レンズの調整装置および調整方法
JP2007042858A (ja) 投影露光装置
JP2663569B2 (ja) レーザ加工装置
JP2019155402A (ja) レーザ光の芯出し方法及びレーザ加工装置
TWI388020B (zh) 使用稜鏡標示毛細用具的尖端位置的方法與裝置
JPH11201719A (ja) 位置測定装置及びレーザ加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees