JP3906971B2 - Package - Google Patents

Package Download PDF

Info

Publication number
JP3906971B2
JP3906971B2 JP2001322508A JP2001322508A JP3906971B2 JP 3906971 B2 JP3906971 B2 JP 3906971B2 JP 2001322508 A JP2001322508 A JP 2001322508A JP 2001322508 A JP2001322508 A JP 2001322508A JP 3906971 B2 JP3906971 B2 JP 3906971B2
Authority
JP
Japan
Prior art keywords
water
fine particles
hygroscopic
absorption
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001322508A
Other languages
Japanese (ja)
Other versions
JP2003129381A (en
Inventor
清秀 林
清一 越智
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001322508A priority Critical patent/JP3906971B2/en
Publication of JP2003129381A publication Critical patent/JP2003129381A/en
Application granted granted Critical
Publication of JP3906971B2 publication Critical patent/JP3906971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Packages (AREA)
  • Packaging Frangible Articles (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は温度低下を防止あるいは結露防止が必要な精密機器類の包装体、具体的には梱包箱、梱包袋、ケース類などの包装体に関し、特に寒冷環境においてその効果を発揮する包装体に関する。
【0002】
【従来の技術】
精密機器類は性能・機能を維持するために環境温度の下限を制約されており、寒冷下においては急激な温度低下により結露することが原因でその動作が不完全で、たとえば通信や画像撮影などに支障をきたす場合がある。こうした事態を回避する目的でカバーケースなどを保温性に優れた素材や積層して保温機能を持たせた素材が用いられているが、厚みが大きく機材の形状に沿った賦形や取扱性に悪くまた結露による動作不良を起こすなどの欠点があった。
【0003】
【発明が解決しようとする課題】
本発明は上記の様な事情にかんがみてなされたものであって、カメラ、ビデオ、パソコンなどの精密機器類の寒冷下における使用を円滑にすることを目的としている。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するための技術構成は次のとおりである。すなわち、
1.単層又は複層から構成される包装体の少なくとも一部または全面に、平均粒子径が2μm未満の高吸湿性微粒子が少なくとも親水性シリコーン樹脂を含む親水性樹脂を介して、かつ高吸湿性微粒子と親水性樹脂の質量比が10/1〜19/1であるように付着されてなる吸湿及び/又は吸水時の最大温度上昇が3℃以上である吸湿/吸水発熱性構造体を有することを特徴とする包装体。
【0005】
2.吸湿/吸水発熱性構造体の吸湿時の発熱が30分以上、及び/又は吸水時の発熱が1分以上保持されることを特徴とする1項に記載の包装体。
【0006】
3.吸湿/吸水発熱性構造体の吸水時の最大温度上昇が8℃以上であることを特徴とする1項に記載の包装体。
【0007】
4.吸湿/吸水発熱性構造体に付与される高吸湿性微粒子が有機微粒子であることを特徴とする1項に記載の包装体。
【0008】
5.吸湿/吸水発熱性構造体に付与される高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である1項に記載の包装体。
【0009】
6.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子の平均粒子径が0.8μm以下であることを特徴とする1項に記載の包装体。
【0010】
7.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子が親水性樹脂を介して構造体に固定化されていることを特徴とする1項に記載の包装体。
【0011】
8.吸湿/吸水発熱性構造体に使用する高吸湿性微粒子と親水性樹脂の質量比が15/1〜19/1であることを特徴とする1項に記載の包装体。
【0012】
9.吸湿/吸水発熱性構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体であることを特徴とする請求項1に記載の包装体。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する.
【0014】
本発明における包装体は、防水性、伸縮性や難燃性を有する外層部を備えることが望ましい。また外層部は単層であってもよく、その内側にフィルムをラミネートしたものであってもよい。
【0015】
外層部を非限定的に例示すれば、ポリウレタン湿式コーティングやポリウレタン・アクリル湿式コーティング等を施した伸縮性と難燃性を有した織編物、あるいは前記防水性フィルムとしてテトラフルオロエチレンフィルムやポリウレタンフィルム等をラミネート又は貼着した織編物等があげられる。
【0016】
本発明に用いる構造体とは、ポリエステル系、ポリアミド系、ポリアクリルニトリル系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリフェニレンサルファイド系等の合成繊維、レーヨン、アセテート等の化学繊維、木綿、麻、シルク、ウール、羽毛などの天然繊維もしくはこれらの混用素材からなる編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体などで構成される構造体であり、内層部として用いるかまたは単体で用いることができ、低温環境下へ移動した際に、包装体と機材または機材内部の空間に存在する空気中の水分が結露することにより機材の動作性を妨げないようにするものである。
【0017】
本発明の高吸湿性微粒子(以下、高吸湿/吸水発熱性微粒子とも表記する。)は、吸湿又は吸水時に発熱性を示す微粒子であれば、特に化学構造的に限定されるものではない。例えば、吸湿性シリカなどの無機系、もしくは吸湿性ポリウレタン系、ポリアミド系、ポリエステル系およびポリアクリレート系などの種々の有機系微粒子の適用が可能であるが、特に、高吸湿/吸水発熱性有機微粒子が好ましく、例えば、ポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体微粒子である。
【0018】
高吸湿性微粒子の粒度は、吸湿/吸水発熱速度/発熱効率、均一付着性、風合い及び耐磨耗性の点から細かいほど望ましく、平均粒子径0.8μm以下がより好ましい。
【0019】
本発明の高吸湿/吸水発熱性微粒子の付与方法は、繊維に直接練り込む方法や編物、織物、不織布、フリース、紐状物、フィルム及び樹脂成形品などの表層にバインダー樹脂を介して付着させる方法が挙げられるが、吸湿/吸水発熱速度/発熱効率の点から後者のバインダー樹脂を介する付着方法が好ましい。
【0020】
バインダー樹脂としては、通常の含浸法、パディング法、コーティング法、スプレー法に適用できるシリコン系、ウレタン系、アクリル系、ポリエステル系、ポリアミド系、ポリエチレンオキサイド系などの樹脂が挙げられ、親水性、すなわち、吸湿性、吸水性、透湿性に優れ、高吸湿/吸水発熱性微粒子の優れた吸湿性、吸水性を阻害せず、しかも高吸湿/吸水発熱性微粒子と構造体を効果的に接着固定化できるバインダー機能に優れるタイプである。特に好ましい親水性樹脂バインダーとしては、親水性セグメントとして、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、アミド変成型などを導入した親水性シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリアミド系樹脂、親水性ポリエチレンオキサイド系樹脂で、樹脂自身の吸湿性、透湿性が高く、吸水性を阻害しないものがあげられる。ここで言う樹脂の透湿性とは無孔膜状態での透湿性を意味する。微多孔膜で発現する透湿性が高い樹脂でも、樹脂自身の吸湿性、吸水性が低いバインダー樹脂では、高吸湿/吸水発熱性微粒子の優れた吸湿発熱もしくは吸水発熱性をマスキングし、低下させる。また、これら高吸湿/吸水発熱性微粒子と親水性樹脂バインダーの系に耐久性向上のために、イソシアネート系、メチロール系、エチレンイミン系、多官能アジリジニル系、金属塩系など各種架橋剤を、併用微粒子本来の吸湿/吸水性を低下させない範囲で併用しても良い。
【0021】
本発明における高吸湿/吸水発熱性微粒子と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸水発熱性に大きく影響する。親水性樹脂の親水レベルにより高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は多少異なるが、配合比は10/1〜19/1であり、好ましくは、15/1〜19/1の配合比などの、特に親水性樹脂の配合比率の小さいものほど、優れた吸湿/吸水発熱性を発現させることができる。但し、親水性樹脂が極端に少ない場合、もしくは併用しない場合は構造物表面に付着した高吸湿/吸水発熱性微粒子の磨耗耐久性が低下し、脱落し易くなる。逆に、親水性樹脂の配合比が多い場合は、親水性樹脂といえども、高吸湿/吸水発熱性微粒子本来の保有する吸湿/吸水性を阻害するケースが多いため、マスキング効果により吸湿/吸水発熱速度及び発熱量が極端に低下する。もちろん、親水性樹脂の吸湿/吸水性が高吸湿/吸水発熱性微粒子と同等以上の場合は、親水性樹脂の配合比を増加することができる。
【0022】
本発明の吸湿/吸水発熱性構造体の発熱性は、物質の吸湿もしくは吸水時に産出する吸着反応熱に基づくもので、構造体に含まれる高吸湿/吸水性微粒子及び併用親水性樹脂バインダーの吸湿性能力及び又は吸水性能力及び付着量に依存する。すなわち、高吸湿/吸水性微粒子で、しかも細かいほど、吸湿もしくは吸水レベルの高い親水性樹脂バインダーほど、吸着水分による産熱は大きく、発熱速度も早く、発熱保持時間も長くなる。もちろん、かかる吸湿/吸水性は構造体基材単独でも保有するため、より効果的な吸湿/吸水発熱性を実現させるためには適用吸湿/吸水発熱性微粒子の吸湿率(20℃、65%RH)は25%以上が望ましく、さらに好ましくは40%以上である。また、併用親水性樹脂はかかる吸湿/吸水発熱性微粒子の吸湿性/吸水性をできるだけ阻害しない少なくとも吸湿率(20℃、65%RH)3〜50%のものが好ましい。すなわち、効果的な吸湿/吸水発熱性を得るためには、本発明の高度な吸湿/吸水発熱性を保有する構造体を出来るだけ低吸湿率、更に好ましくは完全乾燥(絶乾)状態に近い状態で保管することが肝要である。逆に、飽和吸湿率以上に水分を吸着し、発熱が完了した構造体は、放熱冷却され当初の温度まで低下するが、再度、乾燥して吸着水を取り除けば、元来の優れた吸湿/吸水発熱性が再発現する。
【0023】
本発明によれば、高吸湿/吸水発熱性微粒子の種類及び付着量を最適化し、適正な親水性樹脂バインダーを介して付着させた構造体は、吸湿及び又は吸水時の最大温度上昇が3℃以上、好ましくは4℃以上、より好ましくは5℃以上であり、さらには吸水時の最大温度上昇が8℃以上であり、しかも吸湿時の発熱保持時間が30分以上、吸水時の発熱保持時間が30秒以上、より好ましくは1分以上保持される等、吸湿/吸水発熱速度、発熱量、発熱保持時間の総合発熱性能面で、従来にない優れた吸湿/吸水発熱性が得られる。
【0024】
本発明の構造体は、これらの優れた高吸湿/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭性、制電性、SR防汚性、耐酸性雨性の多機能性を発現させることもできる。
【0025】
【実施例】
以下に実施例により本発明を詳細に説明するが、本発明は、何らこれらに限定するものではない。以下で、単に部、%と記載したものは、質量基準を意味する。また、本実施例における構造体の測定、評価は次の方法で行った。
【0026】
<絶乾質量>
構造体サンプルを110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、20℃、65%RH環境下で調温後、質量測定を行った。
<吸湿性>
20℃、65%RH環境下で24時間調温調湿後の質量測定を行い、下記式から算出した。
吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}×100
【0027】
<吸湿発熱性>
構造体を110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、絶乾状態とした5cm×5cmの測定サンプルに温度センサー(例えば安立計器(株)製;540K MD−5型)を装着後、20℃、95%RH環境下(例えば硫酸カリウム飽和水溶液入りデシケータ)での吸湿発熱性を温度記録計(例えば安立計器(株)製;DATA COLLECTOR AM−7052型)で計測した。
<吸水発熱性>
前記絶乾状態の構造体の5cm×5cmの測定サンプルに温度センサーを装着後、20℃、65%RH環境下で、サンプル質量の50%相当量のイオン交換水を均一に噴霧後、吸水発熱性を温度記録計にて計測した。最大吸水発熱温度及び吸水前サンプル温度以上の吸水発熱保持時間(分)で評価した。
【0028】
<結露性>
10〜15リットルの内体積を有するデシケーターに5cm×5cmのサンプルを投入し、ふたを開けた状態で20℃、80%の室内に放置し、調温・調湿した。24時間後、デシケーターのふたを閉めて10℃に保たれた環境下に5分以内に移動させる。その1時間後にふたを開けサンプルの結露状態を確認した。
<使用性>
試作した包装体により外部を囲み込んだカメラを20℃、65%RH環境下で24時間調湿したあと、0℃の実験室に持ち込み、60分後に包装体から取り出して撮影を試みその際の動作性で評価した。
【0029】
[実施例1]
ポリエステル長繊維加工糸(165dtex/48f)からなるダブルニット(目付200g/m2)を通常リラックス精練、分散染色、乾燥後、本発明の高吸湿/吸水発熱性構造体の基布として用いた。
【0030】
次に高吸湿/吸水発熱性有機微粒子の製造を次の方法で行った。
メタクリル酸/p−スチレンスルホン酸ソーダ=70/30の水溶性重合体350部及び硫酸ナトリウム35部を6500部の水に溶解し、櫂型攪拌機付きの重合槽に仕込んだ。次に、アクリル酸メチル2750部及びジビニルベンゼン330部に2,2'−アゾビス−(2,4−ジメチルバレロニトリル)15部を溶解して重合槽に仕込み、400rpmの攪拌下、60℃で2時間重合し、重合率88%の共重合体を得た。該重合体100部を水900部中に分散し、これに110部の苛性ソーダを添加し、90℃、2.5時間反応を行い、アクリル酸メチルのメチルエステル部を加水分解することによりカルボキシル基4.6ミリ当量/gを有した架橋重合体を得た。得られた重合体を水中に分散し、洗浄、脱水後、粉砕、分級もしくはろ過し、高吸湿/吸水発熱性微粒子を得た。得られた高吸湿/吸水発熱性有機微粒子の20℃、65%RH下での吸湿率は50%、平均粒子径は0.8μmであった。
【0031】
かかる高吸湿/吸水発熱性微粒子20%を含む水分散体95部に親水性樹脂バインダーとして、TF−3500(花王社製親水性シリコン系バインダー;固形分40%)4部およびアクアプレンWS105(明成化学工業社製親水性ウレタン系バインダー;固形分40%)1部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、180℃で1分間乾熱セットして構造体を得た。得られた構造体は吸湿により6℃の温度上昇で40分維持し、吸水で10℃の発熱があり2分間維持した。また結露性は認められなかった。
【0032】
得られた構造体を包装体に構成した。外層部は、ポリエステル編地に防水性ポリウレタンフィルムを接着剤で固定させることにより形成し、内層部には、吸湿/発熱性を有する構造体を貼り付けて賦形して、カメラが収納できる形状とした。該包装体の使用性を評価した結果、問題なく撮影することができた。環境変化に伴う湿度吸収により包装体内部の湿気を吸収し結露を防止するとともに、発熱作用があったことによるものである。
【0033】
[比較例1]
実施例1に記載のポリエステル長繊維加工糸使いダブルニットを未加工のまま用いる以外は同様の構成で包装体を作成し使用性を評価したが、環境温度により冷却され正常な動作をしなかった。
【0034】
【発明の効果】
本発明による包装体は、高吸湿発熱性微粒子の効果により、外部環境の変化による吸湿、吸水発熱作用により、結露を防止し精密電子機器類の寒冷下での円滑な動作を可能にするものである。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a packaging body for precision equipment that needs to prevent temperature drop or prevention of condensation, specifically, a packaging body such as a packaging box, packaging bag, cases, etc., and particularly to a packaging body that exhibits its effect in a cold environment. .
[0002]
[Prior art]
In order to maintain the performance and functions of precision equipment, the lower limit of the environmental temperature is constrained, and in cold conditions, the operation is incomplete due to condensation due to a rapid temperature drop, such as communication and image shooting. May cause problems. In order to avoid such a situation, the cover case is made of a material with excellent heat retention or a material with a heat insulation function that is laminated, but it has a large thickness and is shaped and handled according to the shape of the equipment. There were drawbacks such as poor operation caused by condensation.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has an object of facilitating the use of precision instruments such as cameras, videos, and personal computers in the cold.
[0004]
[Means for Solving the Problems]
The technical configuration of the present invention for solving the above-described problems is as follows. That is,
1. Highly hygroscopic fine particles having a high hygroscopic fine particle having an average particle diameter of less than 2 μm via a hydrophilic resin containing at least a hydrophilic silicone resin on at least a part or the entire surface of a package composed of a single layer or multiple layers A moisture absorption / water absorption exothermic structure having a maximum temperature increase of 3 ° C. or more at the time of moisture absorption and / or water absorption that is adhered so that the mass ratio of the hydrophilic resin to 10/1 to 19/1. Characteristic packaging.
[0005]
2. 2. The package according to item 1, wherein the moisture absorption / water absorption exothermic structure retains heat generation during moisture absorption for 30 minutes or more and / or heat generation during water absorption for 1 minute or more.
[0006]
3. 2. The package according to item 1, wherein the maximum temperature rise during water absorption of the moisture absorption / water absorption exothermic structure is 8 ° C. or more.
[0007]
4). 2. The package according to item 1, wherein the highly hygroscopic fine particles applied to the hygroscopic / water-absorbing exothermic structure are organic fine particles.
[0008]
5. Highly hygroscopic organic fine particles imparted to the hygroscopic / water-absorbing exothermic structure are polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, or polymethacrylic ester-based vinyl polymers. Item 2. The package according to item 1, which is a crosslinked polymer having at least one hydrophilic group of an acid group, a phosphoric acid group, or a metal salt thereof, and crosslinked with either divinylbenzene, triallyl isocyanate, or hydrazine. body.
[0009]
6). 2. The package according to item 1, wherein the average particle size of the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure is 0.8 μm or less .
[0010]
7). 2. The package according to item 1, wherein the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure are fixed to the structure via a hydrophilic resin.
[0011]
8). Package as claimed in 1 wherein the weight ratio of the highly hygroscopic fine particles and a hydrophilic resin used in the moisture / water pyrogenic structure characterized in that it is a 15 / 1-19 / 1.
[0012]
9. The moisture-absorbing / water-absorbing exothermic structure is a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a string-like body, a film or a resin molded body composed of natural fibers, synthetic fibers or mixed fibers thereof. The package described.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0014]
The package in the present invention preferably includes an outer layer portion having waterproofness, stretchability and flame retardancy. Further, the outer layer portion may be a single layer or may be a laminate of a film on the inside.
[0015]
Non-limiting examples of the outer layer portion include a woven or knitted fabric having a polyurethane wet coating, a polyurethane / acrylic wet coating, or the like, or a woven or knitted fabric having flame retardancy, or a tetrafluoroethylene film or a polyurethane film as the waterproof film. Woven or knitted fabric obtained by laminating or sticking.
[0016]
Structures used in the present invention include polyester-based, polyamide-based, polyacrylonitrile-based, polyethylene-based, polypropylene-based, polyurethane-based, polyphenylene sulfide-based synthetic fibers, rayon, acetate and other chemical fibers, cotton, hemp, silk , Knitted fabrics, woven fabrics, non-woven fabrics, fleece, string-like bodies or films or resin molded bodies made of natural fibers such as wool and feathers, or mixed materials thereof, and used as an inner layer portion or as a single body It can be used, and when moving to a low-temperature environment, moisture in the air existing in the package and the equipment or in the space inside the equipment is condensed so that the operability of the equipment is not hindered.
[0017]
The highly hygroscopic fine particles of the present invention (hereinafter also referred to as “highly hygroscopic / water-absorbing exothermic fine particles”) are not particularly limited in terms of chemical structure as long as they are fine particles that exhibit exothermic properties during moisture absorption or water absorption. For example, various organic fine particles such as inorganic type such as hygroscopic silica, or hygroscopic polyurethane type, polyamide type, polyester type and polyacrylate type can be applied. Particularly, highly hygroscopic / absorbing exothermic organic fine particles. Preferably, for example, any vinyl polymer of polystyrene, polyacrylonitrile, polyacrylate, polymethacrylate, sulfonic acid group, carboxylic acid group, phosphoric acid group, or a metal salt thereof The crosslinked polymer fine particles having at least one kind of hydrophilic group and crosslinked with either divinylbenzene, triallyl isocyanate or hydrazine.
[0018]
The particle size of the highly hygroscopic fine particles is preferably as fine as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and wear resistance, and an average particle size of 0.8 μm or less is more preferable.
[0019]
The method for applying the highly hygroscopic / water-absorbing exothermic fine particles of the present invention is a method of directly kneading into fibers or attaching to a surface layer of a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string-like material, a film, and a resin molded product via a binder resin Although the method may be mentioned, the latter attachment method through a binder resin is preferable from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency.
[0020]
As the binder resin, conventional impregnation method, padding method, coating method, silicone chromatography emission system that can be applied to spraying, urethane, acrylic, polyester, polyamide, include resins such as polyethylene oxide, parent aqueous In other words, it is excellent in hygroscopicity, water absorption, and moisture permeability, does not interfere with the excellent hygroscopicity / water absorption properties of the highly hygroscopic / water-absorbing exothermic fine particles, and effectively bonds the high-absorption / water-absorbing exothermic fine particles to the structure. it is a type of excellent binders ability to immobilize. Particularly preferred hydrophilic resin binders include hydrophilic silicone-based resins, hydrophilic urethane resins in which a polyalkylene oxide addition type, polar hydrophilic group type such as sulfonate and carboxylate, amide modification, etc. are introduced as hydrophilic segments. Resin, hydrophilic polyamide resin, and hydrophilic polyethylene oxide resin, which have high moisture absorption and moisture permeability and do not inhibit water absorption. Here, the moisture permeability of the resin means the moisture permeability in a non-porous film state. Even in a resin having high moisture permeability expressed in a microporous film, a binder resin having low hygroscopicity and water absorption of the resin itself masks and reduces the excellent hygroscopic heat generation or water absorption exothermic property of the high moisture absorption / water absorption exothermic fine particles. In order to improve the durability of these highly hygroscopic / water-absorbing exothermic fine particles and hydrophilic resin binders, various crosslinking agents such as isocyanate, methylol, ethyleneimine, polyfunctional aziridinyl, and metal salt are used in combination. You may use together in the range which does not reduce the original moisture absorption / water absorption of microparticles | fine-particles.
[0021]
In the present invention, the mixing ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of adhesion thereof greatly affect the hygroscopic / absorbing exothermic property. Mixing ratio of the high moisture / water heating particles and a hydrophilic resin by the hydrophilic level of the hydrophilic resin is slightly different mixing ratio is 10/1 to 19/1, good Mashiku is 15 / 1-19 / The smaller the mixing ratio of the hydrophilic resin, such as the mixing ratio of 1, the better the moisture absorption / water absorption exothermicity. However, if the amount of hydrophilic resin is extremely small or not used in combination, the wear durability of the highly hygroscopic / water absorbing exothermic fine particles adhering to the surface of the structure is lowered, and it tends to fall off. On the other hand, when the blending ratio of the hydrophilic resin is large, even if the hydrophilic resin is used, the high moisture absorption / water absorption exothermic fine particles often inhibit the inherent moisture absorption / water absorption. The heat generation rate and the heat generation amount are extremely reduced. Of course, when the moisture absorption / water absorption of the hydrophilic resin is equal to or higher than the high moisture absorption / water absorption exothermic fine particles, the blending ratio of the hydrophilic resin can be increased.
[0022]
The exothermic property of the hygroscopic / water-absorbing exothermic structure of the present invention is based on the heat of adsorption reaction generated when the material absorbs or absorbs water, and the hygroscopicity of the highly hygroscopic / absorbent fine particles contained in the structure and the combined hydrophilic resin binder. Depends on sexual ability and / or water absorption ability and adhesion amount. That is, the higher the hygroscopic / water-absorbing fine particles, the finer the hydrophilic resin binder with higher moisture absorption or water absorption level, the greater the heat generated by the adsorbed moisture, the faster the heat generation rate, and the longer the heat generation holding time. Of course, since such moisture absorption / water absorption is retained even by the structure base material alone, in order to realize more effective moisture absorption / water absorption exothermic property, the moisture absorption rate of applied moisture absorption / water absorption exothermic fine particles (20 ° C., 65% RH). ) Is preferably 25% or more, more preferably 40% or more. Further, the combined hydrophilic resin preferably has at least a hygroscopic rate (20 ° C., 65% RH) of 3 to 50% which does not inhibit the hygroscopicity / water absorption of the hygroscopic / water-absorbing exothermic fine particles as much as possible. That is, in order to obtain an effective moisture absorption / water absorption exothermic property, the structure having the high moisture absorption / water absorption exothermic property of the present invention has a low moisture absorption rate as much as possible, more preferably close to a completely dry (absolute dry) state. It is important to keep it in a state. Conversely, a structure that has adsorbed moisture above the saturated moisture absorption rate and has generated heat is cooled by heat dissipation and drops to the original temperature. However, if it is dried again and the adsorbed water is removed, the original excellent moisture absorption / Water absorption exotherm reappears.
[0023]
According to the present invention, the structure and the amount of the highly hygroscopic / water-absorbing exothermic fine particles are optimized and adhered via an appropriate hydrophilic resin binder, and the maximum temperature rise upon moisture absorption and / or water absorption is 3 ° C. Or more, preferably 4 ° C. or more, more preferably 5 ° C. or more. Further, the maximum temperature rise during water absorption is 8 ° C. or more, and the heat generation retention time during moisture absorption is 30 minutes or more, and the heat generation retention time during water absorption. Is maintained for 30 seconds or more, more preferably for 1 minute or more, etc. In terms of overall heat generation performance in terms of moisture absorption / water absorption heat generation rate, heat generation amount, and heat generation retention time, excellent moisture absorption / water absorption heat generation properties that have never been obtained can be obtained.
[0024]
In addition to these excellent high moisture absorption / water absorption exothermic properties, the structure of the present invention has antibacterial and antibacterial, antibacterial, deodorant, antistatic, SR antifouling, and acid rain resistant multi-functionality. Can also be expressed.
[0025]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Below, what was described as a part and% means a mass reference | standard. In addition, the measurement and evaluation of the structure in this example were performed by the following methods.
[0026]
<Absolute mass>
The structure sample was dried at 110 ° C. for 6 hours, then placed in a desiccator containing silica gel, temperature-controlled in an environment of 20 ° C. and 65% RH, and mass measurement was performed.
<Hygroscopicity>
Mass measurement after temperature control and humidity control at 20 ° C. and 65% RH for 24 hours was performed and calculated from the following formula.
Moisture absorption rate (%) = {(hygroscopic mass−absolute dry mass) / absolute dry mass} × 100
[0027]
<Hygroscopic heat generation>
After the structure was dried at 110 ° C. for 6 hours, it was placed in a desiccator containing silica gel, and a temperature sensor (for example, manufactured by Anri Keiki Co., Ltd .; 540K MD-5) was attached to a 5 cm × 5 cm measurement sample, The hygroscopic exothermic property at 20 ° C. in a 95% RH environment (for example, a desiccator containing a saturated aqueous solution of potassium sulfate) was measured with a temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR AM-7052 type).
<Water absorption exothermic property>
After mounting a temperature sensor on a 5cm x 5cm measurement sample of the absolutely dry structure, spraying ion-exchanged water equivalent to 50% of the sample mass uniformly in an environment of 20 ° C and 65% RH, then generating water. The properties were measured with a temperature recorder. Evaluation was made based on the maximum water absorption exothermic temperature and the water absorption exothermic holding time (min) above the sample temperature before water absorption.
[0028]
<Condensation>
A sample of 5 cm × 5 cm was put into a desiccator having an internal volume of 10 to 15 liters, left in a room at 20 ° C. and 80% with the lid opened, and temperature and humidity were adjusted. After 24 hours, the lid of the desiccator is closed and moved to an environment kept at 10 ° C. within 5 minutes. One hour later, the lid was opened and the condensation state of the sample was confirmed.
<Usability>
A camera with the exterior enclosed by the prototype package was conditioned for 24 hours in an environment of 20 ° C and 65% RH, brought into the laboratory at 0 ° C, taken out of the package 60 minutes later, and then shot. Evaluated by operability.
[0029]
[Example 1]
A double knit (weighing 200 g / m 2 ) composed of polyester long fiber processed yarn (165 dtex / 48f) was usually used for the base fabric of the highly hygroscopic / water absorbing exothermic structure of the present invention after relaxing scouring, disperse dyeing and drying.
[0030]
Next, high moisture absorption / water absorption exothermic organic fine particles were produced by the following method.
350 parts of a water-soluble polymer of methacrylic acid / p-sodium styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a vertical stirrer. Next, 15 parts of 2,2′-azobis- (2,4-dimethylvaleronitrile) was dissolved in 2750 parts of methyl acrylate and 330 parts of divinylbenzene and charged into the polymerization tank. Polymerization was performed for a time to obtain a copolymer having a polymerization rate of 88%. Disperse 100 parts of the polymer in 900 parts of water, add 110 parts of caustic soda to this, react at 90 ° C. for 2.5 hours, and hydrolyze the methyl ester part of methyl acrylate. A crosslinked polymer having 4.6 meq / g was obtained. The obtained polymer was dispersed in water, washed, dehydrated, pulverized, classified or filtered to obtain highly hygroscopic / water absorbing exothermic fine particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a moisture absorption rate of 50% and an average particle size of 0.8 μm at 20 ° C. and 65% RH.
[0031]
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / absorbing exothermic fine particles, 4 parts of TF-3500 (Kao Corporation hydrophilic silicon-based binder; solid content 40%) and Aquaprene WS105 (Meisei Chemical) Immerse the base fabric in a processing padding solution to which 1 part of a hydrophilic urethane-based binder (manufactured by Kogyo Co., Ltd .; solid content 40%) is added, squeeze it with a mangle to a processing solution wet pick-up rate of 100%, and then dry at 120 ° C. Thereafter, dry heat setting was performed at 180 ° C. for 1 minute to obtain a structure. The resulting structure was maintained for 40 minutes at a temperature increase of 6 ° C. due to moisture absorption, and maintained for 2 minutes due to heat generation at 10 ° C. due to water absorption. Condensation was not observed.
[0032]
The resulting structure was configured into a package. The outer layer part is formed by fixing a waterproof polyurethane film to the polyester knitted fabric with an adhesive, and the inner layer part is shaped by attaching a hygroscopic / heat-generating structure to accommodate the camera. It was. As a result of evaluating the usability of the package, it was possible to photograph without problems. This is due to the fact that moisture inside the package is absorbed by moisture absorption accompanying environmental changes to prevent dew condensation and has a heat generation effect.
[0033]
[Comparative Example 1]
A package was prepared with the same configuration except that the double knit using the polyester long fiber processed yarn described in Example 1 was used unprocessed, and the usability was evaluated, but it was cooled by the environmental temperature and did not operate normally. .
[0034]
【The invention's effect】
The packaging body according to the present invention prevents the condensation due to the moisture absorption and water absorption exothermic action due to the change in the external environment due to the effect of the highly hygroscopic exothermic fine particles, and allows the precision electronic devices to operate smoothly in the cold. is there.

Claims (9)

単層又は複層から構成される包装体の少なくとも一部または全面に、平均粒子径が2μm未満の高吸湿性微粒子が少なくとも親水性シリコーン樹脂を含む親水性樹脂を介して、かつ高吸湿性微粒子と親水性樹脂の質量比が10/1〜19/1であるように付着されてなる吸湿及び/又は吸水時の最大温度上昇が3℃以上である吸湿/吸水発熱性構造体を有することを特徴とする包装体。Highly hygroscopic fine particles having a high hygroscopic fine particle having an average particle diameter of less than 2 μm via a hydrophilic resin containing at least a hydrophilic silicone resin on at least a part or the entire surface of a package composed of a single layer or multiple layers A moisture absorption / water absorption exothermic structure having a maximum temperature increase of 3 ° C. or more at the time of moisture absorption and / or water absorption that is adhered so that the mass ratio of the hydrophilic resin to 10/1 to 19/1. Characteristic packaging. 吸湿/吸水発熱性構造体の吸湿時の発熱が30分以上、及び/又は吸水時の発熱が1分以上保持されることを特徴とする請求項1に記載の包装体。  The package according to claim 1, wherein the moisture absorption / water absorption exothermic structure retains heat generation during moisture absorption for 30 minutes or more and / or heat generation during water absorption for 1 minute or more. 吸湿/吸水発熱性構造体の吸水時の最大温度上昇が8℃以上であることを特徴とする請求項1に記載の包装体。  The package according to claim 1, wherein the maximum temperature rise during water absorption of the moisture absorption / water absorption exothermic structure is 8 ° C or more. 吸湿/吸水発熱性構造体に付与される高吸湿性微粒子が有機微粒子であることを特徴とする請求項1に記載の包装体。  The package according to claim 1, wherein the highly hygroscopic fine particles applied to the hygroscopic / water-absorbing exothermic structure are organic fine particles. 吸湿/吸水発熱性構造体に付与される高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である請求項1に記載の包装体。  Highly hygroscopic organic fine particles imparted to the hygroscopic / water-absorbing exothermic structure are polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, or polymethacrylic ester-based vinyl polymers. The crosslinked polymer having at least one hydrophilic group of an acid group, a phosphoric acid group, or a metal salt thereof, and crosslinked with any of divinylbenzene, triallyl isocyanate, or hydrazine. Packaging body. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子の平均粒子径が0.8μm以下であることを特徴とする請求項1に記載の包装体。  The package according to claim 1, wherein the average particle size of the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure is 0.8 µm or less. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子が親水性樹脂を介して構造体に固定化されていることを特徴とする請求項1に記載の包装体。  The package according to claim 1, wherein the highly hygroscopic fine particles used in the hygroscopic / water-absorbing exothermic structure are fixed to the structure via a hydrophilic resin. 吸湿/吸水発熱性構造体に使用する高吸湿性微粒子と親水性樹脂の質量比が15/1〜19/1であることを特徴とする請求項1に記載の包装体。  The packaging body according to claim 1, wherein the mass ratio of the highly hygroscopic fine particles and the hydrophilic resin used in the hygroscopic / water-absorbing exothermic structure is 15/1 to 19/1. 吸湿/吸水発熱性構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体であることを特徴とする請求項1に記載の包装体。  The moisture-absorbing / water-absorbing exothermic structure is a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a string-like body, a film or a resin molded body composed of natural fibers, synthetic fibers or mixed fibers thereof. The package described.
JP2001322508A 2001-10-19 2001-10-19 Package Expired - Fee Related JP3906971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322508A JP3906971B2 (en) 2001-10-19 2001-10-19 Package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322508A JP3906971B2 (en) 2001-10-19 2001-10-19 Package

Publications (2)

Publication Number Publication Date
JP2003129381A JP2003129381A (en) 2003-05-08
JP3906971B2 true JP3906971B2 (en) 2007-04-18

Family

ID=19139546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322508A Expired - Fee Related JP3906971B2 (en) 2001-10-19 2001-10-19 Package

Country Status (1)

Country Link
JP (1) JP3906971B2 (en)

Also Published As

Publication number Publication date
JP2003129381A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP2009536696A (en) Membrane reinforced with active particles, method for producing the same and method for using the same
WO2005075049A1 (en) Closed type device with heat radiating structure, casing used for the device, and composite sheet
EP0756888B1 (en) Low-temperature regenerative type moisture absorbing element
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JP3906971B2 (en) Package
JP2010515836A (en) Method for functionalizing fabric substrates by cross-linking under ionizing radiation
JP5213238B2 (en) Moisture absorption fever carpet
JP2001064876A (en) Heat insulating fabric and its use
JP4759898B2 (en) Diving suit
JP3849854B2 (en) Anti-frosting material
JP3341985B2 (en) Heat-insulating, moisture-permeable, waterproof fabric
JPH0516273A (en) Heat-insulating moisture-permeable waterproof cloth
JP2003096672A (en) Interior material
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP4967213B2 (en) Swimsuit
JP2003105657A (en) Internal material of shoe having hygroscopic and pyrogenic property
JP2003089975A (en) Dew condensation preventing material
JP2006080498A (en) Electric wave absorber and manufacturing method therefor
JP2874945B2 (en) Dew condensation preventing material and method for producing the same
JPH05222679A (en) Moisture-permeable waterproof cloth
JPH0476779B2 (en)
JP2805524B2 (en) Dew condensation preventing material and method for producing the same
JP2004250863A (en) Interior material
JP4918739B2 (en) Closet structure
JP2003119678A (en) Wallpaper for sauna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees