JP2003089975A - Dew condensation preventing material - Google Patents

Dew condensation preventing material

Info

Publication number
JP2003089975A
JP2003089975A JP2001285699A JP2001285699A JP2003089975A JP 2003089975 A JP2003089975 A JP 2003089975A JP 2001285699 A JP2001285699 A JP 2001285699A JP 2001285699 A JP2001285699 A JP 2001285699A JP 2003089975 A JP2003089975 A JP 2003089975A
Authority
JP
Japan
Prior art keywords
dew condensation
fine particles
water absorption
highly hygroscopic
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001285699A
Other languages
Japanese (ja)
Inventor
Riyouji Morimoto
良自 森元
Seiichi Ochi
清一 越智
Akihisa Nakagawa
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001285699A priority Critical patent/JP2003089975A/en
Publication of JP2003089975A publication Critical patent/JP2003089975A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dew condensation preventing material capable of being produced in a simple processing, excellent in cost and dew condensation preventing property, suitable for farm materials, construction materials or the like. SOLUTION: This dew condensation preventing material obtained by adhering highly hygroscopic fine particles to a sheet like structure, has >=3 deg.C of maximum temperature rise in moisture uptake and/or water absorption, and sustains heat generation in the moisture uptake for >=30 min, and/or for >=1 min in the water absorption or >=8 deg.C of maximum temperature rise in water absorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、農業資材、建築資
材などの産業資材、登山装備品、キャンプ装備品などの
スポーツ用品資材、寝装インテリア資材、テント、幌等
で外気温度低下による結露水発生を防止する結露防止材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to industrial materials such as agricultural materials and building materials, sports equipment materials such as mountaineering equipment, camping equipment, bedding interior materials, tents, hoods, etc. The present invention relates to a dew condensation preventive material.

【0002】[0002]

【従来の技術】従来、農業分野で寒冷地や中間山地地域
でのハウス栽培では、日没を過ぎると室内温度が低下し
はじめ、夜間から日の出前に結露が発生して栽培作物に
悪影響が出るため、電力エネルギーや化石燃料等のエネ
ルギーを夜間に放出し、結露点になる前の温度にキープ
していた。また建築分野では、やはり外壁と内壁間にス
ペースを設けて、該スペースに難燃性または不燃〜準不
燃性の熱伝導性不良材(例えばグラスウール製断熱材
等)を詰め込んで室内の結露発生を抑えていた。しかし
農業分野ではエネルギーコストが生産価格に添加すると
競争力低下となり、生産者の利益を薄くする一因でもあ
った。一方、建築分野でも壁の結露に関しては上述方法
で対応可能であるが、窓の結露防止は二重ガラス方式で
対応しているが価格は一重品より高くなることは避けら
れなかった。また、テントや膜体設備も外気温度低下や
降雨時等で内側に結露を発生することもめずらしくなか
った。しかしながら従来のこれらの方法はいずれも、高
コストになるのみならず、結露防止性も満足できるもの
ではなかった。
2. Description of the Related Art Conventionally, in greenhouse cultivation in cold regions and intermediate mountainous areas in the agricultural field, the indoor temperature begins to drop after sunset, and dew condensation occurs from night to before sunrise, which adversely affects cultivated crops. Therefore, energy such as electric power energy and fossil fuel was released at night and kept at the temperature before the dew point. In the field of construction, a space is also provided between the outer wall and the inner wall, and a flame-retardant or non-combustible to quasi-non-combustible poor thermal conductivity material (for example, glass wool insulation material) is packed in the space to prevent dew condensation in the room. It was suppressed. However, when the energy cost is added to the production price in the agricultural field, it becomes less competitive and is one of the factors that diminishes the profits of producers. On the other hand, even in the field of construction, it is possible to deal with the condensation on the wall by the above-mentioned method, but the prevention of the condensation on the window is dealt with by the double glass method, but the price is unavoidably higher than that of the single item. In addition, it was not uncommon for tents and membrane equipment to also generate dew condensation inside when the temperature of the outside air drops or when it rains. However, none of these conventional methods is not only costly, but also satisfactory in dew condensation prevention.

【0003】[0003]

【発明が解決しようとする課題】本発明は、簡単な加工
で製造でき、低コストで結露防止性に優れる結露防止材
を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a dew condensation preventing material which can be manufactured by a simple process, is low in cost and is excellent in dew condensation preventing property.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するための技術構成は次のとおりである。すなわち、 1.高吸湿性微粒子が付着されてなるシート状構造体で
あり、吸湿及び/又は吸水時の最大温度上昇が3℃以上
であることを特徴とする結露防止材。
The present invention has the following technical constitution for solving the above problems. That is, 1. A dew condensation preventing material, which is a sheet-like structure to which highly hygroscopic fine particles are attached, and has a maximum temperature rise of 3 ° C. or more during moisture absorption and / or water absorption.

【0005】2.吸湿時の発熱が30分以上、及び/又
は吸水時の発熱が1分以上保持されることを特徴とする
第1に記載の結露防止材。
2. The dew condensation preventing material according to the first aspect is characterized in that the heat generation during moisture absorption is maintained for 30 minutes or more and / or the heat generation during water absorption is maintained for 1 minute or more.

【0006】3.吸水時の最大温度上昇が8℃以上であ
ることを特徴とする第1又は2に記載の結露防止材。
3. The dew condensation preventing material according to the first or second aspect, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.

【0007】4.高吸湿性微粒子が有機微粒子であるこ
とを特徴とする第1〜3のいずれかに記載の結露防止
材。
4. The dew condensation preventing material as described in any one of 1 to 3, wherein the highly hygroscopic particles are organic particles.

【0008】5.高吸湿性有機微粒子がポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体で
ある第4に記載の結露防止材。
5. The highly hygroscopic organic fine particles are polystyrene-based, polyacrylonitrile-based, polyacrylic acid ester-based, or polymethacrylic acid ester-based vinyl polymers, and have sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, or their metals. The dew condensation preventing material according to the fourth aspect, which is a cross-linked polymer having at least one hydrophilic group of a salt and cross-linked with either divinylbenzene, triallyl isocyanate or hydrazine.

【0009】6.高吸湿性微粒子の平均粒子径が2μm
未満であることを特徴とする第1〜5のいずれかに記載
の結露防止材。
6. Highly hygroscopic fine particles have an average particle size of 2 μm
6. The dew condensation preventing material as described in any one of 1 to 5, which is less than 1.

【0010】7.高吸湿性微粒子が親水性樹脂を介して
シート状構造体に固定化されていることを特徴とする第
1〜6のいずれかに記載の結露防止材。
7. 7. The dew condensation preventing material as described in any one of 1 to 6, wherein the highly hygroscopic fine particles are fixed to the sheet-like structure through a hydrophilic resin.

【0011】8.高吸湿性微粒子と親水性樹脂の質量比
が1/1〜20/1であることを特徴とする第1〜7の
いずれかに記載の結露防止材。
8. 8. The dew condensation preventing material as described in any one of 1 to 7, wherein a mass ratio of the highly hygroscopic fine particles and the hydrophilic resin is 1/1 to 20/1.

【0012】9.シート状構造体が天然繊維、化合繊も
しくはこれらの混用繊維で構成される編物、織物、不織
布、フリース、フィルムまたは樹脂成形体であることを
特徴とする第1〜8のいずれかに記載の結露防止材。
9. 9. The dew condensation according to any one of 1 to 8, wherein the sheet-like structure is a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a film or a resin molded product, which is composed of natural fibers, synthetic fibers or mixed fibers thereof. Preventive material.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する.本発明に用いるシート状構造体と
は、ポリエステル系、ポリアミド系、ポリアクリルニト
リル系、ポリエチレン系、ポリプロピレン系、ポリブチ
レンテレフタレート系、ポリテトラメチレンテレフタレ
ート系、ポリウレタン系、ポリフェニレンサルファイド
系等の合成繊維、レーヨン、アセテート等の化学繊維、
木綿、麻、シルク、ウール、羽毛などの天然繊維もしく
はこれらの混用素材からなる編物、織物、不織布、フリ
ース、またはフィルムまたは樹脂成形体などで構成され
る構造体である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The sheet-like structure used in the present invention is a polyester-based, polyamide-based, polyacrylonitrile-based, polyethylene-based, polypropylene-based, polybutylene terephthalate-based, polytetramethylene terephthalate-based, polyurethane-based, polyphenylene sulfide-based synthetic fibers, Chemical fibers such as rayon and acetate,
A structure composed of a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a film, a resin molded body, or the like made of natural fibers such as cotton, hemp, silk, wool, and feathers, or a mixed material thereof.

【0014】本発明の高吸湿性微粒子(以下、高吸湿/
吸水発熱性微粒子とも表記する。)とは、吸湿又は吸水
時に発熱性を示す微粒子であれば、特に化学構造的に限
定されるものではない。例えば、吸湿性シリカなどの無
機系、もしくは吸湿性ポリウレタン系、ポリアミド系、
ポリエステル系およびポリアクリレート系などの種々の
有機系微粒子の適用が可能であるが、特に、高吸湿/吸
水発熱性有機微粒子が好ましく、例えば、ポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体微
粒子である。
Highly hygroscopic fine particles of the present invention (hereinafter referred to as high moisture absorption /
Also referred to as water-absorbing exothermic particles. ) Is not particularly limited in terms of chemical structure as long as it is a fine particle that exhibits exothermicity when absorbing moisture or absorbing water. For example, inorganic type such as hygroscopic silica, or hygroscopic polyurethane type, polyamide type,
It is possible to apply various organic fine particles such as polyester-based and polyacrylate-based, but particularly high moisture-absorption / water-absorption exothermic organic fine particles are preferable, and examples thereof include polystyrene-based, polyacrylonitrile-based, polyacrylic ester-based, and polyacrylic ester-based. A methacrylic acid-based vinyl polymer having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof, and having divinylbenzene, triallyl isocyanate, or It is a crosslinked polymer fine particle crosslinked with any of hydrazine.

【0015】高吸湿性微粒子の粒度は、吸湿/吸水発熱
速度/発熱効率、均一付着性、風合い及び耐磨耗性の点
から細かいほど望ましく、平均粒子径2μm未満がより
好ましい。
The particle size of the highly hygroscopic fine particles is preferably as small as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and abrasion resistance, and an average particle diameter of less than 2 μm is more preferable.

【0016】本発明の高吸湿性微粒子の付与方法は、繊
維、フィルムもしくは樹脂層に直接練り込む方法や編
物、織物、不織布、フリース、フィルム及び樹脂成形品
などの表層にバインダー樹脂を介してコーティング、デ
ィッピング、スプレーなどで付着させる方法が挙げられ
るが、吸湿/吸水発熱速度/発熱効率の点から後者のバ
インダー樹脂を介する付着方法が好ましい。
The method for applying the highly hygroscopic fine particles of the present invention is a method of directly kneading into a fiber, a film or a resin layer, or coating the surface layer of a knitted fabric, a woven fabric, a non-woven fabric, a fleece, a film and a resin molded product through a binder resin. Examples of the method include attaching by dipping, spraying and the like, but the latter method of attaching via a binder resin is preferable from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency.

【0017】バインダー樹脂としては、通常の含浸法、
パディング法、コーティング法、スプレー法に適用でき
るシリコン系、ウレタン系、アクリル系、ポリエステル
系、ポリアミド系、ポリエチレンオキサイド系などの樹
脂が挙げられ、特に限定されないが、親水性、すなわ
ち、吸湿性、吸水性、透湿性に優れ、高吸湿性微粒子の
優れた吸湿性、吸水性を阻害せず、しかも高吸湿性微粒
子と構造体を効果的に接着固定化できるバインダー機能
に優れるタイプが望ましい。特に好ましい親水性樹脂バ
インダーとしては、親水性セグメントとして、ポリアル
キレンオキサイド付加型、スルホン酸塩、カルボン酸塩
等の極性親水基型、アミド変成型などを導入した親水性
シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリ
アミド系樹脂、親水性ポリエチレンオキサイド系樹脂
で、樹脂自身の吸湿性、透湿性が高く、吸水性を阻害し
ないものがあげられる。ここで言う樹脂の透湿性とは無
孔膜状態での透湿性を意味する。微多孔膜で発現する透
湿性が高い樹脂でも、樹脂自身の吸湿性、吸水性が低い
バインダー樹脂では、高吸湿/吸水発熱性微粒子の優れ
た吸湿発熱もしくは吸水発熱性をマスキングし、低下さ
せる。また、これら高吸湿/吸水発熱性微粒子と親水性
樹脂バインダーの系に耐久性向上のために、イソシアネ
ート系、メチロール系、エチレンイミン系、多官能アジ
リジニル系、金属塩系など各種架橋剤を、併用微粒子本
来の吸湿/吸水性を低下させない範囲で併用しても良
い。
As the binder resin, a usual impregnation method,
Examples of the resin include silicone-based, urethane-based, acrylic-based, polyester-based, polyamide-based, and polyethylene oxide-based resins that can be applied to the padding method, coating method, and spray method, and are not particularly limited, but hydrophilic, that is, hygroscopicity, water absorption. It is desirable to use a type that has excellent properties and moisture permeability, does not inhibit the excellent hygroscopicity and water absorption of the highly hygroscopic fine particles, and has an excellent binder function that can effectively bond and fix the highly hygroscopic fine particles and the structure. As a particularly preferable hydrophilic resin binder, as a hydrophilic segment, a polyalkylene oxide addition type, a polar hydrophilic group type such as a sulfonate or a carboxylate, a hydrophilic silicone resin having amide modification or the like introduced therein, a hydrophilic urethane Examples thereof include resins, hydrophilic polyamide resins, and hydrophilic polyethylene oxide resins, which have high hygroscopicity and moisture permeability of the resin themselves and do not impair water absorption. The moisture permeability of the resin as used herein means the moisture permeability in a non-porous film state. Even in the case of a resin having a high moisture permeability expressed in a microporous film, a binder resin having a low hygroscopicity and a low water absorptivity of the resin itself masks and lowers the excellent moisture absorption / heat generation characteristic of the high moisture / water absorption heat-generating fine particles. In addition, in order to improve the durability, these high moisture absorption / water absorption exothermic fine particles and hydrophilic resin binder are combined with various crosslinking agents such as isocyanate type, methylol type, ethyleneimine type, polyfunctional aziridinyl type, and metal salt type. You may use together in the range which does not reduce the original moisture absorption / water absorption.

【0018】本発明における高吸湿/吸水発熱性微粒子
と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸
水発熱性に大きく影響する。親水性樹脂の親水レベルに
より高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は
多少異なるが、通常1/1〜20/1の配合使用が望ま
しく、好ましくは、10/1〜19/1の配合比が、さ
らに好ましくは、15/1〜19/1の配合比などの、
特に親水性樹脂の配合比率の小さいものほど、優れた吸
湿/吸水発熱性を発現させることができる。但し、親水
性樹脂が極端に少ない場合、もしくは併用しない場合は
構造物表面に付着した高吸湿/吸水発熱性微粒子の磨耗
耐久性が低下し、脱落し易くなる。逆に、親水性樹脂の
配合比が多い場合は、親水性樹脂といえども、高吸湿/
吸水発熱性微粒子本来の保有する吸湿/吸水性を阻害す
るケースが多いため、マスキング効果により吸湿/吸水
発熱速度及び発熱量が極端に低下する。もちろん、親水
性樹脂の吸湿/吸水性が高吸湿/吸水発熱性微粒子と同
等以上の場合は、親水性樹脂の配合比を増加することが
できる。
The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of these adhering to each other greatly influence the hygroscopic / water-absorbing exothermicity. The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin is slightly different depending on the hydrophilic level of the hydrophilic resin, but it is usually desirable to use the compounding ratio of 1/1 to 20/1, preferably 10/1 to 19/1. More preferably, the compounding ratio of 15: 1 to 19/1,
In particular, the smaller the blending ratio of the hydrophilic resin, the better the moisture absorption / water absorption exothermicity can be exhibited. However, when the hydrophilic resin is extremely small, or when the hydrophilic resin is not used in combination, the abrasion resistance of the highly hygroscopic / water-absorbing heat-generating fine particles adhered to the surface of the structure is deteriorated and the particles easily fall off. On the contrary, if the blending ratio of the hydrophilic resin is high, even if it is a hydrophilic resin, high moisture absorption /
Since the moisture absorption / water absorption inherent to the water absorption / heat generation fine particles is often impaired, the moisture absorption / water absorption heat generation rate and the heat generation amount are extremely reduced due to the masking effect. Of course, when the moisture absorption / water absorption of the hydrophilic resin is equal to or higher than that of the high moisture absorption / water absorption exothermic fine particles, the compounding ratio of the hydrophilic resin can be increased.

【0019】結露防止材における高吸湿/吸水発熱性微
粒子の付与量は、5g/m2以上が好ましい。より好まし
くは10g/m2以上が、更に好ましくは20g/m2以上
である。これは増量するほど発熱効果が大きいためであ
る。5g/m2未満では発熱効果が少なく、発熱継続時間
も5分未満では結露防止効果が期待出来ない。
The amount of the high moisture absorption / water absorption exothermic fine particles applied to the dew condensation preventing material is preferably 5 g / m 2 or more. It is more preferably at least 10 g / m 2, and even more preferably at least 20 g / m 2 . This is because the larger the amount, the greater the heat generation effect. If it is less than 5 g / m 2 , the heat generation effect is small, and if the heat generation duration is less than 5 minutes, the dew condensation prevention effect cannot be expected.

【0020】本発明の結露防止材は、吸湿/吸水による
結露の吸収のみならず、吸湿/吸水の発熱を積極的に活
用して結露防止を達成するものである。この発熱性は、
物質の吸湿もしくは吸水時に産出する吸着反応熱に基づ
くものであるので、構造体に含まれる高吸湿/吸水性微
粒子及び併用親水性樹脂バインダーの吸湿性能力及び又
は吸水性能力及び付着量に依存する。すなわち、高吸湿
/吸水性微粒子で、しかも細かいほど、吸湿もしくは吸
水レベルの高い親水性樹脂バインダーほど、吸着水分に
よる産熱は大きく、発熱速度も早く、発熱保持時間も長
くなる。もちろん、かかる吸湿/吸水性は構造体基材単
独でも保有するため、より効果的な吸湿/吸水発熱性を
実現させるためには適用吸湿/吸水発熱性微粒子の吸湿
率(20℃、65%RH)は25%以上が望ましく、さ
らに好ましくは40%以上である。また、併用親水性樹
脂はかかる吸湿/吸水発熱性微粒子の吸湿性/吸水性を
できるだけ阻害しない少なくとも吸湿率(20℃、65
%RH)3〜50%のものが好ましい。すなわち、効果
的な吸湿/吸水発熱性を得るためには、本発明の高度な
吸湿/吸水発熱性を保有する構造体を出来るだけ低吸湿
率、更に好ましくは完全乾燥(絶乾)状態に近い状態で
保管することが肝要である。逆に、飽和吸湿率以上に水
分を吸着し、発熱が完了した構造体は、放熱冷却され当
初の温度まで低下するが、再度、乾燥して吸着水を取り
除けば、元来の優れた吸湿/吸水発熱性が再発現する。
The dew condensation preventing material of the present invention not only absorbs dew condensation due to moisture absorption / water absorption, but also positively utilizes heat generated by moisture absorption / water absorption to achieve dew condensation prevention. This exothermicity is
It depends on the heat of adsorption reaction generated when the substance absorbs moisture or absorbs water, and therefore depends on the hygroscopic ability and / or the water absorbing ability and the amount of adhesion of the highly hygroscopic / water-absorbing fine particles and the combined hydrophilic resin binder contained in the structure. . That is, the higher the hygroscopic / water-absorbing fine particles, and the finer the hydrophilic resin binder having a higher hygroscopic or water-absorbing level, the larger the heat production due to the adsorbed moisture, the faster the heat generation rate, and the longer the heat retention time. Of course, since such a moisture absorption / water absorption is possessed by the structure substrate alone, in order to realize more effective moisture absorption / water absorption exothermicity, the moisture absorption rate of the applied moisture absorption / water absorption exothermic fine particles (20 ° C., 65% RH ) Is preferably 25% or more, more preferably 40% or more. In addition, the combined hydrophilic resin does not hinder the hygroscopicity / water absorption of the moisture-absorbing / water-absorbing exothermic fine particles as much as possible.
% RH) 3 to 50% is preferable. That is, in order to obtain an effective moisture absorption / water absorption exothermicity, the structure having a high degree of moisture absorption / water absorption exothermicity of the present invention has a moisture absorption rate as low as possible, more preferably close to a completely dry (absolute dry) state. It is essential to store it in the state. On the other hand, the structure that has adsorbed moisture at a saturated moisture absorption rate or higher and has completed heat generation is cooled by heat radiation and drops to the initial temperature, but if it is dried again to remove the adsorbed water, the original excellent moisture absorption / Water absorption and exothermicity reappear.

【0021】気相状態の吸湿発熱性が適度な速度で発熱
し、比較的長く発熱性を維持するのに対して、液相の吸
水発熱性は急速な発熱性が得られる反面、付着水の量が
多すぎると顕著な発熱効果が得られない場合もあるの
で、付着水量の管理が重要となる。特に、緊急時など急
速に加温したい場合は、本発明の吸水発熱機能が有効で
あり、発熱保持時間の長い吸湿発熱機能と組合せれば更
に高度の結露防止材の商品設計が可能となる。
The moisture absorption exothermicity in the gas phase heats up at an appropriate rate and maintains the exothermicity for a relatively long time, while the water absorption exothermicity in the liquid phase gives a rapid exothermicity, while the adsorbed water If the amount is too large, the remarkable heat generation effect may not be obtained, so it is important to control the amount of attached water. In particular, when it is desired to heat rapidly, such as in an emergency, the water absorption and heat generation function of the present invention is effective, and when combined with the moisture absorption and heat generation function that has a long heat generation retention time, it is possible to design a more sophisticated product for preventing dew condensation.

【0022】本発明によれば、高吸湿/吸水発熱性微粒
子の種類及び付着量を最適化し、適正な親水性樹脂バイ
ンダーを介して付着させたシート状構造体は、吸湿及び
/又は吸水時の最大温度上昇が3℃以上、好ましくは4
℃以上、より好ましくは5℃以上であり、急激な(3〜
5秒間での)吸水時の最大温度上昇が8℃以上であり、
しかも吸湿時の発熱保持時間が30分以上、あるいは吸
水時の発熱保持時間が30秒以上、より好ましくは1分
以上保持される等、吸湿/吸水発熱速度、発熱量、発熱
保持時間の総合発熱性能面で、従来にない優れた吸湿/
吸水発熱性が得られる。
According to the present invention, the type and the amount of the highly hygroscopic / water-absorbing exothermic fine particles are optimized, and the sheet-like structure adhered via an appropriate hydrophilic resin binder has a property of absorbing moisture and / or absorbing water. Maximum temperature rise is 3 ℃ or more, preferably 4
℃ or more, more preferably 5 ℃ or more, rapid (3 ~
The maximum temperature rise during water absorption (for 5 seconds) is 8 ° C or higher,
Moreover, the total heat generation of moisture absorption / water absorption heat generation rate, heat generation amount, heat generation retention time, such as heat generation retention time when moisture absorption is 30 minutes or more, or heat generation retention time when water absorption is 30 seconds or more, more preferably 1 minute or more In terms of performance, excellent moisture absorption /
Water absorption and exothermicity are obtained.

【0023】本発明の結露防止材は、これらの優れた高
吸湿/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭
性、ノネナール消臭性、pH緩衝性、制電性、SR防汚
性、耐酸性雨性の多機能性を発現させることもできる。
The anti-condensation material of the present invention has antibacterial and deodorant properties, antibacterial properties, deodorizing properties, nonenal deodorizing properties, pH buffering properties, antistatic properties, It is also possible to develop multifunctional properties such as SR antifouling property and acid rain resistance.

【0024】また、外気温が低下する事によって室内の
湿度は凝縮傾向へと進んで高くなり、更に温度低下して
結露点へと進んでも、本発明の結露防止材は、高くなる
湿度を吸収することにより発熱し、室内温度低下を抑制
又は維持〜上昇させて結露点に到達させぬよう働き、波
及効果としては吸収した水分を日中には放出し、その際
の気化熱が室内温度上昇を一時的に抑制する作用も行う
というメリットもある。
Further, when the outside air temperature decreases, the humidity in the room increases due to a condensation tendency, and even if the temperature further decreases to the dew point, the dew condensation preventing material of the present invention absorbs the increasing humidity. This causes heat to be generated, and works to prevent or maintain or increase the decrease in room temperature to prevent it from reaching the dew point.The ripple effect is that absorbed moisture is released during the day, and the heat of vaporization at that time increases the room temperature. There is also an advantage that it also temporarily suppresses.

【0025】[0025]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明は、何らこれらに限定するものではない。以
下で、単に部、%と記載したものは、質量基準を意味す
る。また、本実施例におけるシート状構造体の測定、評
価は次の方法で行った。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. Below, what is described simply as part and% means on a mass basis. Further, the measurement and evaluation of the sheet-shaped structure in this example were carried out by the following methods.

【0026】<絶乾質量>サンプルを110℃×6時間
乾燥後、シリカゲル入りデシケータに入れ、20℃、6
5%RH環境下で調温後、質量測定を行った。 <吸湿性>20℃、65%RH環境下で24時間調温調
湿後の質量測定を行い、下記式から算出した。 吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}
×100
<Absolute dry mass> After drying the sample at 110 ° C for 6 hours, the sample was placed in a desiccator containing silica gel and kept at 20 ° C for 6 hours.
After adjusting the temperature in a 5% RH environment, mass measurement was performed. <Hygroscopicity> The mass was measured after the temperature and humidity were adjusted for 24 hours in an environment of 20 ° C. and 65% RH, and calculated from the following formula. Moisture absorption rate (%) = {(moisture absorption mass-excess dry mass) / excess dry mass}
× 100

【0027】<吸湿発熱性>110℃×6時間乾燥後、
シリカゲル入りデシケータに入れ、絶乾状態とした5c
m×5cmの測定サンプルに温度センサー(例えば安立
計器(株)製;540K MD−5型)を装着後、20
℃、95%RH環境下(例えば硫酸カリウム飽和水溶液
入りデシケータ)での吸湿発熱性を温度記録計(例えば
安立計器(株)製;DATA COLLECTOR A
M−7052型)で計測した。 <吸水発熱性>前記絶乾状態の5cm×5cmの測定サ
ンプルに温度センサーを装着後、20℃、65%RH環
境下で、サンプル質量の50%相当量のイオン交換水を
均一に3〜5秒間で噴霧後、吸水発熱性を温度記録計に
て計測した。最大吸水発熱温度及び吸水前サンプル温度
以上の吸水発熱保持時間(分)で評価した。
<Heat absorption by moisture absorption> After drying at 110 ° C. for 6 hours,
5c put in desiccator containing silica gel and dried
20 after mounting a temperature sensor (for example, manufactured by Anritsu Keiki Co., Ltd .; 540K MD-5 type) on a measurement sample measuring m × 5 cm.
Temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR A)
M-7052 type). <Water absorption exothermicity> After attaching a temperature sensor to the 5 cm x 5 cm measurement sample in the absolutely dry state, ion exchanged water equivalent to 50% of the sample mass is uniformly added to 3 to 5 at 20 ° C and 65% RH environment. After spraying for 2 seconds, the water absorption exothermicity was measured with a temperature recorder. The water absorption heat generation time and the water absorption heat generation retention time (minutes) above the maximum water absorption heat generation temperature and the sample temperature before water absorption were evaluated.

【0028】<結露性>20℃、65%RH環境下で2
4時間調湿し、質量測定したサンプルを20℃、95%
RH環境下で6時間調湿後、サンプル表面の結露有無状
態を目視判定した。
<Condensation property> 2 at 20 ° C. and 65% RH
Humidity control for 4 hours, mass measurement of sample at 20 ℃, 95%
After conditioning the humidity for 6 hours in an RH environment, the presence or absence of dew condensation on the surface of the sample was visually determined.

【0029】実施例で用いた高吸湿/吸水発熱性有機微
粒子の製造を次の方法で行った。メタクリル酸/p−ス
チレンスルホン酸ソーダ=70/30の水溶性重合体3
50部及び硫酸ナトリウム35部を6500部の水に溶
解し、櫂型攪拌機付きの重合槽に仕込んだ。次に、アク
リル酸メチル2750部及びジビニルベンゼン330部
に2,2'−アゾビス−(2,4−ジメチルバレロニト
リル)15部を溶解して重合槽に仕込み、400rpm
の攪拌下、60℃で2時間重合し、重合率88%の共重
合体を得た。該重合体100部を水900部中に分散
し、これに110部の苛性ソーダを添加し、90℃、
2.5時間反応を行い、アクリル酸メチルのメチルエス
テル部を加水分解することによりカルボキシル基4.6
ミリ当量/gを有した架橋重合体を得た。得られた重合
体を水中に分散し、洗浄、脱水後、粉砕、分球もしくは
ろ過し、高吸湿/吸水発熱性微粒子を得た。得られた高
吸湿/吸水発熱性有機微粒子の20℃、65%RH下で
の吸湿率は50%、平均粒子径は0.8μmであった。
The highly hygroscopic / water-absorbing exothermic organic fine particles used in the examples were produced by the following method. Water-soluble polymer 3 of methacrylic acid / sodium p-styrene sulfonate = 70/30
50 parts and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a paddle-type stirrer. Next, 15 parts of 2,2'-azobis- (2,4-dimethylvaleronitrile) was dissolved in 2750 parts of methyl acrylate and 330 parts of divinylbenzene and charged into a polymerization tank at 400 rpm.
Polymerization was carried out at 60 ° C. for 2 hours with stirring to obtain a copolymer having a polymerization rate of 88%. 100 parts of the polymer is dispersed in 900 parts of water, 110 parts of caustic soda is added thereto, and 90 ° C.
After reacting for 2.5 hours, the methyl ester portion of methyl acrylate is hydrolyzed to give a carboxyl group 4.6.
A crosslinked polymer having a milliequivalent / g was obtained. The obtained polymer was dispersed in water, washed, dehydrated, and then pulverized, divided or filtered to obtain highly hygroscopic / water-absorbing exothermic particles. The obtained highly hygroscopic / water-absorbing exothermic organic fine particles had a moisture absorption rate of 50% at 20 ° C. and 65% RH, and an average particle diameter of 0.8 μm.

【0030】[実施例1]目付170g/m2のポリエ
ステル布に、前記高吸湿/吸水発熱性微粒子20%を含
む水分散体95部に親水性樹脂バインダーとして、TF
−3500(花王社製親水性シリコン系バインダー;固
形分40%)2.5部を加えた加工液にポリエステル布
を浸漬し、マングルにてウエットピックアップ率70%
になるよう絞った後、100℃で3分間乾燥後、170
℃で1分間キュアリングして加工布(シート状構造体)
を得た。得られた加工布の目付は、193g/m2であ
った。発熱効果測定法として、加工布(50cm2
1.05g)を110℃×2時間の乾燥で水分を完全に
追い出した後、シリカゲル入りデシケータに保存した。
次にこの加工布をデシケータより取り出して硫酸カリウ
ム飽和水溶液デシケータ(95%RH)に入れ、温度セ
ンサーと温度記録計で昇温データを採取した。この時に
使用した温度センサーは540KMD−5=安立計器
(株)、温度記録計はDATA CO- LLECTOR AM−705
2=安立計器(株)である。また、測定環境は20℃×
65%RHである。得られた加工布の発熱効果と結露防
止効果を表1に示す。
[Example 1] TF was used as a hydrophilic resin binder in 95 parts of an aqueous dispersion containing 20% of the highly hygroscopic / water-absorbing exothermic fine particles on a polyester cloth having a basis weight of 170 g / m 2.
-3500 (Kao's hydrophilic silicone binder; solid content 40%) 2.5 parts of a polyester cloth is dipped in a processing liquid and wet picked up by a mangle 70%
Squeeze to 100 ° C, dry at 100 ° C for 3 minutes, then 170
Cured for 1 minute at ℃, processed cloth (sheet structure)
Got The basis weight of the obtained processed cloth was 193 g / m 2 . As a method for measuring heat generation effect, a work cloth (50 cm 2 =
1.05 g) was dried at 110 ° C. for 2 hours to completely remove water, and then stored in a desiccator containing silica gel.
Next, this work cloth was taken out from the desiccator and put into a desiccator (95% RH) saturated with potassium sulfate, and temperature rise data was collected by a temperature sensor and a temperature recorder. The temperature sensor used at this time is 540KMD-5 = Anritsu Keiki Co., Ltd., and the temperature recorder is DATA CO- LLECTOR AM-705.
2 = Anritsu Keiki Co., Ltd. The measurement environment is 20 ℃ ×
65% RH. Table 1 shows the heat generation effect and the dew condensation prevention effect of the obtained work cloth.

【0031】[実施例2]実施例1において、加工液の
固形分含有量を実施例1の25%にする以外は実施例1
と同様にして加工布を得た。得られた加工布について実
施例1と同様にして発熱効果と結露防止効果を測定し
た。
Example 2 Example 1 is the same as Example 1 except that the solid content of the working liquid is 25% of that of Example 1.
A processed cloth was obtained in the same manner as in. The heat generation effect and the dew condensation prevention effect of the obtained work cloth were measured in the same manner as in Example 1.

【0032】[比較例1]実施例1で用いた未加工布に
ついて実施例1と同様にして発熱効果と結露防止効果を
測定した。
[Comparative Example 1] With respect to the unprocessed cloth used in Example 1, the heating effect and the dew condensation preventing effect were measured in the same manner as in Example 1.

【0033】実施例及び比較例の発熱効果と結露防止効
果について表1にまとめた。
Table 1 summarizes the heat generation effect and the dew condensation prevention effect of the examples and comparative examples.

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明によれば、高吸湿発熱性微粒子を
少量の親水性樹脂を介して編物、織物、不織布、フリー
ス、フィルムもしくはシート状樹脂成形品に付着させる
ことで、外部環境の湿気(水蒸気)や水分(液体)を吸
収して迅速かつ安定に発熱することで、特に農業、建築
などの産業資材に好適な結露防止材を簡便に、かつ安定
に得ることができる。
EFFECTS OF THE INVENTION According to the present invention, by adhering highly hygroscopic exothermic fine particles to a knitted fabric, woven fabric, non-woven fabric, fleece, film or sheet-shaped resin molded product through a small amount of hydrophilic resin, moisture in the external environment is absorbed. By absorbing (steam) and water (liquid) and quickly and stably generating heat, a dew condensation preventing material suitable for industrial materials such as agriculture and construction can be easily and stably obtained.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高吸湿性微粒子が付着されてなるシート
状構造体であり、吸湿及び/又は吸水時の最大温度上昇
が3℃以上であることを特徴とする結露防止材。
1. A dew condensation preventing material, which is a sheet-like structure to which highly hygroscopic fine particles are adhered, and has a maximum temperature increase of 3 ° C. or more during moisture absorption and / or water absorption.
【請求項2】 吸湿時の発熱が30分以上、及び/又は
吸水時の発熱が1分以上保持されることを特徴とする請
求項1に記載の結露防止材。
2. The anti-condensation material according to claim 1, wherein the heat generation during moisture absorption is maintained for 30 minutes or more, and / or the heat generation during water absorption is maintained for 1 minute or more.
【請求項3】 吸水時の最大温度上昇が8℃以上である
ことを特徴とする請求項1又は2に記載の結露防止材。
3. The anti-condensation material according to claim 1, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.
【請求項4】 高吸湿性微粒子が有機微粒子であること
を特徴とする請求項1〜3のいずれかに記載の結露防止
材。
4. The dew condensation preventing material according to claim 1, wherein the highly hygroscopic fine particles are organic fine particles.
【請求項5】 高吸湿性有機微粒子がポリスチレン系、
ポリアクリロニトリル系、ポリアクリル酸エステル系、
ポリメタクリル酸エステル系のいずれかのビニル系重合
体で、スルホン酸基、カルボン酸基、リン酸基あるい
は、それらの金属塩の少なくとも1種の親水基を有し、
かつジビニルベンゼン、トリアリルイソシアネートまた
はヒドラジンのいずれかで架橋された架橋重合体である
請求項4に記載の結露防止材。
5. The highly hygroscopic organic fine particles are polystyrene-based,
Polyacrylonitrile-based, polyacrylic ester-based,
Any vinyl polymer of polymethacrylic acid ester type, having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof,
The dew condensation preventing material according to claim 4, which is a crosslinked polymer crosslinked with divinylbenzene, triallyl isocyanate or hydrazine.
【請求項6】 高吸湿性微粒子の平均粒子径が2μm未
満であることを特徴とする請求項1〜5のいずれかに記
載の結露防止材。
6. The dew condensation preventing material according to claim 1, wherein the highly hygroscopic fine particles have an average particle diameter of less than 2 μm.
【請求項7】 高吸湿性微粒子が親水性樹脂を介してシ
ート状構造体に固定化されていることを特徴とする請求
項1〜6のいずれかに記載の結露防止材。
7. The dew condensation preventing material according to claim 1, wherein the highly hygroscopic fine particles are fixed to the sheet-shaped structure through a hydrophilic resin.
【請求項8】 高吸湿性微粒子と親水性樹脂の質量比が
1/1〜20/1であることを特徴とする請求項1〜7
のいずれかに記載の結露防止材。
8. The mass ratio of the highly hygroscopic fine particles to the hydrophilic resin is from 1/1 to 20/1.
The anti-condensation material according to any one of 1.
【請求項9】 シート状構造体が天然繊維、化合繊もし
くはこれらの混用繊維で構成される編物、織物、不織
布、フリース、フィルムまたは樹脂成形体であることを
特徴とする請求項1〜8のいずれかに記載の結露防止
材。
9. The sheet-like structure is a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a film, or a resin molded product composed of natural fibers, synthetic fibers, or a mixture of these fibers. The dew condensation prevention material described in any of the above.
JP2001285699A 2001-09-19 2001-09-19 Dew condensation preventing material Pending JP2003089975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285699A JP2003089975A (en) 2001-09-19 2001-09-19 Dew condensation preventing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285699A JP2003089975A (en) 2001-09-19 2001-09-19 Dew condensation preventing material

Publications (1)

Publication Number Publication Date
JP2003089975A true JP2003089975A (en) 2003-03-28

Family

ID=19108808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285699A Pending JP2003089975A (en) 2001-09-19 2001-09-19 Dew condensation preventing material

Country Status (1)

Country Link
JP (1) JP2003089975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9411158B2 (en) 2012-09-05 2016-08-09 Sharp Kabushiki Kaisha Moth-eye film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9411158B2 (en) 2012-09-05 2016-08-09 Sharp Kabushiki Kaisha Moth-eye film

Similar Documents

Publication Publication Date Title
KR101525492B1 (en) Preparation method of porous film type nonwoven heat transport membrane for total heat recovery ventilator element
JP4715122B2 (en) HYGROSCOPIC FILTER, ITS MANUFACTURING METHOD, REPRODUCTION METHOD, HUMIDATING DEVICE, AND HUMIDATING DEVICE
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JP2007291843A (en) Roof cooling panel
JP2003089975A (en) Dew condensation preventing material
JP3849854B2 (en) Anti-frosting material
JP2003096672A (en) Interior material
JP4759898B2 (en) Diving suit
JP2003093529A (en) Hygroscopic/water absorbing heating mask
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP2003097089A (en) Snowfall prevention net
JP2006043582A (en) Hygroscopic filter, its production method, recycle method, wetting apparatus and dehumidification apparatus
JP2003088208A (en) Sheet material for promoting germination
JP3341985B2 (en) Heat-insulating, moisture-permeable, waterproof fabric
JP3906971B2 (en) Package
JP2003105657A (en) Internal material of shoe having hygroscopic and pyrogenic property
JP2003089976A (en) Skin-touching cloth material
JP4967213B2 (en) Swimsuit
JP2003119678A (en) Wallpaper for sauna
JP5360714B2 (en) Moisture absorption and desorption functional pipe, pipe inner wall condensation prevention method using the same, and geothermal exchanger using the same
JP2003119606A (en) Sportswear
JP2003129312A (en) Ski suit
JP2003129313A (en) Work clothing for cold storage warehouse
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining