JP3905272B2 - 電子銃の製造方法 - Google Patents

電子銃の製造方法 Download PDF

Info

Publication number
JP3905272B2
JP3905272B2 JP35245299A JP35245299A JP3905272B2 JP 3905272 B2 JP3905272 B2 JP 3905272B2 JP 35245299 A JP35245299 A JP 35245299A JP 35245299 A JP35245299 A JP 35245299A JP 3905272 B2 JP3905272 B2 JP 3905272B2
Authority
JP
Japan
Prior art keywords
silicon
film
diamond
silicon region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35245299A
Other languages
English (en)
Other versions
JP2001167691A (ja
Inventor
学 新井
修一 小野
秀昭 玉井
親夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP35245299A priority Critical patent/JP3905272B2/ja
Publication of JP2001167691A publication Critical patent/JP2001167691A/ja
Application granted granted Critical
Publication of JP3905272B2 publication Critical patent/JP3905272B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンドを用いた電子銃及びその製造方法、並びにその電子銃を用いた電子装置に関する。
【0002】
【従来の技術】
ダイヤモンドは電子の移動度、熱伝導率、融点などの物性値が優れており、電子デバイス材料として期待されている。また、水素で終端されたダイヤモンド(111)面の電子親和力が負であることから、電子源としても注目を集めている。
【0003】
しかし、単結晶基板の作製が困難で、実用化の障害となっている。例えば、ダイヤモンド基板上にエピタキシャル成長層を形成するホモエピタキシャル法では、基板が高価であるという問題点があった。また、人工的にダイヤモンドを合成することも行われているが、圧力5〜10GP、温度1300℃に耐える特殊な設備が必要となり、コスト的に現実的ではない。
【0004】
そこで、ダイヤモンドのヘテロエピタキシャル成長が注目されている。代表的なダイヤモンド合成方法としては、マイクロ波プラズマCVD法やホットフィラメント成長法等があげられる。これまでに、白金(Pt)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、ニッケル(Ni)、銅(Cu)、シリコン(Si)等を基板として使用したエピタキシャル成長が試みられ、ダイヤモンドの合成が報告されている。
【0005】
しかしこのような方法で形成されたダイヤモンド薄膜は、基板とダイヤモンド結晶の格子定数のズレや熱膨張係数の差が大きいことから、欠陥が多いという問題点があった。また、表面が平坦にならず、凹凸のある膜しか形成することができなかった。更に、大面積の基板上に成長を行う場合、膜厚が増すに従い、基板から剥がれやすくなるという問題点があった。
【0006】
また、電子放射特性を向上させるため、電界研磨したタングステン針やシリコンを異方性エッチングして、コーン状に先端を先鋭に加工し、ダイヤモンド結晶を析出させることが試みられてきた。しかし、タングステン針を備えた基板を作製することは困難であり、シリコン基板では、その大きさに限界があるという問題点があった。
【0007】
【発明が解決しようとする課題】
以上のようにダイヤモンドは、電子放射特性が優れているものの、大面積の対極に電子を放射できるような構造の電子銃は、従来提案されていなかった。本発明はダイヤモンドを用いた、新たな電子銃の構造、その製造方法、この電子銃を用いた電子装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明は、絶縁性基体上に、下層導電体を形成する工程と、該下層導電体上に、導電性のシリコン膜を形成する工程と、該シリコン膜上にパターニングされた窒化膜を形成する工程と、該窒化膜をマスクとして使用して、露出する前記シリコン膜を酸化し、シリコン酸化物を形成する工程と、前記窒化膜を除去し、前記シリコン膜表面を露出させ、前記シリコン酸化物で区画されたシリコン領域を形成する工程と、プラズマ雰囲気中で前記下層導電体と、前記シリコン領域に対向して設置された電極間にバイアス電圧を印加し、前記シリコン酸化物で区画された前記シリコン領域に電流を流すことによって、該シリコン領域上にダイヤモンド結晶を析出させる工程と、該析出したダイヤモンド結晶を成長させ、ダイヤモンド膜を形成する工程と、該ダイヤモンド膜に対向する上層導電体を形成する工程と、前記ダイヤモンド膜電子を放射させるために前記下層導電体及び前記上層導電体間に電圧を印加する手段を形成する工程とを備えたことを特徴とするものである。
【0009】
請求項2に係る発明は、請求項1記載の電子銃の製造方法において、前記シリコン酸化物で区画されたシリコン領域は、底面を前記シリコン領域とし、側面を前記絶縁物とする凹部形状とし、前記シリコン領域上に前記ダイヤモンド結晶を析出させることを特徴とするものである。
【0010】
請求項3に係る発明は、請求項1又は2いずれか記載の電子銃の製造方法において、前記シリコン酸化物で区画されたシリコン領域上に、プラズマ雰囲気中で前記下層導電体と、前記シリコン領域に対向して設置された電極間にバイアス電圧を印加し、前記シリコン酸化物で区画された前記シリコン領域に電流を流すことによって、シリコンカーバイド層を形成した後、前記ダイヤモンド結晶を析出させることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。まず、電子銃の構造について、その製造工程に従い、参考例について説明する。ガラス等からなる平坦な基板1を用意し、基板1上に酸化スズ等の導電性の酸化物、金属、半導体等からなる下層導電体2を全面に形成する。下層導電体として酸化スズを用いる場合は、基板1上にスパッタ法により、500nm形成する。この下層導電体2は、後工程のバイアスを印加しながらダイヤモンド結晶を析出させる際、下層電極となる。
【0015】
下層導電体2上にプラズマCVD法により、一例として多結晶シリコン層3を500nm、窒化膜4を100nm堆積させる(図1)。ここで堆積させるシリコン層は、導電性を有するシリコンであれば良く、アモルファスシリコン層であっても良い。
【0016】
通常のホトリソグラフ法により、窒化膜4を直径1μm、10μmピッチで残るようにパターニングする。次に、通常の半導体装置の製造工程で使用される湿式酸化炉により、露出する多結晶シリコン層3表面を酸化し、シリコン酸化膜5を形成する。シリコン酸化膜5は、窒化膜4のない領域で垂直方向に成長する一方、窒化膜4の端部では、多結晶シリコン層3と窒化膜4の界面から内部に成長し、いわゆるバーズビークが形成される(図2)。
【0017】
このようにバーズビークが形成されることにより、窒化膜で形成されたパターンを縮小したパターンに転写することができる。一例として、湿式酸化炉の温度を1100℃、4時間行った場合、バーズビークが0.4μm成長する。その結果、窒化膜4の直下には、直径0.2μmの酸化されない多結晶シリコン層(以下、単にシリコン領域6と称す)が残る。このようにバーズビークを形成させることにより、高価な装置を必要とせず、微細な形状を形成することができる。
【0018】
このように形成されたシリコン酸化膜5の表面は、シリコン領域6の表面より突出した形状となっている。そのため電子装置の形状によっては、平坦化するのが好ましい場合もある。その場合は、次のように平坦化を行う。まず、窒化膜4を除去し、シリコン酸化膜5が形成されたシリコン領域6表面に、厚くホトレジスト7を形成する(図3)。その後、ホトレジスト7とシリコン酸化膜5のエッチング速度に差がないエッチング条件でエッチバックする。その結果、突出するシリコン酸化膜5がエッチング除去され、シリコン酸化膜5表面とシリコン領域6表面が同一面上に形成できる(図4)。以下、上記方法で平坦化したシリコン酸化膜5によって区画されたシリコン領域6上に、ダイヤモンド膜を形成する場合について説明する。
【0019】
次に本発明に使用するマイクロ波プラズマCVD装置について説明する。図5に示すように、反応管8内に上部電極10と下部電極9が設置され、下部電極9上にシリコン領域6を形成した基板1を載置する。下部電極9は、先に形成した下層導電体2と接続される。上部電極10、下部電極9間に直流電源11が接続され、両電極間に直流バイアス電圧が印加される。
【0020】
反応管8内を、一旦ポンプにより10-3torr台に真空引きし、その後、水素ガスを反応管8内に導入し、マイクロ波電力を700W投入し、プラズマを発生させる。このとき、基板1を700℃に加熱する。この状態で30分間保持することにより、シリコン領域6表面に成長した自然酸化膜を除去する。
【0021】
次に、水素ガスを100sccm、メタンガスを1sccm、反応管8内に導入し、90分から120分間プラズマ処理する。この処理によって、シリコン領域6表面が炭化され、炭化層12が形成される(図6)。次に、メタンガスの流量を5sccmに増加させ、上部電極10、下部電極9間に直流電圧を印可する。このとき極性は、基板を載置した下部電極9より上部電極10の電位が正に大きくなるように印加する。
【0022】
直流電圧が印加されることによって、プラズマ中で電離し、正に帯電したハイドロカーボンイオンが加速され、シリコン領域6表面に到達する。このとき基板表面はそのほとんどが酸化膜で覆われているため、イオン電流はほとんどシリコン領域6に流入する。このときバイアス条件が、電圧+100〜+300V、電流10〜30mAとすると、5〜15分で、シリコン酸化膜に覆われていないシリコン領域6表面の炭化層12上に、ダイヤモンドの微結晶からなるダイヤモンド層が生成する。水素ガスとメタンガスを(メタンガス流量/水素ガス流量=0.1%以下)とし、約2時間エピタキシャル成長させる。その結果、直径0.7μmのダイヤモンド薄膜13を得ることができた(図7)。ダイヤモンド薄膜13に対向するように引き出し電極(図示せず)を形成し、下層導電体と引き出し電極間に電子が放出されるしきい値電圧を印加する構成とすることで、電子銃を形成することができる。
【0023】
このような構造の電子銃の下層導電層2を負極とし、対向する正極を表示面(図示せず)とすることで、ダイヤモンド層から電子を放射させることができ、発光体(照明、ライト)を形成することが可能である。
【0024】
以上の説明は、シリコン酸化膜を平坦化した場合について説明したが、平坦化せずにダイヤモンド膜を析出させることが可能であることはいうまでもない。その場合、電子の指向性が制御でき、より効果が大きい。
【0025】
次に、本発明の実施の形態について説明する。参考例と同様、ガラス等からなる平坦な基板1を用意し、基板1上に酸化スズ等の導電性の酸化物、金属、半導体等からなる下層導電体2を全面に形成する。下層導電体2として酸化スズを用いる場合は、基板1上にスパッタ法により、500nm形成する。この下層導電体2は、後工程のバイアスを印加しながらダイヤモンド結晶を析出させる際、下層電極となる。参考例と異なり、下層導電体は、後工程で形成するシリコン領域に接続する位置に配置するように、パターニングされている。
【0026】
下層導電体2上にプラズマCVD法により、一例として多結晶シリコン層3を500nm、窒化膜4を100nm堆積させる。ここで堆積させるシリコン層は、導電性を有するシリコンであれば良く、アモルファスシリコン層であっても良い。
【0027】
通常のホトリソグラフ法により、窒化膜4を直径1μm、10μmピッチで残るようにパターニングを行う(図8)。図8に示すように、窒化膜4は、先にパターニングした下層導電体2上に配置するように形成される。
【0028】
次に、通常の半導体装置の製造工程で使用される湿式酸化炉により、露出する多結晶シリコン層3表面を酸化し、シリコン酸化膜5を形成する。シリコン酸化膜5は、窒化膜4のない領域で垂直方向に成長する一方、窒化膜4の端部では、多結晶シリコン層3と窒化膜4の界面から内部に成長し、いわゆるバーズビークが形成される(図9)。湿式酸化炉の温度を1100℃、4時間行った場合、バーズビークが0.4μm成長する。その結果、窒化膜4の直下には、直径0.2μmの酸化されない多結晶シリコン層(以下、単にシリコン領域6と称す)が残る。このようにバーズビークを形成させることにより、高価な装置を必要とせず、微細な形状を形成することができる。更に図9に示すように、シリコン酸化膜5は基板1まで達し、下層導電体2がそれぞれ、絶縁された構造となる。
【0029】
窒化膜4を除去し、シリコン領域6を露出させる。参考例と異なり、シリコン酸化膜5が、シリコン領域6の表面より突出した形状の基板を、図5に示すマイクロ波プラズマCVD装置内に載置する。上記参考例と同様の処理を行い、シリコン領域表面に炭化層12を形成し、その後、ダイヤモンド薄膜13を形成する(図10)。
【0030】
次に、シリコン酸化膜5上に金属膜からなる引き出し電極14を形成する。引き出し電極は、例えば全面にホトレジストを塗布して、シリコン酸化膜5で区画されたシリコン領域6上にホトレジストを残すように平坦化した後、ホトレジスト上に引き出し電極を構成する金属膜を形成し、金属膜をパターニングした後、平坦化に使用したホトレジストを除去することで形成することができる。この引き出し電極14は、下層導電体2の延出方向に対して、直交する方向に延出するようにパターニングされ、下部導電体と引き出し電極の交点が、マトリック状に配置するように形成されている。また、少なくともダイヤモンド薄膜13上は、ダイヤモンド薄膜13から放出された電子が通過するための孔15が形成されている。
【0031】
このように形成した電子銃の下層導電体2と陽極16間に所定の電位(Va)を印加し、下層導電体2と引き出し電極14間に所定の電位(Vg)を印加することで、三極管構造のディスプレイを形成することが可能である。その構成を図11に示す。図11に示すように、ダイヤモンド薄膜13から放射された電子は、孔15を通過し、陽極16に達する。
【0032】
複数の下層導電体2のうちの選択された1つの下層導電体と、複数の引き出し電極14の内の選択された1つの引き出し電極とが交わる点で、ダイヤモンド膜から電子を放出させることができる。
【0033】
上記構造の電子装置では、下層導電体を任意に選択して電位を印加することが可能となり、画像表示が可能となる。
【0034】
以上説明したように、本発明では、簡便な製造方法で電子銃及びそれを用いた電子装置を形成することが可能である。本発明では、シリコン酸化膜で区画された任意の場所にダイヤモンド薄膜あるいは結晶粒を析出させることが可能であり、大型ディスプレイの電子源として有効である。
【0035】
また、シリコン酸化膜によって区画された非常に面積の小さい領域に発生した核から薄膜を形成すると、1つの核から非常に大きい単結晶膜を得ることができる。そのため、欠陥の少ない単結晶膜を得ることができるという利点がある。
【0036】
なお、上記実施の形態では、炭化層を形成する際、水素ガスとメタンガス中でプラズマ処理する場合について説明したが、これに限定されることなく、種々変更可能である。例えば、シリコン領域6表面に、電界メッキ法等により、ニッケル、チタン、クロム、マンガン、鉄、コバルト、モリブデン、タングステンのいずれかを形成する。以下、ニッケルの場合について説明する。電界メッキ法によって、多結晶シリコン領域6表面に、50nmの厚さのニッケル膜を形成する。その後、900℃、2分間の熱処理を施す。その結果、多結晶シリコン領域のシリコンとニッケルが反応し、表面にニッケルシリサイド層17が形成する。未反応のニッケルを除去する。
【0037】
次に表面にニッケルシリサイド層17が形成された基板を、図5に示す装置の反応管8内の下部電極9上に載置する。その際、下部電極9と基板上の下層導電体2は接続されている。反応管内をロータリーポンプで、10-3torr台に真空引きする。その後、水素ガスで1%に希釈されたメタンガス等の炭素を含む反応ガス2sccmを、反応管内に導入し、マイクロ波電極を600W投入し、プラズマを生成させる。このとき基板を800℃に加熱する。
【0038】
この状態で、30分間保持することにより、先に形成したニッケルシリサイド層表面のニッケルが、メタン等の反応ガスが分解して生成した炭素と置換反応を起こし、シリコンカーバイド層18が生成する。析出したニッケルを除去した後、シリコンカーバイド層上に、上記同様の方法で、ダイヤモンド薄膜13を形成することも可能である(図12)。
【0039】
また、ダイヤモンドを形成する際の反応ガスは、上記水素ガスとメタンガスに限定されることはなく、必要に応じ、酸素を添加することも可能である。
【0040】
本発明の電子銃を用いた電子装置として、上記ディスプレイの他、液晶バックライト、照明等への応用が可能である。
【0041】
【発明の効果】
以上説明したように本発明によれば、選択酸化により再現性良く、かつ安価にダイヤモンドの選択成長が可能になる。また、本発明によりダイヤモンド合成は、基板にガラスなどが使用できるので、大型ディスプレイ用冷陰極への応用が容易である。
【0042】
さらに本発明のダイヤモンド薄膜の成長方法は、1つの結晶核からダイヤモンド薄膜をシリコン酸化膜上にオーバーグロースさせているため、成長中に下地基板のストレスの影響を受けにくく、薄膜の面積が大きくなっても剥離が起こることもない。
【0043】
本発明の側面をシリコン酸化膜とした凹部内にダイヤモンド膜を形成する場合、ダイヤモンド膜から放出される電子の指向性を制御しやすいという利点がある。
【図面の簡単な説明】
【図1】本発明の参考例を説明する図である。
【図2】本発明の参考例を説明する図である。
【図3】本発明の参考例を説明する図である。
【図4】本発明の参考例を説明する図である。
【図5】本発明に使用するマイクロ波プラズマCVD装置を説明する図である。
【図6】本発明の参考例を説明する図である。
【図7】本発明の参考例を説明する図である。
【図8】本発明の実施の形態を説明する図である。
【図9】本発明の実施の形態を説明する図である。
【図10】本発明の実施の形態を説明する図である。
【図11】本発明の実施の形態を説明する図である。
【図12】本発明の別の実施の形態を説明する図である。
【符号の説明】
1 基板
2 下層導電体
3 多結晶シリコン層
4 窒化膜
5 シリコン酸化膜
6 シリコン領域
7 ホトレジスト
8 反応管
9 下部電極
10 上部電極
11 直流電源
12 炭化層
13 ダイヤモンド薄膜
14 引き出し電極
15 孔
16 陽極
17 ニッケルシリサイド層
18 シリコンカーバイド層

Claims (3)

  1. 絶縁性基体上に、下層導電体を形成する工程と、
    該下層導電体上に、導電性のシリコン膜を形成する工程と、
    該シリコン膜上にパターニングされた窒化膜を形成する工程と、
    該窒化膜をマスクとして使用して、露出する前記シリコン膜を酸化し、シリコン酸化物を形成する工程と、
    前記窒化膜を除去し、前記シリコン膜表面を露出させ、前記シリコン酸化物で区画されたシリコン領域を形成する工程と、
    プラズマ雰囲気中で前記下層導電体と、前記シリコン領域に対向して設置された電極間にバイアス電圧を印加し、前記シリコン酸化物で区画された前記シリコン領域に電流を流すことによって、該シリコン領域上にダイヤモンド結晶を析出させる工程と、
    該析出したダイヤモンド結晶を成長させ、ダイヤモンド膜を形成する工程と、
    該ダイヤモンド膜に対向する上層導電体を形成する工程と、
    前記ダイヤモンド膜電子を放射させるために前記下層導電体及び前記上層導電体間に電圧を印加する手段を形成する工程とを備えたことを特徴とする電子銃の製造方法。
  2. 請求項記載の電子銃の製造方法において、前記シリコン酸化物で区画されたシリコン領域は、底面を前記シリコン領域とし、側面を前記絶縁物とする凹部形状とし、前記シリコン領域上に前記ダイヤモンド結晶を析出させることを特徴とする電子銃の製造方法。
  3. 請求項又はいずれか記載の電子銃の製造方法において、前記シリコン酸化物で区画されたシリコン領域上に、プラズマ雰囲気中で前記下層導電体と、前記シリコン領域に対向して設置された電極間にバイアス電圧を印加し、前記シリコン酸化物で区画された前記シリコン領域に電流を流すことによって、シリコンカーバイド層を形成した後、前記ダイヤモンド結晶を析出させることを特徴とする電子銃の製造方法。
JP35245299A 1999-12-10 1999-12-10 電子銃の製造方法 Expired - Fee Related JP3905272B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35245299A JP3905272B2 (ja) 1999-12-10 1999-12-10 電子銃の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35245299A JP3905272B2 (ja) 1999-12-10 1999-12-10 電子銃の製造方法

Publications (2)

Publication Number Publication Date
JP2001167691A JP2001167691A (ja) 2001-06-22
JP3905272B2 true JP3905272B2 (ja) 2007-04-18

Family

ID=18424183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35245299A Expired - Fee Related JP3905272B2 (ja) 1999-12-10 1999-12-10 電子銃の製造方法

Country Status (1)

Country Link
JP (1) JP3905272B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452797B (zh) 2007-12-05 2011-11-09 清华大学 场发射电子源及其制备方法

Also Published As

Publication number Publication date
JP2001167691A (ja) 2001-06-22

Similar Documents

Publication Publication Date Title
US5372973A (en) Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology
US5747918A (en) Display apparatus comprising diamond field emitters
US7993703B2 (en) Method for making nanostructures
KR20060091521A (ko) 탄소나노튜브의 형성방법 및 이를 이용한 전계방출소자의제조방법
JP2000215788A (ja) カ―ボン材料とその製造方法、及びそれを用いた電界放出型冷陰極
JPH08204206A (ja) 半導体およびその作製方法および半導体装置
US6538368B1 (en) Electron-emitting devices
KR20010029762A (ko) 탄소 나노튜브를 이용한 전계방출 표시소자의 제조 방법
JP3905272B2 (ja) 電子銃の製造方法
EP0959148A2 (en) Method for producing diamond films using a vapour-phase synthesis system
KR20050088394A (ko) 보호층의 선택적 에칭
JP4870133B2 (ja) シリサイドナノワイヤーを有する電界放出素子及びその製造方法
JP4312352B2 (ja) 電子放出装置
KR100362899B1 (ko) 탄소 나노튜브를 이용한 전계방출 표시소자의 제조 방법
JP3638264B2 (ja) 冷陰極装置の作製方法及び冷陰極装置並びにそれを用いた表示装置
JP3452222B2 (ja) 冷陰極電子源素子およびその製造方法
US5516404A (en) Method for manufacturing a micro-electronic component having an electrically conductive tip of doped silicon
JP2001035351A (ja) 円筒型電子源を用いた冷陰極及びその製造方法
EP1003196A1 (en) Carbon material, method for manufacturing the same material, field-emission type cold cathode using the same material and method for manufacturing the same cathode
JP3502883B2 (ja) 冷電子放出素子及びその製造方法
KR100200193B1 (ko) 실리콘팁형의전계방출소자제조방법
JPH0645613A (ja) 半導体素子およびその製造方法
JP4135309B2 (ja) 電界放射型電子源の製造方法
JP3622406B2 (ja) 冷電子放出素子及びその製造方法
JP4312331B2 (ja) 電子放出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150119

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees