JP3903904B2 - Surface-treated steel sheet with excellent paintability - Google Patents

Surface-treated steel sheet with excellent paintability Download PDF

Info

Publication number
JP3903904B2
JP3903904B2 JP2002309309A JP2002309309A JP3903904B2 JP 3903904 B2 JP3903904 B2 JP 3903904B2 JP 2002309309 A JP2002309309 A JP 2002309309A JP 2002309309 A JP2002309309 A JP 2002309309A JP 3903904 B2 JP3903904 B2 JP 3903904B2
Authority
JP
Japan
Prior art keywords
steel sheet
particle size
film
solid lubricating
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002309309A
Other languages
Japanese (ja)
Other versions
JP2003201584A (en
Inventor
清次 中島
知克 片桐
洋一 飛山
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002309309A priority Critical patent/JP3903904B2/en
Publication of JP2003201584A publication Critical patent/JP2003201584A/en
Application granted granted Critical
Publication of JP3903904B2 publication Critical patent/JP3903904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗装性に優れた表面処理鋼板に関し、特に塗装工程の前処理であるアルカリ脱脂工程における潤滑皮膜の脱膜性および塗装後の表面外観の有利な改善を図ったものである。
【0002】
【従来の技術】
溶融亜鉛めっき鋼板や電気亜鉛めっき鋼板のような亜鉛系めっき鋼板は、優れた耐食性を有しているが、冷延鋼板に比較するとプレス成形性に劣っている。
そこで、従来から、亜鉛系めっき鋼板のプレス成形性の改善方法について種々の提案がなされている。
【0003】
例えば、亜鉛めっき層の上層に鉄系の硬質めっきを施し、表面の硬度を上昇させることによって、めっきとダイスのかじりを防止する方法が提案されている(例えば特許文献1)。
また、めっき層の表面にPやBの酸素酸塩と金属酸化物による皮膜を形成して、摺動性を改善する方法が提案されている(例えば特許文献2)。
しかしながら、上記したような従来技術では、通常の亜鉛めっきラインの後段に、別途専用の後処理設備を設置する必要があり、鋼板の製造コストが高くなるという問題があった。
【0004】
その他、潤滑性に優れ、プレス加工し易い潤滑処理鋼板として、りん酸亜鉛皮膜を被成した亜鉛系めっき鋼板が知られている。このりん酸亜鉛皮膜による方法(プレフォス処理)によれば、浸漬法や塗布法など汎用設備を共用することによって皮膜の形成が可能であり、また摺動性の改善効果も大きい。
しかしながら、このようなりん酸亜鉛皮膜は、塗装工程の前処理であるアルカリ脱脂工程での脱膜性(除去性)に劣り、これに起因して化成処理皮膜が不均一となり、ひいては塗装後の外観品質が劣化するという問題があった。
【0005】
【特許文献1】
特開昭62−192597号公報(特許請求の範囲)
【特許文献2】
特開平4−176878号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、塗装工程の前処理であるアルカリ脱脂工程における潤滑皮膜の脱膜性を効果的に向上させて、塗装後の外観品質を向上させた、塗装性に優れた表面処理鋼板を提案することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、本発明は、表面に固形潤滑皮膜を有する亜鉛系めっき鋼板であって、該固形潤滑皮膜が、平均粒子径が 0.5μm 以上、 3.0μm 以下のりん酸亜鉛の微粒子を65 97mass %含有する固形潤滑皮膜からなることを特徴とする塗装性に優れた表面処理鋼板である。
【0008】
また、本発明は、表面に固形潤滑皮膜を有する亜鉛系めっき鋼板であって、該固形潤滑皮膜が、平均粒子径が 0.5μm 以上、 3.0μm 以下で、さらに小径側からの累積度数分布が5%の時の粒子径が 0.3μm 以上で、かつ95%の時の粒子径が 5.0μm 以下となる粒子径分布を有するりん酸亜鉛の微粒子を65 97mass %含有する固形潤滑皮膜からなることを特徴とする塗装性に優れた表面処理鋼板である。
【0009】
【発明の実施の形態】
以下、本発明について具体的に説明する。
亜鉛系めっき鋼板をプレス加工すると、亜鉛の軟質という性質ゆえに、金型との凝着を起こし易く、摺動抵抗が高いため、条件によっては型かじりを起こすことが知られている。通常、プレス油を使用することにより、成形性は相当程度改善される。しかしながら、大型部品の成形や難成形部品を加工する場合には、部分的な油膜切れが発生し、プレス割れを起こす場合があった。
【0010】
りん酸亜鉛皮膜のような固形潤滑皮膜は、本来、上記したような油膜切れなどによる部分的な摺動抵抗増加に対して有効であり、適切なプレス油と組み合わせて使用することによって、成形性の改善が可能と考えられていた。
しかしながら、従来のりん酸亜鉛処理は、りん酸を主体とする酸性溶液に可溶性の亜鉛化合物や反応促進剤などを混合し、めっき層表面において下地めっき層の一部を溶解することにより、りん酸亜鉛皮膜を形成するというものであるため、形成される皮膜とめっき層との界面には、必然的に反応層が存在することになる。
【0011】
この反応層の形態については、必ずしも全てが明らかになっているわけではないが、多くの場合、X線回折法による分析で Hopeite(ホバイト:りん酸亜鉛の4水和物)の存在が認められる。また、浸漬法により形成される皮膜の場合、5〜10μm の鱗辺状のりん酸亜鉛結晶が観察されることが多い。
これら結晶質の粒子や反応層は、アルカリ脱脂液にある程度溶解して、部分的に除去されるが、完全に除去されることはない。 この状態で化成処理を行うと化成皮膜の不均一を生じ、その後の塗装外観の劣化を招いていたのである。
【0012】
そこで、発明者らは、りん酸亜鉛微粒子を主体とする固形潤滑皮膜を適用することによって、上記の問題の解決を図るものとした。
すなわち、固形潤滑皮膜の形成に際し、予め反応・形成されたりん酸亜鉛微粒子と有機成膜助剤を含む水性処理液を、例えばロールコーターなどによって鋼板上に塗布・乾燥して成膜するものとし、塗工液にはりん酸などめっき層との化学反応を起こす成分を含有させないものとした。
上記の処理によれば、皮膜とめっき層との界面には結晶質の粒子や反応層が形成されないため、有機成膜助剤水溶性高分子バインダー(有機成膜助剤)の溶解により、皮膜は容易に除去される。
【0013】
しかしながら、このような非反応型の固形潤滑皮膜は、塗装工程の前処理であるアルカリ脱脂工程での脱膜性が悪く、ひいてはその後の化成処理性や塗装性に悪影響を及ぼすことが判明した。
すなわち、例えば合金化溶融亜鉛めっき層のような、表面に微小な凹凸が存在するめっき層の表面に、上記したようなりん酸亜鉛微粒子を主体とする固形潤滑皮膜を形成した場合、凹部に深く入り込んだ微粒子はアルカリ脱脂工程では完全に除去されず、これに起因して化成処理性や塗装性が劣化することが判明した。また、かような傾向は、塗装前処理のアルカリ脱脂液が劣化した場合に生じ易いことも判明した。
【0014】
そこで、発明者らは、この問題を解決すべく鋭意研究を重ねた結果、素材であるりん酸亜鉛微粒子の粒子径分布を所定の範囲に規制することによって、たとえ劣化脱脂液を用いた場合であっても、所期した目的が有利に達成できることの知見を得た。
【0015】
すなわち、発明者らは、りん酸亜鉛微粒子の粒子径分布とアルカリ脱脂工程における脱膜性、ひいてはその後の化成処理性や塗装性との関係について、数多くの実験と検討を重ねた結果、りん酸亜鉛微粒子として、平均粒子径が 0.5μm 以上、 3.0μm 以下の範囲のものを用いることにより、アルカリ脱脂工程における脱膜性、ひいてはその後の化成処理性および塗装性が効果的に改善されることが判明した。
【0016】
なお、平均粒子径の測定は、市販の粒子径分布測定装置を用いて行えばよく、例えばレーザー回折・散乱式粒子径分布測定装置を用いることができる。このとき、粒子径の小径側からの累積度数分布が50%のときの粒子径を平均粒子径とする。
【0017】
さらに、上記の平均粒子径範囲を満足した上で、図1に示すように、小径側からの累積度数分布が5%の時の粒子径が 0.3μm 以上で、かつ95%の時の粒子径が 5.0μm 以下を満足する粒子径分布を有するりん酸亜鉛微粒子を用いることによって、より一層の成果が得られることが判明した。
【0018】
ここに、小径側からの累積度数分布が5%の時の粒子径を 0.3μm 以上としたのは、微小粒子の割合を少なくして、かような微小粒子のめっき層凹部への入り込みに起因した弊害を減少するためであり、一方小径側からの累積度数分布が95%の時の粒子径を 5.0μm 以下としたのは、粗大粒子の割合が多くなると、下地めっき層との密着性の低下を招くからである。
【0019】
本発明では、上記したような粒子径分布になるりん酸亜鉛微粒子を有機成膜助剤と混合したものを処理液として、固形潤滑皮膜を形成する。
ここに、りん酸亜鉛微粒子と有機成膜助剤との配合割合は、りん酸亜鉛微粒子:100 重量部に対し、3〜50重量部程度とするのが好適である。
【0020】
また、有機成膜助剤としては、例えばメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリエチレングリコール、キサンタンガムおよびグアーガムなどの水溶性高分子およびその誘導体ならびにこれらの塩等が有利に適合する。さらに、必要に応じ、りん酸亜鉛微粒子の分散安定剤としての界面活性剤などを含有しても良い。
なお、防錯油や洗浄油を鋼板上に塗布して使用することが一般的である自動車用鋼板用としての適用を考慮すると、上記の成膜助剤は、防錆油や洗浄油に対する安定性を有することも重要である。
【0021】
さらに、処理液の塗布量については、塗布・乾燥後の固形潤滑皮膜の付着量が0.05〜2.0 g/m2程度となる量とすることが好ましく、適正量の処理液を塗布したのち、60〜120 ℃程度の温度で乾燥させる。
かくして得られた固形潤滑皮膜の主成分はりん酸亜鉛微粒子であり、それ以外の成分は有機成膜助剤およびその誘導体などである。そして、皮膜形成後におけるこれらの比率は、りん酸亜鉛微粒子:65〜97mass%、有機成膜助剤およびその誘導体など:3〜35mass%とする
【0022】
さらに、本発明において、亜鉛系めっき層とは、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層の他、Al, Mg, Siなどの1種または2種以上を含有する溶融亜鉛系めっき層、Ni,Fe,Coなどの1種または2種以上を含有する電気亜鉛系合金めっき層などを意味する。
【0023】
【実施例】
素材である亜鉛系めっき鋼板として、合金化溶融亜鉛めっき鋼板(めっき原板:0.8 mm厚の普通鋼。めっき層組成 Fe:8〜14mass%、Al:0.1 〜0.2 mass%、残部:亜鉛)を用い、次の条件で本発明に従う固形潤滑皮膜を形成した。
表1に示すように、平均粒子径および累積度数分布を種々に変化させたりん酸亜鉛微粒子:5〜20mass%と水溶性高分子バインダー(カルボキシメチルセルロースナトリウム塩 [重合度 700]):0.5 〜5.0 mass%を含有させた水溶液を処理液として、塗布・乾燥後の付着量が 1.0g/m2(片面当たり)となる量を塗布したのち、80℃で乾燥した。
かくして得られた固形潤滑皮膜付き合金化溶融亜鉛めっき鋼板のアルカリ脱脂工程での脱膜性およびプレス加工の前処理であるブランク洗浄工程における耐はく離性について調べた結果を、表1に併記する。
【0024】
なお、りん酸亜鉛微粒子の粒子径分布は、レーザー回折・散乱式粒子径分布測定装置を使用して測定した。
また、アルカリ脱脂工程における脱膜性は次のようにして測定した。
化成前処理用アルカリ脱脂液FC4460(日本パーカライジング製)を標準条件濃度(FC4460A : 20 g/l, FC4460B : 12 g/l)に調製後、ドライアイス(炭酸ガス)を添加してpHを10に調整し、液温度:40℃, 浸漬時間:60秒の条件で浸漬したのち、水洗・乾燥してから、皮膜付着量を測定した。この試験による脱膜率が80%未満では、化成処理むらやその後の塗装工程で外観不良を引き起し易い。
さらに、ブランク洗浄工程における耐はく離性については、試験片に洗浄油(日石三菱 P1600)を塗油後、ポリプロピレンブラシにて20往復擦ったのち、石油ベンジンにて脱脂し、その前後における付着量変化で評価した。この試験によるはく離量が20%を超えた場合には摺動性不良を引き起こす懸念が大きい。
【0025】
【表1】

Figure 0003903904
【0026】
同表に示したとおり、りん酸亜鉛微粒子として、本発明に従う粒子径分布になるものを用いた場合には、アルカリ脱脂工程における脱膜性が高く、またブランク洗浄工程における耐はく離性にも優れている。
【0027】
【発明の効果】
かくして、本発明に従い、非反応型固形潤滑皮膜の素材であるりん酸亜鉛微粒子として、所定の粒子径分布を満足するものを用いることにより、アルカリ脱脂工程における脱膜性およびブランク洗浄工程における耐はく離性に優れた表面処理鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】 りん酸亜鉛微粒子の粒子径と度数および累積度数との関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-treated steel sheet excellent in paintability, and is intended to advantageously improve the film-removability of a lubricating film and the surface appearance after painting, particularly in an alkaline degreasing process which is a pretreatment of the painting process.
[0002]
[Prior art]
Zinc-based galvanized steel sheets such as hot-dip galvanized steel sheets and electrogalvanized steel sheets have excellent corrosion resistance, but are inferior in press formability compared to cold-rolled steel sheets.
Therefore, various proposals have conventionally been made for methods for improving the press formability of galvanized steel sheets.
[0003]
For example, a method has been proposed in which iron and hard plating is applied to the upper layer of the galvanized layer to increase the surface hardness, thereby preventing the galling of the plating and the die (for example, Patent Document 1).
In addition, a method for improving the slidability by forming a film of P or B oxyacid salt and metal oxide on the surface of the plating layer has been proposed (for example, Patent Document 2).
However, in the conventional technology as described above, it is necessary to separately install a dedicated post-treatment facility after the normal galvanizing line, and there is a problem that the manufacturing cost of the steel sheet increases.
[0004]
In addition, a zinc-based plated steel sheet having a zinc phosphate coating formed thereon is known as a lubricated steel sheet that is excellent in lubricity and easy to press. According to this zinc phosphate coating method (pre-phos treatment), it is possible to form a coating by sharing general-purpose equipment such as a dipping method and a coating method, and the effect of improving slidability is great.
However, such a zinc phosphate film is inferior in the film removal property (removability) in the alkaline degreasing process, which is a pretreatment of the coating process, resulting in a non-uniform chemical conversion film, and consequently, after coating. There was a problem that the appearance quality deteriorated.
[0005]
[Patent Document 1]
JP-A-62-192597 (Claims)
[Patent Document 2]
JP-A-4-176878 (Claims)
[0006]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems, effectively improving the film removal of the lubricating film in the alkaline degreasing process, which is a pretreatment of the coating process, and improving the appearance quality after coating. The object is to propose a surface-treated steel sheet with excellent paintability.
[0007]
[Means for Solving the Problems]
That is, the present invention is a zinc-based plated steel sheet having a solid lubricating film on the surface, the solid lubricating film containing 65 to 97 mass % of zinc phosphate fine particles having an average particle diameter of 0.5 μm or more and 3.0 μm or less. It is a surface-treated steel sheet excellent in paintability characterized by comprising a solid lubricating film.
[0008]
The present invention also relates to a zinc-based plated steel sheet having a solid lubricating film on the surface, wherein the solid lubricating film has an average particle size of 0.5 μm or more and 3.0 μm or less, and a cumulative frequency distribution from the small diameter side is 5 A solid lubricating film containing 65 to 97 mass % of zinc phosphate fine particles having a particle size distribution such that the particle size at 0.3% is 0.3 μm or more and the particle size at 95% is 5.0 μm or less. This is a surface-treated steel sheet with excellent paintability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
It is known that when a zinc-plated steel sheet is pressed, due to the soft nature of zinc, adhesion to the mold is likely to occur, and sliding resistance is high, so that die galling is caused depending on conditions. Usually, by using press oil, the moldability is considerably improved. However, when molding large parts or difficult-to-mold parts, partial oil film breakage may occur and press cracks may occur.
[0010]
Solid lubricating coatings such as zinc phosphate coatings are inherently effective in increasing partial sliding resistance due to oil film breakage as described above. Formability can be improved by using in combination with appropriate press oil. It was thought that improvement was possible.
However, in the conventional zinc phosphate treatment, a soluble zinc compound or a reaction accelerator is mixed in an acidic solution mainly composed of phosphoric acid, and a part of the underlying plating layer is dissolved on the surface of the plating layer to thereby remove phosphoric acid. Since a zinc film is formed, a reaction layer necessarily exists at the interface between the film to be formed and the plating layer.
[0011]
Although not all of the form of this reaction layer is clarified, in many cases, the presence of Hopeite (hobite: zinc phosphate tetrahydrate) is recognized by analysis by X-ray diffraction method. . In the case of a film formed by the dipping method, 5 to 10 μm scale-like zinc phosphate crystals are often observed.
These crystalline particles and reaction layer are dissolved to some extent in the alkaline degreasing solution and partially removed, but not completely removed. If the chemical conversion treatment was performed in this state, the chemical conversion film was non-uniform, and the coating appearance thereafter deteriorated.
[0012]
Therefore, the inventors have attempted to solve the above problem by applying a solid lubricating film mainly composed of zinc phosphate fine particles.
That is, when forming a solid lubricating film, an aqueous treatment liquid containing zinc phosphate fine particles and an organic film forming aid that have been reacted and formed in advance is applied and dried on a steel sheet by, for example, a roll coater. The coating solution does not contain any component that causes a chemical reaction with the plating layer, such as phosphoric acid.
According to the above treatment, since crystalline particles or reaction layers are not formed at the interface between the coating and the plating layer, the film is dissolved by dissolving the organic film forming aid water-soluble polymer binder (organic film forming aid). Is easily removed.
[0013]
However, it has been found that such a non-reactive solid lubricating film has poor film removal properties in the alkaline degreasing process, which is a pretreatment of the coating process, and thus adversely affects the subsequent chemical conversion properties and paintability.
That is, when a solid lubricating film mainly composed of zinc phosphate fine particles as described above is formed on the surface of a plating layer having minute irregularities on the surface, such as an alloyed hot dip galvanized layer, it is deep in the recess. It has been found that the fine particles that have entered are not completely removed in the alkaline degreasing process, and as a result, chemical conversion properties and paintability deteriorate. It has also been found that such a tendency is likely to occur when the alkaline degreasing solution for pretreatment for coating deteriorates.
[0014]
Therefore, as a result of intensive research to solve this problem, the inventors have controlled the particle size distribution of the zinc phosphate fine particles, which are raw materials, to a predetermined range, even when a deteriorated degreasing solution is used. Even so, we have found that the intended purpose can be achieved advantageously.
[0015]
That is, the inventors have conducted numerous experiments and examinations on the relationship between the particle size distribution of zinc phosphate fine particles and the film-removing property in the alkaline degreasing process, and the subsequent chemical conversion properties and coating properties. By using zinc fine particles having an average particle size in the range of 0.5 μm or more and 3.0 μm or less, the film removal property in the alkaline degreasing process, and the subsequent chemical conversion treatment property and paintability can be effectively improved. found.
[0016]
The average particle size may be measured using a commercially available particle size distribution measuring device. For example, a laser diffraction / scattering particle size distribution measuring device can be used. At this time, the particle diameter when the cumulative frequency distribution from the smaller diameter side of the particle diameter is 50% is defined as the average particle diameter.
[0017]
Further, after satisfying the above average particle diameter range, as shown in FIG. 1, the particle diameter when the cumulative frequency distribution from the small diameter side is 5% is 0.3 μm or more and the particle diameter when 95% It has been found that further results can be obtained by using zinc phosphate fine particles having a particle size distribution satisfying a particle size of 5.0 μm or less.
[0018]
Here, when the cumulative frequency distribution from the small diameter side is 5%, the particle diameter is set to 0.3 μm or more because the ratio of fine particles is reduced and such fine particles enter the plating layer recesses. On the other hand, when the cumulative frequency distribution from the small diameter side is 95%, the particle diameter is set to 5.0 μm or less because the larger the proportion of coarse particles, the greater the adhesion to the underlying plating layer. This is because it causes a decrease.
[0019]
In the present invention, a solid lubricating film is formed using a mixture of zinc phosphate fine particles having the particle size distribution as described above mixed with an organic film forming aid.
Here, the blending ratio of the zinc phosphate fine particles and the organic film-forming aid is preferably about 3 to 50 parts by weight with respect to 100 parts by weight of the zinc phosphate fine particles.
[0020]
As the organic film forming aid, for example, water-soluble polymers such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyethylene glycol, xanthan gum and guar gum and their derivatives, and salts thereof are advantageously suitable. Further, if necessary, a surfactant as a dispersion stabilizer for zinc phosphate fine particles may be contained.
In consideration of the application for steel plates for automobiles, where anti-complexing oil and cleaning oil are generally used on steel plates, the film-forming aids described above are stable against rust-preventing and cleaning oils. It is also important to have sex.
[0021]
Furthermore, the coating amount of the treatment liquid is preferably an amount such that the solid lubricant film adhesion amount after coating and drying is about 0.05 to 2.0 g / m 2, and after applying an appropriate amount of the treatment liquid, 60 Dry at a temperature of ~ 120 ° C.
The main component of the solid lubricating film thus obtained is zinc phosphate fine particles, and other components are organic film forming aids and derivatives thereof. And these ratios after film formation shall be zinc phosphate fine particles: 65-97 mass%, organic film-forming auxiliary agent, its derivative, etc .: 3-35 mass % .
[0022]
Further, in the present invention, the zinc-based plating layer is a hot dip galvanized layer, an alloyed hot dip galvanized layer, an electrogalvanized layer, or a hot dip zinc containing one or more of Al, Mg, Si and the like. It means an electroplating layer, an electrozinc alloy plating layer containing one or more of Ni, Fe, Co and the like.
[0023]
【Example】
Alloyed hot-dip galvanized steel sheet (plating base plate: 0.8 mm thick plain steel. Plating layer composition Fe: 8-14 mass%, Al: 0.1-0.2 mass%, balance: zinc) is used as the zinc-based plated steel sheet. The solid lubricating film according to the present invention was formed under the following conditions.
As shown in Table 1, zinc phosphate fine particles with various changes in average particle size and cumulative frequency distribution: 5 to 20 mass% and water-soluble polymer binder (carboxymethylcellulose sodium salt [degree of polymerization 700]): 0.5 to 5.0 An aqueous solution containing mass% was used as a treatment liquid, and after applying and drying an amount of 1.0 g / m 2 (per one side) after application and drying, it was dried at 80 ° C.
Table 1 also shows the results of examining the film-removability in the alkaline degreasing process of the alloyed hot-dip galvanized steel sheet with a solid lubricating film thus obtained and the peel resistance in the blank cleaning process, which is a pretreatment for press working.
[0024]
The particle size distribution of the zinc phosphate fine particles was measured using a laser diffraction / scattering particle size distribution measuring apparatus.
Moreover, the film removal property in the alkaline degreasing step was measured as follows.
Preparation of alkaline degreasing solution FC4460 for chemical conversion pretreatment (manufactured by Nihon Parkerizing) at standard conditions (FC4460A: 20 g / l, FC4460B: 12 g / l), and then adding dry ice (carbon dioxide) to pH 10 After adjusting and soaking under the conditions of liquid temperature: 40 ° C. and soaking time: 60 seconds, the coating amount was measured after washing and drying. If the film removal rate by this test is less than 80%, it is likely to cause poor appearance in the chemical conversion treatment unevenness and the subsequent coating process.
Furthermore, as for the peel resistance in the blank cleaning process, after applying cleaning oil (Nisseki Mitsubishi P1600) to the test piece, rubbing it 20 times with a polypropylene brush, degreasing with petroleum benzine, and the amount of adhesion before and after that Evaluated by change. When the peel amount by this test exceeds 20%, there is a great concern of causing poor sliding performance.
[0025]
[Table 1]
Figure 0003903904
[0026]
As shown in the table, when zinc phosphate particles having a particle size distribution according to the present invention are used, the film removal property in the alkaline degreasing step is high, and the peeling resistance in the blank cleaning step is also excellent. ing.
[0027]
【The invention's effect】
Thus, according to the present invention, by using the zinc phosphate fine particles that are the material of the non-reactive solid lubricant film that satisfy the predetermined particle size distribution, the film removal property in the alkaline degreasing step and the peeling resistance in the blank cleaning step are used. A surface-treated steel sheet having excellent properties can be stably obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the particle diameter, frequency and cumulative frequency of zinc phosphate fine particles.

Claims (2)

表面に固形潤滑皮膜を有する亜鉛系めっき鋼板であって、該固形潤滑皮膜が、平均粒子径が 0.5μm 以上、 3.0μm 以下のりん酸亜鉛の微粒子を65 97mass %含有する固形潤滑皮膜からなることを特徴とする塗装性に優れた表面処理鋼板。A zinc-based plated steel sheet having a solid lubricating film on its surface, the solid lubricating film comprising a solid lubricating film containing 65 to 97 mass % of zinc phosphate fine particles having an average particle size of 0.5 μm or more and 3.0 μm or less A surface-treated steel sheet with excellent paintability. 表面に固形潤滑皮膜を有する亜鉛系めっき鋼板であって、該固形潤滑皮膜が、平均粒子径が 0.5μm 以上、 3.0μm 以下で、さらに小径側からの累積度数分布が5%の時の粒子径が 0.3μm 以上で、かつ95%の時の粒子径が 5.0μm 以下となる粒子径分布を有するりん酸亜鉛の微粒子を65 97mass %含有する固形潤滑皮膜からなることを特徴とする塗装性に優れた表面処理鋼板。A zinc-plated steel sheet having a solid lubricating film on the surface, wherein the solid lubricating film has an average particle diameter of 0.5 μm or more and 3.0 μm or less, and a particle size when the cumulative frequency distribution from the small diameter side is 5%. The coating property is characterized by comprising a solid lubricating film containing 65 to 97 mass % of zinc phosphate fine particles having a particle size distribution with a particle size distribution of 0.3 μm or more and 95% particle size of 5.0 μm or less. Excellent surface-treated steel sheet.
JP2002309309A 2001-10-25 2002-10-24 Surface-treated steel sheet with excellent paintability Expired - Fee Related JP3903904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309309A JP3903904B2 (en) 2001-10-25 2002-10-24 Surface-treated steel sheet with excellent paintability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001328095 2001-10-25
JP2001-328095 2001-10-25
JP2002309309A JP3903904B2 (en) 2001-10-25 2002-10-24 Surface-treated steel sheet with excellent paintability

Publications (2)

Publication Number Publication Date
JP2003201584A JP2003201584A (en) 2003-07-18
JP3903904B2 true JP3903904B2 (en) 2007-04-11

Family

ID=27666507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309309A Expired - Fee Related JP3903904B2 (en) 2001-10-25 2002-10-24 Surface-treated steel sheet with excellent paintability

Country Status (1)

Country Link
JP (1) JP3903904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593318B1 (en) * 2001-10-25 2006-06-28 제이에프이 스틸 가부시키가이샤 Zinc-based metal plated steel sheet excellent in resistance to flaking, sliding characteristics and resistance to scoring

Also Published As

Publication number Publication date
JP2003201584A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
CN110121570A (en) Composition is used in the excellent zinc-plated system's steel of sealer adhesion and post-treatment films formation
JP3872621B2 (en) Galvanized steel sheet for automobile bodies
JP3903904B2 (en) Surface-treated steel sheet with excellent paintability
JP3932823B2 (en) Lubricated steel sheet with excellent chemical conversion and adhesion
TW573063B (en) Zinc-based metal plated steel sheet excellent in flaking resistance, sliding characteristics, and scoring resistance
JP2002012983A (en) Steel sheet coated with composite phosphate film superior in corrosion resistance, lubricity, and coating material adhesiveness
JP2007231376A (en) Galvannealed steel sheet
JPH0316726A (en) Lubricating resin-treated steel plate with excellent moldability
JPH0243040A (en) Lubricating resin treated steel plate excellent in corrosion resistance
JP3265973B2 (en) Galvanized steel sheet excellent in press formability and method for producing the same
JP3818251B2 (en) Lubricated steel sheet with excellent peeling resistance
JP3903903B2 (en) Galvanized steel sheet excellent in peeling resistance, slidability and galling resistance and method for producing the same
JP3555604B2 (en) Surface treated steel sheet excellent in corrosion resistance and formability and method for producing the same
JPH01301332A (en) Lubricating resin treated steel plate excellent in moldability
JP3882586B2 (en) Surface-treated steel sheet with excellent corrosion resistance and formability and method for producing the same
JP2004197143A (en) Galvanized steel plate
JP3846292B2 (en) Galvanized steel sheet with excellent press formability, paint adhesion and post-coating corrosion resistance
JP3704766B2 (en) Galvanized steel sheet with excellent press formability
JP2003221676A (en) Zinc-based plated steel sheet
KR100785989B1 (en) Manufacturing method of lubricant inorganic pre-phosphates coated galvanized steel sheet having a high formability and the steel sheet thereof
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JP3273759B2 (en) Galvanized steel sheet with excellent lubricity
JPH01301333A (en) Lubricating resin treated steel plate excellent in moldability and corrosion resistance
JP2965090B2 (en) Method for producing galvanized steel sheet excellent in press workability and phosphatability
JPH0741962A (en) Lubricating resin-treated steel sheet excellent in press forming property and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees